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Abstract

Exposure of male C3H mice in utero (from gestational days 8–18) to 85 ppm sodium arsenite via 

the dams’ drinking water has previously been shown to increase liver tumor incidence by 2 years 

of age. However, in our companion study (Ahlborn et al., 2009), continuous exposure to 85 ppm 

sodium arsenic (from gestational day 8 to postnatal day 365) did not result in increased tumor 

incidence, but rather in a significant reduction (0% tumor incidence). The purpose of the present 

study was to examine the gene expression responses that may lead to the apparent protective effect 

of continuous arsenic exposure. Genes in many functional categories including cellular growth and 

proliferation, gene expression, cell death, oxidative stress, protein ubiquitination, and 

mitochondrial dysfunction were altered by continuous arsenic treatment. Many of these genes are 

known to be involved in liver cancer. One such gene associated with rodent hepatocarcinogenesis, 

Scd1, encodes stearoyl-CoA desaturase and was down-regulated by continuous arsenic treatment. 

An overlap between the genes in our study affected by continuous arsenic exposure and those from 

the literature affected by long-term caloric restriction suggests that reduction in the spontaneous 
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tumor incidence under both conditions may involve similar gene pathways such as fatty acid 

metabolism, apoptosis, and stress response.
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1. Introduction

Inorganic arsenic is a well-documented human carcinogen, and arsenic-contaminated 

drinking water is a major concern in many parts of the world (Bates et al., 1995; IARC, 

2004; NRC, 1999; Pott et al., 2001; Kitchin, 2001; Simeonova and Luster, 2000). Gestation 

and early life are periods of high sensitivity to chemical carcinogenesis (Anderson et al., 

2000; Barton et al., 2005). Studies from a unique exposure scenario in Chile have shown that 

arsenic exposure both in utero and during childhood predisposes adults to increased risk of 

lung and urinary bladder cancer (Marshall et al., 2007; Smith et al., 2006), and children to 

increased liver cancer mortality (Liaw et al., 2008). Adult mice are typically resistant to 

experimental induction of tumors with sodium arsenite, and require administration of a co-

carcinogen or promoter for tumor formation (Rossman et al., 2004; Morikawa et al., 2000; 

Mizoi et al., 2005; Motiwale et al., 2005; Uddin et al., 2005). However, studies in C3H and 

CD-1 mice have found increased liver, lung, adrenal, ovarian and uterine tumor incidence at 

2 years following in utero exposure between gestation days 8 and 18 (Waalkes et al., 2003, 

2004a,b, 2006), indicating arsenic to be a “complete” transplacental carcinogen in mice. 

Gene expression changes associated with this exposure included increased expression of 

genes involved in cell proliferation, stress response, lipid metabolism and cell to cell 

communication. Altered expression of genes encoding gender-related metabolic enzymes 

and estrogen-linked genes was also reported (Liu et al., 2006b).

We have recently evaluated age susceptibility to arsenic carcinogenesis by administering 

inorganic arsenic to C3H mice at three different developmental stages (during gestation, 

prior to pubescence, and post-pubescence) in order to compare proliferative lesion and 

tumor outcomes at 1 year (Ahlborn et al., 2009). The C3H mouse strain is known to have a 

high spontaneous incidence of hepatocellular tumors (Dragani et al., 1995). We observed 

that urinary bladder hyperplasia incidence was significantly increased in female mice 

chronically exposed to arsenic from either gestational day (GD) 8 or postnatal day (PD) 21 

through 1 year. In contrast, male mice continuously exposed to arsenic from GD8 through 1 

year had significantly decreased incidence of liver and adrenal tumors in comparison to both 

in utero only exposed and untreated control mice. Tumor formation was completely 

abolished at 1 year in this treatment group (Ahlborn et al., 2009). To elucidate changes at the 

gene transcript level that may be affecting this unexpected tumor-protective effect, the 

current study measures global gene expression in liver tissue samples taken from the 

different treatment regimens.
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2. Materials and methods

2.1. In vivo methods

Animal experiments were carried out at the U.S. Environmental Protection Agency, 

Research Triangle Park, NC in an AAALAC International accredited facility. All procedures 

involving the care and use of animals were approved by the Institutional Animal Care and 

