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Abstract

Heat Shock Protein 90 (Hsp90) is an essential molecular chaperone in eukaryotic cells, and it 

maintains the functional conformation of a subset of proteins that are typically key components of 

multiple regulatory and signaling networks mediating cancer cell proliferation, survival and 

metastasis. It is possible to selectively inhibit Hsp90 using natural products such as geldanamycin 

(GA) or radicicol (RD), which have served as prototypes for development of synthetic Hsp90 

inhibitors. These compounds bind within the ADP/ATP-binding site of the Hsp90 N-terminal 

domain to inhibit its ATPase activity. As numerous N-terminal domain inhibitors are currently 

undergoing extensive clinical evaluation, it is important to understand the factors that may 

modulate in vivo susceptibility to these drugs. We recently reported that Wee1Swe1-mediated, cell 

cycle-dependent, tyrosine phosphorylation of Hsp90 affects GA binding and impacts cancer cell 

sensitivity to Hsp90 inhibition. This phosphoryfiglation also affects Hsp90 ATPase activity and its 

ability to chaperone a selected group of clients, comprised primarily of protein kinases. Wee1 

regulates the G2/M transition. Here we present additional data demonstrating that tyrosine 

phosphorylation of Hsp90 by Wee1Swe1 is important for Wee1Swe1 association with Hsp90 and for 

Wee1Swe1 stability. Yeast expressing non-phosphorylatable yHsp90-Y24F, like swe1Δ yeast, 

undergo premature nuclear division that is insensitive to G2/M checkpoint arrest. These findings 

demonstrate the importance of Hsp90 phosphorylation for proper cell cycle regulation.
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Introduction

Heat Shock Protein 90 (Hsp90) is one of the most abundant proteins in cells (1–2% of total 

cellular protein). The cellular functions of this essential molecular chaperone have been 

most clearly identified in mammalian cells, Drosophila and baker’s yeast.1–4 Hsp90 and a 

discrete set of co-chaperones create and maintain the functional conformation of a subset of 

proteins referred to as “clients” (www.picard.ch/downloads/Hsp90interactors.pdf).5,6 These 

targets are key mediators of signal transduction and cell cycle control.
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Hsp90 function has been the subject of intense scrutiny because (1) drugs that inhibit its 

function are anti-tumor agents currently being evaluated in numerous clinical trials,7 and (2) 

Hsp90 acts as a ‘genetic buffering system’ to limit the effects of genetic variation in 

populations. Disturbance of Hsp90 function diminishes this buffering and allows genetic 

variation to manifest itself, principally as morphogenic alteration.4,8,9

Hsp90 structure is highly conserved across species and it consists of: (1) an N-terminal 

domain, containing nucleotide and drug binding sites; (2) a middle (M) domain, which 

provides binding sites for client proteins and various co-chaperones; (3) a C-terminal 

domain, containing a dimerization region that provides for constitutive association of two 

Hsp90 protomers.10–12 Eukaryotic Hsp90 also possess an unstructured charged-linker region 

of significant but variable length connecting N and M domains13,14 (Fig. 1). Hsp90 function 

relies on ATP binding and hydrolysis, which in turn impact its conformational dynamics. 

Hsp90 inhibitors currently undergoing clinical trial halt the chaperone cycle by replacing 

ATP in Hsp90’s nucleotide binding pocket.12,15–18

The regulation of Hsp90 function is complex and multifactorial.19 In eukaryotes, co-

chaperones modulate its intrinsic ATPase activity.20,21 Post-translational modification of 

Hsp90 (e.g., phosphorylation, acetylation and S-nitrosylation) also impacts ATP and co-

chaperone binding,22–24 thus providing a further layer of regulation to the Hsp90 cycle not 

found in bacteria, a requirement no doubt made necessary by the increasingly complex 

utilization of Hsp90 in maintaining cellular homeostasis in the face of diverse environmental 

fluctuation.

