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Abstract

Evidence regarding the genomic basis of oral/dental traits and diseases is a fundamental pillar of 

the emerging notion of precision health. During the last decade, technological advances have 

improved the feasibility and affordability of generating genome-wide association (GWAS) data 

and studying their association with both common and rare oral conditions. Most evidence thus far 

emanates from GWAS of dental caries and periodontal disease that have tested the associations of 

several million single nucleotide polymorphisms (SNPs) with typically binary, health vs. disease 

phenotypes. GWAS offer advantages over the previous candidate-gene studies, mainly owing to 

their agnostic (i.e., unbiased, or hypothesis-free) nature. Nevertheless, GWAS are prone to 

virtually all sources of random and systematic error. Here, we review common sources of bias in 

genomics research with focus on GWAS including: type I and II errors, population stratification 

and heterogeneity, selection bias, adjustment for heritable covariates, appropriate reference panels 

for imputation, and gene annotation. We argue that valid and precise phenotype measurement is a 

key requirement, as GWAS sample sizes and thus statistical power increase. Finally, we stress that 

the lack of diversity of populations with phenotypes and genotypes is a major limitation for the 

generalizability and ultimate translation of the emerging genomics evidence-base into oral health 

promotion for all.
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1 - Introduction

Evidence regarding the genomic basis of oral/dental traits and diseases is a fundamental 

pillar of the emerging notion of precision health (Divaris, 2017). During the last decade, 

technological advances have improved the feasibility and affordability of generating 

genome-wide association (GWAS) data and studying the genetic underpinning of both 

common and rare oral conditions. In the oral health domain, most evidence has thus far 

emanated from GWAS of dental caries and periodontal disease that have tested the 
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associations of several million single nucleotide polymorphisms (SNPs) with typically 

binary, health vs. disease phenotypes (Morelli, 2019). GWAS offer advantages over the 

previous candidate-gene studies, mainly owing to their agnostic (i.e., unbiased, or 

hypothesis-free) nature. Nevertheless, GWAS are prone to virtually all sources of random 

and systematic error, as well as reporting bias. Here, we review common sources of bias in 

genomics research, focusing specifically on GWAS, including: 1) type I and II errors, 2) 

population stratification and heterogeneity, 3) selection bias, 4) adjustment for heritable 

covariates, 5) appropriate reference panels for imputation, gene annotation and genotyping, 

6) lack of racial/ethnic diversity at the international level in the available cohorts and 

samples. We conclude that recognizing and adequately controlling for those known biases 

will help build a stronger evidence base for the genomic underpinning of oral and dental 

traits and will ultimately contribute to better individual and population health.

2. Definition and measurement of analytical endpoints (i.e., GWAS 

phenotypes)

Similar to any other research study design, valid and precise measurement of the analytical 

endpoint cannot be overemphasized in the context of GWAS (van der Sluis, Verhage, 

Posthuma, & Dolan, 2010). Clinical measures of oral and dental diseases, periodontitis and 

dental caries being the most common, are traditionally challenging to measure with 

precision and validity, especially in large sample sizes and population cohorts. All GWAS 

reports of dental caries and periodontitis to-date have been based on cross-sectional data, 

that are somewhat limited in their potential to accurately identify the sources of tooth loss—

which can lead to the under-estimation of periodontitis history. Large-scale studies may also 

rely on partial-mouth examinations, screenings versus comprehensive examinations, health 

records, or even self-reported and proxy data for oral diseases (Shungin et al., 2019). All of 

these measurement issues likely introduce non-differential bias in GWAS, i.e., diluting 

potentially true association signals and influence the replicability of reported findings.

Several approaches exist for quantifying the impact of measurement error and outcome 

misclassification on study power. Liao and colleagues (Liao et al., 2014) demonstrate these 

effects quantitatively using simulated and real data, and suggest that the impact on power is 

much larger in the context of misclassification (i.e., in case control studies) versus 

measurement error (i.e., in quantitative traits). A recent report by Gordon and colleagues 

(Gordon, Haynes, Blumenfeld, & Finch, 2005) introduced a method and accompanying 

visualization tools for the estimation of power in genetic association case-control studies, 

that allows the consideration of different scenarios of (among other features) outcome 

misclassification error rate.

In terms of study designs that can accommodate genome-wide association analyses, the 

typical biases associated with selection of participants, cases and controls, apply. Cohorts 

may be relatively underpowered compared to case-control studies for analyses of binary 

traits, because the latter sample participants based on disease status; however, they offer 

benefits in terms of possibly longitudinal or repeated measurements and opportunities to 

leverage pleiotropy (i.e., the examination of multiple, related outcomes that may naturally 
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co-occur in the population). These may not be observed in a focused, case-control sample 

selection that is optimally designed to test a narrower hypothesis. Regardless of the ‘parent’ 

study design, it is recommended that information on the accuracy (e.g., repeatability) of 

examined traits in GWAS is known or estimated, ideally before the study execution 

(Barendse, 2011), as it may influence or inform downstream experimental procedures and 

analyses.