Use Committee. The experimental design and procedures are described in detail in our 

companion study (Ahlborn et al., 2009), from which liver samples were derived for the gene 

expression analyses reported here. The four treatment groups used for the current study were 

control (no arsenic exposure), in utero only arsenic exposure (GD8–19), continuous arsenic 

exposure (GD8 to 1 year), and postnatal arsenic exposure (PD21 to 1 year). Briefly, sodium 

arsenite was administered in the drinking water at 85 ppm to timed-pregnant C3H dams 

(Charles River Laboratories, Raleigh, NC). The in utero only treatment group received 

arsenic entirely via maternal exposure during gestation. For the continuous treatment arsenic 

was administered maternally from GD8 through weaning of the offspring. At weaning, the 

offspring were administered 85 ppm sodium arsenite in their own drinking water until 1 year 

of age. The postnatal exposure group was administered 85 ppm sodium arsenite only in their 

own drinking water from PD21 until 1 year of age. Mice were maintained on Ralston Purina 

5001 Chow, characterized by total background arsenic levels of less than 0.22 ppm. At 1 

year of age animals from these four treatment groups were euthanized by CO2 asphyxiation, 

and their livers flash frozen in liquid nitrogen and stored at −80 ◦C for subsequent analysis.

2.2. Gene expression

Total RNA was isolated from normal appearing tissue using the TriReagent procedure 

(Molecular Research Center, Cincinnati, OH). The integrity of each RNA sample was 

confirmed using an Agilent 2100 Bioanalyzer (Agilent, Foster City, CA). Gene expression 

(four animals chosen randomly per treatment group; one array per animal) was measured 

using Affymetrix mouse 430 2.0 arrays following the manufacturer’s recommended 

protocol. Data was normalized using the Rosetta Resolver error-model, and a one-way 

ANOVA (p ≤ 0.01, with Benjamini Hochberg multiple test correction method) was 

performed with the four 1-year treatment groups. A Tukey–Kramer post hoc test (p ≤ 0.01) 

was used to compare the groups of interest (treated vs. untreated control). Lists of probe sets 

with expression significantly altered due to arsenic were then filtered to include only those 

probe sets with an absolute fold-change of 1.5 or greater, and exported into Ingenuity 

Pathways Analysis (IPA). These lists are provided as Supplementary Material.

An additional time course analysis of array results from animals continuously exposed to 

arsenic in the drinking water from GD8 until euthanasia at various ages (GD19, PD32, 

PD67, 1 year) was performed using a two-way ANOVA (p ≤ 0.01, with Benjamini Hochberg 

multiple test correction, Tukey–Kramer post hoc test). The two variables were age when 

euthanized and treatment (arsenic or control). Genes with expression significantly altered by 

arsenic treatment were examined at each age and a 1.5-fold-change cutoff applied. These 

significant gene lists and their functional categorization by IPA are provided as 

Supplementary Material.
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2.3. Quantitative RT-PCR

RNA from each of the four 1-year treatment groups (four samples per group) was used for 

quantitative reverse transcriptase PCR. One-step qRT-PCR reactions were set up in triplicate 

for each sample and target gene combination. Eighty-five nanograms of total RNA was 

loaded into each reaction containing 1× QuantiTect™ Probe RT-PCR master mix [Qiagen, 

Valencia, CA] and 1× TaqMan® Gene Expression Assays [Applied Biosystems, Foster City, 

CA] for the desired target. Relative standard curves were generated using serially diluted 

pooled RNA from the study. Relative expression quantities were generated from the 

resulting relative standard curves and these values used for comparisons between treatment 

groups.

3. Results

3.1. Tumor incidence at 1 year

Table 1 summarizes hepatocellular tumor incidence for the different treatment groups of 

male mice (data from our companion study, Ahlborn et al., 2009). The total tumor incidence 

for the in utero only treatment group was similar to that of the control group (~30%). Tumor 

incidence was significantly reduced in the continuous treatment group with no tumors 

formed by 1 year of age. Tumor incidence for the postnatal exposure group was similar to 

that of the continuous treatment group, but it was not statistically lower than that of the 

control or in utero only groups.

3.2. Gene expression at 1 year

The current study evaluates gene expression profiles for the three arsenic exposure groups 

(in utero only, continuous and postnatal) relative to the untreated control group. Numbers of 

probe sets with significant changes in expression at 1 year due to arsenic are shown in Fig. 1. 