Here we will briefly review serine, threonine and tyrosine phosphorylation of Hsp90, 

including our recent observation that Hsp90 is tyrosine phosphorylated by its client protein 

Wee1Swe.1 We will also present additional data showing that Hsp90 tyrosine 

phosphorylation is important for Wee1Swe1 stability, and that yeast expressing Wee1Swe1-

non-phosphorylatable Hsp90 share a similar cell cycle defect as SWE1 delete yeast.25 These 

findings support an important role for Hsp90 in regulating the cell cycle.25,26

Serine/Threonine Phosphorylation of Hsp90

Hsp90 is a phosphoprotein.27–39 However our understanding of the role played by 

phosphorylation of distinct residues in regulating the chaperone function of Hsp90 remains 

incomplete. A number of serine and threonine phosphorylation sites on Hsp90 have been 

identified and studied for their impact on chaperone function (Table 1).22 Early work 

showed that treating cancer cells with the serine/threonine phosphatase inhibitor okadaic 

acid promoted Hsp90 hyperphosphorylation, which was accompanied by decreased 

association with its client kinase pp60v-src, suggesting a link between Hsp90 

phosphorylation and chaperoning of its client proteins.27,35 Hsp90 is also a substrate for 

DNA-dependent protein kinase, Akt, B-Raf and casein kinase II (CKII).36,37,40,41 Further, 

PKA phosphorylation of Thr90 induced by 3-hydroxy-3-methylglutarylcoenzyme A 

reductase inhibitors has been reported to increase association of human Hsp90α with the 

client protein eNOS.42 Lastly, a study reported that protein phosphatase 5 (Pp5/Ppt1) can 
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dephosphorylate Hsp90 in vitro.43 This study also showed that Ppt1 deletion in yeast 

compromised Hsp90 activity.

Simple baker’s yeast, Saccharomyces cerevisiae, is a well-established and valuable tool for 

studying various aspects of conserved protein chaperone machinery. Yeast have provided us 

with a powerful tool to study Hsp90 phosphorylation, since it readily allows plasmid 

exchange whereby any introduced Hsp90 gene—provided it is partially functional—can 

provide 100% of the Hsp90 of the cell. Such genetic manipulations are simply not 

achievable in cultured mammalian cells. Using the yeast system, it is possible to show that 

Hsp90 is constitutively phosphorylated on serine and theronine residues. However, Hsp90 

threonine phosphorylation is lost upon either heat shock stress or treatment with the Hsp90 

inhibitor geldanamycin (GA) (Fig. 2). These results agree with a previous study showing 

rapid dephosphorylation of Hsp90 in heat-shocked HeLa cells.44 Loss of threonine 

phosphorylation may impact Hsp90 function in response to heat shock stress or to inhibitory 

drugs.

Tyrosine Phosphorylation of Hsp90

There are only few reports of Hsp90 tyrosine phosphorylation (Table 1).27 A recent study 

reported that c-Src directly phosphorylates Tyr300 of human Hsp90β.32,33 This is essential 

for VEGF-stimulated endothelial nitric oxide synthase (eNOS) association with Hsp90 and 

thus is necessary for nitric oxide release from endothelial cells.33

Another study reported that tyrosine-phosphorylated Hsp90 repressed the function of 

ionotropic P2X7 receptors. These receptors serve as ligand-gated ion channels and are 

responsible for ATP-dependent lysis of macrophages.31

Our recent work has shown that Wee1Swe1 phosphorylates Hsp90. Swe1 is the only “true” 

tyrosine kinase in budding yeast.45 It phosphorylates and inhibits the kinase activity of the 

main cell cycle cyclin-dependent kinase Cdc28 (human Cdc2) thereby regulating the G2/M 

transition.46–50 Initial studies showed that in Scizosaccharomyces pombe, formation of an 

active Wee1 tyrosine kinase depends on its interaction with Hsp90.26 Subsequent work 

showed that inhibiting Hsp90 chaperone function with GA led to the proteasome-mediated 

degradation of Wee1Swe1.51,52

Wee1Swe1 Dependent Tyrosine Phosphorylation of Hsp90 Regulates its 

Chaperone Function

Wee1Swe1 phosphorylates a conserved tyrosine residue (Y24 in yHsp90 and Y38 in 

hHsp90α) in the N-domain of a subpopulation of nuclear-localized Hsp90 in a cell cycle-

dependent manner.25 Cytosolic relocation of phosphotyrosyl yHsp90 precedes its 

ubiquitination and degradation by proteasomes. This appears to be the “switching off” 

mechanism for this form of the chaperone, since we were unable to identify a tyrosine 

phosphatase capable of dephosphorylating yHsp90 (Fig. 3).
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Phosphorylation of Hsp90 by Wee1Swe1 is not essential for yeast survival but the non-

phosphorylatable Hsp90 mutant (yHsp90-Y24F) fails to interact with the co-chaperone 