Because tumor formation and gene expression were affected to the greatest extent in the 

continuous treatment group that received arsenic from GD8 to 1 year, much of our analysis 

focused on this group. Table 2 is a summary by functional category of the genes with 

expression significantly altered by continuous arsenic exposure. Genes involved in cancer 

and cancer-related functions are highly represented. IPA identified 1407 as cancer genes, 

with 81 identified as liver cancer genes.

Fig. 2 lists expression relative to the untreated control for selected genes from both the 

chronic treatment groups by functional category. None of the genes in this figure was 

significantly altered by the in utero only treatment. Arsenic effects on expression were 

skewed toward down-regulation in both the number of genes and the magnitude of change 

for all treatment groups, with 67% (in utero only), 71% (postnatal) and 58% (continuous) of 

the significantly altered genes down-regulated. The magnitude of change ranged from more 

than −100-fold to approximately +25-fold for all treatment groups.

Expression for the insulin receptor signaling pathway genes in the continuous treatment 

group is shown in Fig. 3. Over half of these genes were similarly affected by the postnatal 

treatment, with the remainder unaffected. None were significantly altered by the in utero 

only treatment. A further look at the genes associated with this pathway reveals two areas 
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especially affected by the continuous arsenic treatment. The first is the down-regulation of 

Akt and resulting upregulation of the Foxo (Fkhr) genes (Figs. 2 and 3), possibly leading to 

apoptosis. The second is the down-regulation of fatty acid and triglyceride synthesis 

(lipogenesis) genes through ATP citrate lyase (Acly, Fig. 4). Nearly two-thirds of the genes 

in Fig. 4 were similarly affected by the postnatal treatment, with the remainder unaffected. 

None of these genes was significantly altered by the in utero only arsenic treatment. The 

Scd1 gene shown in Figs. 2 and 4 is of particular interest because of its link to 

hepatocarcinogenesis in the literature (see Section 4). The differential expression of Scd1 
seen with the arrays was confirmed by qRT-PCR, with a significant down-regulation in both 

chronic exposure (continuous and postnatal) treatment groups (Fig. 5). In time points taken 

from the continuous treatment group earlier than 1 year (see Supplementary Material) Scd1 
expression became significantly reduced (−1.5-fold) at PD32, and expression decreased 

further from the control level at PD67 (−1.8-fold).

4. Discussion

We recently reported that male C3H mice, which exhibit a high background rate of 

hepatocellular tumors (Dragani et al., 1995), showed a significant reduction in liver tumor 

incidence compared to control mice when continuously exposed to arsenic for a treatment 

period beginning in utero and ending at 1 year (Ahlborn et al., 2009). This finding was 

unexpected, as other mouse studies have reported increased liver tumor incidence at 2 years 

following an 11 day in utero only exposure (Waalkes et al., 2003, 2004a,b, 2006). We found 

no increase in liver tumors at 1 year with the same 11 day in utero only treatment regimen 

(Ahlborn et al., 2009), but it is likely that arsenic tumor induction requires a longer time 

frame. Our goal in the present study was to identify differential gene expression responses 

that may lead to the apparent protective effect of continuous arsenic treatment seen at 1 year. 

It is unknown whether this protective effect would persist beyond 1 year.

Arsenic is a well-documented carcinogen, but is also known to act as an anti-tumor agent. 

Arsenic trioxide and sodium arsenite have been used for the effective treatment of acute 

promyelocytic leukemia (APL) and other haematological malignancies, and some cases of 

prostate cancer (Shen et al., 1997; Lu et al., 2004; Amadori et al., 2005). Interestingly, 

chronic myeloid leukemia signaling was one of the top canonical pathways for our 

continuous treatment dataset. Mitochondrial transmembrane potential collapse and retinoic 

acid signaling are associated with the arsenic trioxide-induced apoptosis and differentiation 

seen in APL treat ment (Cai et al., 2000). Both mitochondrial dysfunction and RAR 

activation pathways were indicated to be of significance in our continuous arsenic treatment 

dataset.

The molecular mechanisms that determine whether arsenic will act as a carcinogen or as an 

anticarcinogen are not well understood, but are likely related to cell type, arsenic species, 

and length and dose of exposure. Arsenic’s chemotherapeutic effects have often been 

attributed to its action as a regulator of gene expression and stimulator of oxidative stress, 

followed by induction of programmed cell death (Ivanov and Hei, 2006; Bade and Dong, 

2002). All three of these categories were highly represented in our IPA analysis of genes 

significantly altered by continuous arsenic treatment and are discussed below. Increases in 
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cell-cycle G1 arrest and apoptosis presumably eliminate cells damaged by oxidative stress. 

In addition, many known liver cancer genes fall under one of these categories and were 

differentially expressed between treatments.

4.1. Gene expression

The propensity toward reduced transcript expression in our dataset was determined to be a 

treatment effect, not an issue of RNA quality, and may be indicative of generalized toxicity. 

Other studies have noted a similar trend toward decreased expression with arsenic exposure 

(Andrew et al., 2007; Rea et al., 2003). Arsenic may decrease gene expression through 

suppression of key transcription factors such as the nuclear receptors shown in Figs. 2 and 4.

DNA methylation is an important epigenetic regulator of gene expression which is known to 

be altered by arsenic. In a study by Chen et al. (2004), chronic exposure of adult male mice 

to 45 ppm arsenic in the drinking water induced hepatic global DNA hypomethylation, 

which is often postulated as a nongenotoxic mechanism of carcinogenesis. However, in the 

current study, eighteen genes functioning in DNA methylation were affected by continuous 

arsenic treatment, with expression elevated for eleven of these, including Dnmt1 and 

Dnmt3a. This suggests the possibility that DNA hypermethylation plays a role in the tumor-

protective effect seen for the continuous treatment group. Hypermethylation could lead to 

down-regulation of oncogenes and transcription factors involved in the carcinogenic process.

Several genes functioning in another epigenetic mechanism, histone acetylation, were also 

affected by continuous arsenic exposure, including down-regulation of Kat2a (Gcn5), a gene 

of known importance for maintenance of global histone acetylation, and down-regulation of 

the gene encoding ATP citrate lyase (Acly), which generates acetyl-CoA from mitochondria-

derived citrate (Fig. 4). Wellen et al. (2009) have shown that ATP citrate lyase-dependent 

production of acetyl-CoA contributes to histone acetylation during cellular responses to 

growth factor stimulation, adipocyte differentiation, and the regulation of glucose 

metabolism genes, providing a link between cellular metabolism, histone acetylation, and 

gene expression. Reduced histone acetylation generally represses transcription, and has been 

associated with either the genesis or suppression of cancer depending on the specific target 

genes involved (Archer and Hodin, 1999).

4.2. Oxidative stress

The antioxidant response element (ARE) mediates transcriptional activation of genes in cells 

exposed to oxidative stress. ARE-related genes down-regulated by continuous treatment 

include the ARE regulator Nfe2l1 and its heterodimer Mafg, Jun and Map2k3. ARE-driven 

genes are induced by toxic metals and metal-loids through the Nrf2-mediated oxidative 

stress response pathway (He et al., 2006), which was significantly altered in our dataset and 

may be involved in the differential tumor response observed. However, the mechanism of 

action of this complex gene system in the transcriptional response to toxins and the 

carcinogenic response is not well understood.
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4.3. Cell death

Arsenic trioxide had dose-dependent opposing effects in a mouse model of hepatocellular 

carcinoma (Liu et al., 2006a). After 20 days of i.p. treatment, doses greater than 1 mg/kg 

inhibited tumor growth and angiogenesis while enhancing tumor cell apoptosis, and doses 

lower than 1 mg/kg promoted tumor growth and angiogenesis. The sodium arsenite dose 

used in our current study was approximately 10 mg/kg, and total arsenic levels in the male 

mouse livers were significantly elevated by both chronic arsenic exposure regimens, but not 

by the short-term in utero only exposure (Ahlborn et al., 2009). Therefore, a similar 

mechanism of increased apoptosis may be involved in the reduction of liver tumor incidence 

observed with continuous arsenic exposure in our study.

Arsenic induction of aneuploidy (Ochi et al., 2003; Ramirez et al., 2008) may be a factor in 

reducing the incidence of liver tumors by increasing tumor cell death. Weaver et al. (2007), 

working with mice/cells deficient for the centromere protein, CENP-E, observed increases in 

aneuploidy and a decrease in the incidence of spontaneous liver tumors. They suggested that 

while lower rates of aneuploidy are potentially tumorigenic, higher rates can cause cell 

death, thereby suppressing tumor formation. Consistent with this hypothesis, our data shows 

significant changes with continuous arsenic treatment for a number of aneuploidy and 

mitotic spindle genes (Fig. 2), including Mad2 (Mxi1). Reduction of this essential 

component of the mitotic spindle checkpoint has been shown to increase aneuploidy 

(Weaver et al., 2007).