Aha1 and shows significantly reduced interaction with p23/Sba1 (Fig. 1). Identical results 

were also observed with the human Hsp90 mutant (Y38F) in mammalian cells. These data 

suggest that phosphorylation of Y24/Y38 affects the equilibrium between open and closed 

states of Hsp90. Importantly, some clients, including the protein kinases pp60v-Src, Raf-1 

(Ste11 in yeast), ErbB2, Mpk1/Slt2 (yeast MAP kinase), and the transcription factor heat 

shock factor 1 (yeast Hsf1), seem to require Wee1Swe1mediated tyrosine phosphorylation of 

Hsp90. However, Hsp90 chaperoning of other clients, including the glucocorticoid receptor 

(GR) and androgen receptor (AR), appears not to be affected by the phosphorylation status 

of this residue. This is the first demonstration that phosphorylation permits Hsp90 to switch 

from an inactive to an active state for chaperoning of a subset of clients while not impacting 

the chaperoning of other client proteins.25

As part of this study, we found that yHsp90-Y24F, although having a similar in vitro affinity 

for GA (Kd 3.6 ± 0.3 μM) as wild-type yHsp90 (Kd 2.6 ± 0.3 μM), demonstrated more drug 

binding in vivo, as did wild-type Hsp90 expressed in swe1Δ yeast cells. These data are 

complemented by enhanced growth sensitivity of the mutants to GA compared to wild-type 

cells (Fig. 4). These observations in yeast were corroborated in cancer cells, where silencing 

of WEE1 or pharmacologic inhibition of Wee1 kinase sensitized cells to Hsp90 inhibitor 

(Fig. 3).25

Cell Cycle Consequences of Hsp90 Tyrosine Phosphorylation

Treating yeast cells with Hsp90 inhibitors destabilizes Swe1 (Fig. 5). Interestingly, GA 

treatment of yeast cells for 1 hr, significantly reduces yHsp90 tyrosine phosphorylation and 

also increases the percentage of cells in G1, suggesting a possible direct impact on Swe1. 

Indeed, we found Swe1 to be poorly expressed in yHsp90-Y24F yeast (Fig. 6A). We next 

overexpressed Swe1-GST, under a galactose inducible promoter (GAL1), in wild-type and 

yHsp90-Y24F yeast. Association of Swe1-GST with yHsp90-Y24F was markedly reduced 

compared to wild-type yeast cells (Fig. 6B). Taken together, these data suggests that 

Wee1Swe1-dependent tyrosine phosphorylation of Hsp90 is important to strengthen the 

Wee1Swe1-Hsp90 chaperone complex and to permit Hsp90 to effectively chaperone this 

tyrosine kinase.

Deletion of SWE1 causes a short delay in entry into mitosis but the length of G2 is 

unaltered. Flow cytometric analysis (FACS) showed that asynchronously growing yHsp90-

Y24F mutants and swe1Δ cells both had a similar proportion of cells with 1C and 2C DNA 

content compared to wild-type cells (Fig. 7A). We then arrested these cells in G1-phase with 

α-factor and then released them by incubation in fresh media containing 50 μM Latrunculin-

A (Lat-A) in order to trigger checkpoint-mediated G2 arrest. Unlike wild-type cells, the 

yHsp90-Y24F mutants underwent premature nuclear division, as did swe1Δ cells (Fig. 7B). 

These data suggest that yHsp90-Y24F mutants, like swe1Δ cells, have a defective G2/M cell 

cycle checkpoint. This is fully consistent with the observed destabilization of Swe1 in 

yHsp90-Y24F cells. Previous reports have suggested that proteolytic destruction of Swe1 is 
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the key step in its deactivation and allows entry into mitosis.53,54 Our data implicate Hsp90 

phosphorylation status (because it regulates Hsp90-Swe1 association) in this process.

Concluding Remarks

In eukaryotes, the regulation of Hsp90 function is complex. Phosphorylation events have 

been shown to fine tune Hsp90 chaperone activity.2,27,33,55,56 Our recent work uncovered a 

unique role for Wee1Swe1 in regulating Hsp90. We identified a single conserved tyrosine 

residue in the N-domain of Hsp90, whose phosphorylation status likely permits prolonged 

association of Hsp90 with some of its client proteins. We also demonstrated that lack of 

phosphorylation at this tyrosine residue enhanced Hsp90 binding to inhibitory drugs. Here, 

we show that, as is the case in cancer cells, prevention of this tyrosine phosphorylation 

makes yeast cells hypersensitive to Hsp90 inhibition. We also provide additional data 

suggesting that the stability of Wee1Swe1 not only depends on its interaction with Hsp90, but 

also on its ability to phosphorylate this molecular chaperone. These observations 

demonstrate an unexpected role for Wee1Swe1 in regulating Hsp90 function and, 

consequently, in determining its own ability to regulate the G2/M checkpoint.
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Figure 1. 
Model depicting the Hsp90 chaperone cycle. ATP binding to the N-terminal domains of 