Apoptosis can be mediated by diverse genes and numerous pathways in the cell. While some 

pro-apoptotic genes were upregulated by our continuous arsenic treatment, others were 

down-regulated. The anti-apoptotic genes Xbp1 (also known as the hepatocarcinogenesis-

related transcription factor) and Cflar were down-regulated. Jnk (Mapk8, upregulated) has 

been indicated in arsenic-induced apoptosis (Dong, 2002). Foxo proteins (Foxo1, Foxo3) are 

regulated by Jnk, CREB binding protein (Crebbp) and sirtuin 1 (Sirt1) (Corton and Brown-

Borg, 2005; Yang et al., 2006), all genes with increased expression due to continuous arsenic 

treatment. However, two pro-apoptotic targets of the Foxo genes, Bim (Bcl2l11) and Trail 

(Tnfsf10), were down-regulated in our dataset, making interpretation of these gene changes 

in relation to apoptosis uncertain. Akt, Foxo and other genes in the insulin receptor pathway 

are also key regulators in caloric restriction and other models of longevity (Corton and 

Brown-Borg, 2005).

4.4. Insulin signaling and caloric restriction

Caloric restriction (CR) is the most effective means known of reducing cancer incidence and 

increasing the mean age of onset of age-related diseases and tumors, doing so, in part, by 

increasing the rate of apoptosis in mitotically competent, and therefore cancer-prone, tissues 

(Spindler, 2006). Although food consumption was not significantly reduced for either dams 

or offspring exposed to arsenic at any time throughout our 52-week study, male F1 body 

weights were significantly lower in both the continuous and post-natal exposure groups 

beginning 11 days post-weaning (Ahlborn et al., 2009). Because of this reduced body 

weight, it is possible that chronic arsenite exposure is eliciting responses similar to CR 

despite an unaltered caloric intake.
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CR in rodents dramatically affects insulin signaling by reducing plasma insulin levels, 

associated with decreased Akt phosphoryla tion and increased expression of Foxo family 

members (Corton and Brown-Borg, 2005). Sirt1 levels are increased during CR and are 

negatively regulated by insulin. Pgc-1α (Ppargc1a) is transcriptionally upregulated by 

Foxo1. Like our continuously exposed arsenite treatment group and CR animals, dwarf mice 

are protected from spontaneous and chemically induced cancer and exhibit decreased insulin 

signaling resulting in activation of Foxo1 and Ppargc1a (Corton and Brown-Borg, 2005). 

Pgc-1 family members mediate effects on gene expression through both ligand-dependent 

and -independent activation of nuclear receptors (NRs). In our dataset many of the nuclear 

receptors regulated by Pgc-1α or 1β showed decreased expression by the continuous arsenic 

treatment rather than the expected increase. These include Car (Nr1i3), Hnf-4a (Nr2a1), Lxr 

(Nr1h2, h3), Ppara, and Pxr (Nr1i2), all down-regulated, suggesting that Pgc-1 activation of 

these NRs may be overridden by negative regulation by other transcription factors, ligands, 

or processes. Reduction of Ppara signaling by the tumor-protective continuous treatment 

may be particularly relevant as Ppara is activated by a group of rodent hepatocarcinogens 

known as peroxisome proliferators (Corton and Brown-Borg, 2005; Corton, 2008). 

‘Mechanism of gene regulation by peroxisome proliferators via PPARa’ was identified as 

one of the top toxicity lists in this dataset, and includes many of the genes discussed here.

Dhahbi et al. (2005), working to develop assays to screen for pharamaceuticals capable of 

reproducing the health- and lifespan-extending effects of long-term caloric restriction, have 

used Affymetrix arrays to identify gene expression biomarkers useful in evaluating candidate 

CR mimetics. They have found that the biguanidine antidiabetic drug metaformin (MET) 

reproduces many of the hepatic gene expression effects of caloric restriction. In addition, 

MET reduces tumor incidence in both rodents and humans and has been shown to inhibit the 

development of metabolic syndrome in humans (Spindler, 2006). Common links between 

CR, MET, and our continuous arsenic treatment include down-regulation of the chaperones 

TRA1 (Hsp90b1) and GRP58 (Pdia3) and the related transcription factor Xbp1. Chaperone 

under-expression enhances apoptosis and prevents tumor formation (Dhahbi et al., 2005). In 

addition, the NFkB-related genes Chuk and Tbk1 are induced by CR, MET and continuous 

arsenic treatment. CHUK phosphorylates IkB family members, marking them for 

ubiquitination and degradation, which can lead to apoptosis (Dhahbi et al., 2005). Another 

proapoptotic effect of CR, MET, and our continuous arsenic treatment is the down-

regulation of Traf4. The current study appears to be the first report in the literature of arsenic 

acting as a CR mimetic. However, it is also the first study to begin arsenic treatment in utero 

and continue it long-term through adulthood. A few other compounds have been found to 

reduce spontaneous liver tumor formation in C3H mice (Nishino et al., 1999, 2001). One of 

them, ginseng, is a herb used for treating type 2 diabetes in Chinese medicine (Park et al., 

2008).

Consistent with an apparent negative regulation of the insulin signaling pathway, and in 

common with CR (Spindler, 2006), expression of many glycolysis and lipogenesis genes 

was down-regulated by our continuous arsenic exposure (Fig. 4; Cha and Repa, 2007; 

Dentin et al., 2005; Lee et al., 2008; Towle and Kaytor, 1997; Uyeda and Repa, 2006). In 

contrast, activation of lipogenic enzymes has been associated with hepatocellular carcinoma 

(Yahagi et al., 2005). Stearoyl-CoA desaturase (Scd1) is the rate-limiting enzyme that 
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catalyzes the synthesis of monounsatu-rated fatty acids from saturated fatty acids. Scd1 gene 

expression is correlated with genetic predisposition to hepatocarcinogenesis in mice and rats 

(Falvella et al., 2002). Scd1 mRNA levels are more than 10-fold higher in the normal liver 

tissue of C3H mice, which are genetically susceptible to hepatocarcinogenesis, than in 

BALB/c mice, which are resistant to hepatocarcinogenesis. Similarly, Scd1 mRNA 

expression is about four-fold higher in the normal liver of F344 rats, which are susceptible to 

hepatocarcinogenesis, than in Brown Norway rats, which are resistant. In addition to being 

modulated by dietary and genetic factors, Scd1 expression in mouse liver is induced by 

peroxisome proliferators, iron overload, and dichloroacetic acid, conditions that induce or 

promote hepatocarcinogenesis (Falvella et al., 2002). Expression of the Scd1 gene was 

upregulated by in utero only exposure to arsenite in a previous study by Liu et al. (2006b) 

that found an increase in liver tumors at 2 years of age. Conversely, down-regulation of this 

gene in our continuously exposed animals may help explain the reduction in spontaneous 

liver tumors.

Scd1 deficient mice have increased energy expenditure, reduced body adiposity, increased 

insulin sensitivity and are resistant to diet-induced obesity and liver steatosis (fatty liver) 

(Ntambi et al., 2002). Scd1 activity is required for the onset of diet-induced hepatic insulin 

resistance (Gutierrez-Juarez et al., 2006) and is associated with accumulation of fat in the 

liver (Dobrzyn et al., 2004). The combination of metabolic disorders known as the metabolic 

syndrome, including abdominal obesity, fatty liver, insulin resistance, increased serum 

triglycerides, low HDL cholesterol, hyperglycemia, and hypertension, increases the risk of 

developing type II diabetes, cardiovascular disease and non-alcoholic fatty liver disease 

(NAFLD). It has also been identified as a risk factor for hepatocellular carcinoma (Paradis et 

al., 2008; Watanabe et al., 2008). Inorganic arsenic exposure has been correlated with an 

increase in multiple metabolic syndrome risk factors, type 2 diabetes, and cardiovascular 

disease (Wang et al., 2007; Diaz-Villasenor et al., 2007). Therefore, our expression data may 

help in understanding the link between arsenic’s diverse effects. Although arsenic has been 

associated with the metabolic syndrome and hepatocellular carcinoma, the liver tumor-

protective effect seen with our particular continuous arsenic exposure may be explained by a 

gene expression profile that is preventative for metabolic syndrome risk factors and mimics 

that of caloric restriction for genes in key pathways. Multiple genes involved in 

accumulation of lipids are down-regulated by the continuous arsenic treatment. In addition 

to gene expression effects and tumor suppressive effects, the reduced serum lipid levels for 

the continuous arsenic treatment group (Ahlborn et al., 2009) are in agreement with a CR 

mimetic phenotype.