Hsp90 (open) promotes repositioning of a “lid” segment followed by transient dimerization 

of the N-domains. Subsequent structural rearrangements result in the (closed and twisted) 

conformation of Hsp90 that is competent for ATP hydrolysis. Binding of the co-chaperone 

Aha1 enhances Hsp90 ATPase activity. The co-chaperones Sti1/HOP and Cdc37/p50, or 

pharmacologic inhibitors such as geldanamycin or radicicol, exert an opposite effect by 

blocking the initial structural changes necessary for N-domain dimerization. Sba1/p23 

strengthens the late Hsp90 conformation and inhibits ATP hydrolysis. Domain labeling is as 

follows: N, N-domain (blue); CL, charged linker (red); M, M-domain (yellow); C, C-domain 

(green); ATP lid, (purple).
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Figure 2. 
Yeast Hsp90 phosphorylation on serine (phos-Ser) and threonine (phos-Thr) residues. 

yHsp90-His6 was purified from yeast cells that were heat shocked at 39°C for 40 min or 

treated with 100 μM geldanamycin (GA) for 60 min. wild-type cells containing empty 

plasmid were used as negative control.
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Figure 3. 
wee1, an Hsp90 client protein, phosphorylates a conserved tyrosine residue (Y38) in the N-

domain of a subpopulation of nuclear-localized yHsp90. Phosphorylation also leads to 

ubiquitination and degradation of Hsp90 by cytoplasmic proteasomes. Pharmacologic 

inhibition/molecular silencing of wee1 inhibits Hsp90 chaperoning of distinct clients and 

sensitizes cells to Hsp90 inhibitor-induced apoptosis. Domain labeling is as follows: N, N-

domain (blue); CL, charged linker (yellow); M, M-domain (red); C, C-domain (green); ATP 

lid, (purple).
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Figure 4. 
Yeast cells expressing yHsp90-Y24F and swe1Δ cells are hypersensitive to GA. Yeast cells 

were grown to mid-log and then a 1:10 dilution series were spotted on YPD agar containing 

100 μM GA. Plates were incubated at 25°C for 4 days.
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Figure 5. 
Effect of Hsp90 inhibitors GA or radicicol (RD) on the stability of Swe1 tyrosine kinase. 

Yeast cells were grown to mid-log and then treated with 50 μM GA or RD. Swe1-HA in 

yeast lysate was detected by western blot using an anti-HA-monoclonal antibody. yHsp90-

His6 was used as loading control.
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Figure 6. 
Swe1 destabilization in yHsp90-Y24F-expressing yeast. (A) western blotting was used to 

detect Swe1-HA in yeast cell lysate expressing either wild-type yHsp90 or yHsp90-Y24F. 

yHsp90-His6 was used as loading control. (B) Association of GST-tagged Swe1 with wild-

type yHsp90 and yHsp90-Y24F. GST-tagged Swe1 under galactose (gal) inducible promoter 

(GAL1) was expressed in yeast cells containing either wild-type yHsp90 or yHsp90-Y24F. 

Swe1-GST co-precipitating with yHsp90-His6 was detected by western blotting.
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Figure 7. 
Lack of G2/M checkpoint-induced delay of nuclear division in yHsp90-Y24F and swe1Δ 

cells. (A) Flow cytometric analysis of the DNA content of asynchronously growing wild-

type, swe1Δ, and yHsp90-Y24F yeast cells. Occupancy of G2 is unaltered in the two mutants 

when compared to wild-type cells (wild-type, 48.7%; swe1Δ, 49.0%; yHsp90-Y24F, 51.8%). 

(B) Cells were released from α-factor-induced cell cycle arrest into fresh medium containing 

50 μM Lat-A. inclusion of Lat-A causes arrest at the G2/M checkpoint. At the indicated 

times, cell aliquots were removed, fixed and stained with DAPi to visualize DNA, and 100 

cells were scored. Premature nuclear division is apparent in both yHsp90-Y24F mutant and 

swe1Δ cells.
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