In conclusion, the unexpected liver tumor-protective effect of continuous arsenic exposure 

from GD-8 until 1 year in C3H mice can most likely be attributed to gene pathways 

involving gene expression, oxidative stress, and cell death. The insulin receptor signaling 

pathway, and in particular fatty acid biosynthesis genes, such as Scd1, likely play an 

important role. Many of these genes are affected by caloric restriction and the metabolic 

syndrome, and help provide links between arsenic’s known involvement in cancer, diabetes, 

and cardiovascular disease. While protective for the liver and adrenals in this study, 

continuous arsenic exposure did significantly increase the incidence of urinary bladder 
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hyperplasia (Ahlborn et al., 2009). These results highlight the importance of tissue-

specificity, life-stage and duration of exposure in arsenic-induced tumorigenicity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Venn diagram of number of hepatic probe sets significantly altered relative to the untreated 

control by the arsenic treatment regimens.
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Fig. 2. 
Fold-change expression relative to control for selected genes.
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Fig. 3. 
Insulin receptor signaling pathway (from Ingenuity Pathways Analysis) with gene 

expression significantly different from the control (up: red; down: green) shown for the 

continuous treatment group. An asterisk denotes multiple identifiers in the dataset mapped to 

that single gene (replicates). Expression shown (as color intensity) is for the highest fold-

change (absolute value) replicate.
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Fig. 4. 
Glycolysis and lipogenesis pathways with gene expression significantly different from the 

control (up: red; down: green) shown for the continuous treatment group. Regulated genes 

are listed beside their respective nuclear transcription factors. An asterisk denotes multiple 

identifiers in the dataset mapped to that single gene (replicates). Expression shown (as color 

intensity) is for the highest fold-change (absolute value) replicate.
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Fig. 5. 
qRT-PCR results for the Scd1 gene. Each value represents the average of three replicate 

reactions of four unique samples. Values were calculated using a relative standard curve 

method and normalized to the log of the amount of input RNA. An asterisk indicates 

statistical significance in comparison to the untreated control sample (t-test, p≤0.05).
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Table 1

Hepatocellular tumor (adenoma/carcinoma) incidence in male C3H mice at 1 year of age (from Ahlborn et al., 

2009).

Treatment N No. of animals with tumors Incidence (%)

Control 20 6 30

In utero only 9 3 33

Continuous 28 0 0*

Postnatal 18 1 6

*
Statistical significance by the one-sided Fischer’s exact test (p < 0.05).
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Table 2

IPA functional category analysis of genes whose expression response to arsenic at 1 year was significant for 

the continuous treatment regimen. Only the top 12 categories are shown for each division, in order of 

significance.

No. ofgenes

Molecular and cellular functions

 Cellular compromise 347

 Gene expression 769

 Cellular growth and proliferation 976

 Cell death 951

 Post-translational modification 481

 Protein synthesis 366

 Protein degradation 144

 Molecular transport 354

 Protein trafficking 135

 Cell cycle 448

 RNA post-transcriptional modification 123

 Cell morphology 438

Top canonical pathways

 Protein ubiquitination pathway 96

 NRF2-mediated oxidative stress response 88

 PI3/AIKT signaling 66

 Molecular mechanisms of cancer 142

 Purine metabolism 127

 PTEN signaling 53

 Integrin signaling 86

 Mitochondrial dysfunction 60

 Chronic myeloid leukemia signaling 50

 Germ cell-sertoli cell junction signaling 67

 Insulin receptor signaling 62

 B cell receptor signaling 67

Top Tox lists

 Oxidative stress response mediated by NRF2 89

 Mitochondrial dysfunction 58

 Hypoxia-inducible factor signaling 40

 PPARa/RXR activation 73

 Mechanism ofgene regulation by peroxisome proliferaters via PPARa 48

 Hepatic cholestasis 58

 NFkB signaling 51

 RAR activation 58

 PXR/RXR activation 29

 P53 signaling 36
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No. ofgenes

 Aryl hydrocarbon receptor signaling 54

 FXR/RXR activation 34
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