3. Study sample characteristics

The importance of sample size in GWAS cannot be overemphasized (Cantor, Lange, & 

Sinsheimer, 2010). Thousands of individuals are needed for GWAS because most allele 

effects identified for common, complex diseases are modest or small. Small p-values 

generated from small sample sizes do not necessarily imply trustworthy findings—they 

could very well represent extreme findings, unlikely to be observed, or be indicative of 

model misspecification. As mentioned earlier, most GWAS are based on case-control study 

designs. The selection of case and control samples is important and while it may seem 

advantageous selecting severe or extreme cases in terms of power, especially when there are 

logistical limitations, it can have the opposite effect for GWAS (McCarthy et al., 2008). The 

selection of controls in a case-control study is subject to Berkson’s bias, a form of selection 

bias due to the inclusion of participants from specific subpopulations such as those from 

clinics and hospitals. Alternatively, the use of common ‘healthy’ controls for contrast against 

multiple disease outcomes is less likely to induce bias. Latent population substructure (i.e., 

stratification) can also induce spurious associations unless controlled for (Li & Yu, 2008). 

These spurious associations are typically a result of varying patterns of racial/ethnic 

admixture in the study sample. Several well-established methods using ancestry-informative 

genetic markers exist to account for population substructure, as well as other forms of 

known or cryptic relatedness that might violate assumptions of independence in GWAS 

(Agler et al., 2019).

4. Type I and type II errors

Type I error is commonly understood as a false positive and type II error as a false negative 

finding. Balancing the potential for these two types of error is a fundamental requirement in 

GWAS for two main reasons: the likely modest or weak genetic effects underlying common-

complex oral/dental diseases, and the large number of tests conducted. Specifically, it is not 

uncommon for allelic effects to be in the range of 1.1–1.3 relative magnitude, while 1 

million independent tests are conducted. The requirement of implementing a very stringent 

p-value criterion (typically 5×10−8) for genome-wide significance (protecting from a type I 

error inflation) comes at the expense of a study’s ability to detect small effects (increased 

type II error). The issue magnifies when study sample sizes are modest, in the range of 

10,000 at best, in the case of most single clinical cohorts with dental phenotypes and 

genotypes.

Another form of bias is the “winner’s curse”, a term used to describe the relatively common 

phenomenon wherein the initially discovered measure of association is inflated in the first 

GWAS compared to its true magnitude (Kraft, 2008). A related issue is the use of a 
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discovery sample for the development of polygenic (i.e., multi-locus) risk scores that may be 

similarly exaggerated, due to model “over-fitting”. To ameliorate the issue with false 

positive findings, overestimation (Zhong & Prentice, 2008) and overfitting, replication of 

genetic findings from GWAS in independent, external samples and cohorts is a requirement 

(McCarthy et al., 2008). It must be acknowledged that non-replication does not necessarily 

imply lack of a true association but may suggest additional complexity in sample 

ascertainment, between-study heterogeneity (Nakaoka & Inoue, 2009), population 

substructure and genetic architecture. In principle, efforts to generalize signals across 

populations is desirable.

It is important to stress that the primary goal of GWAS is to identify loci of relevance to 

traits and not the precise or unbiased measurement of specific SNP associations (i.e., effect 

estimation) within these loci. Effect estimates may be substantially biased and arguably, in 

most instances, the causal makers remain unknown until substantial follow-up work has 

been completed in these loci (e.g., bioinformatics annotation, fine mapping, re-sequencing, 

experimental follow-up, etc.). So far, biological information or prior existing evidence of 

association (i.e., prior probability of association) are not explicitly incorporated in the 

discovery stage of most GWAS (Broer et al., 2013)—this may inevitably lead to some 

promising candidates being missed under the stringent threshold of multiple testing 

correction. On the other hand, only a small fraction of genetic associations reported by 

candidate gene studies appear to replicate in the GWAS setting (Siontis, Patsopoulos, & 

Ioannidis, 2010), suggesting a substantial false positive rate in the earlier, candidate-gene 

study, literature.

5. Adjustment for heritable covariates in genetic models

The role of adjustment in genetic models employed in GWAS is infrequently discussed. 

Covariates that are typically included a priori in these models include study design 

characteristics (i.e., study site or cluster), population substructure (i.e., ancestry principal 

components, family structure/relatedness), age and sex. The inclusion of additional terms for 

covariates that are known to be associated with the outcome has been proposed as a strategy 

for reducing the residual variance in the outcome (thus increasing statistical power for the 

discovery GWAS) and to account for potential confounding. However, Aschard and 

colleagues (Aschard, Vilhjalmsson, Joshi, Price, & Kraft, 2015) recently demonstrated how 

adjusting for heritable covariates (e.g., smoking and diabetes for GWAS of periodontitis) can 

introduce bias in the GWAS effect estimation. This “collider bias” is induced by the 

inclusion of a causally associated covariate in the genetic model, creating apparently robust 

but otherwise spurious associations (Day, Loh, Scott, Ong, & Perry, 2016).

6. Selection of reference panels for imputation and annotation databases

It is important to acknowledge that although GWAS include a large number of markers 

(nowadays, several million SNPs), they still cover a small fraction of the entire human 

genome sequence. Carefully-selected, directly genotyped SNPs cover a substantial 

proportion of the known, mostly common, variation of the human genome. These “tagging” 

SNPs can then be used to infer (i.e., impute) non-typed SNPs and haplotypes, using 
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information from panels that include fully-sequenced “reference” genomes. The imputation 

process offers gains in efficiency (i.e., fewer SNPs needing to be directly measured) and 

improves the resolution for the characterization of candidate loci. However, imputation can 

itself introduce biases. For instance, using reference genomes from “healthy” individuals has 

been shown to significantly bias SNP associations of disease-associated markers, i.e., 

favouring health-associated alleles, (Khankhanian, Din, Caillier, Gourraud, & Baranzini, 

2015), that are under-represented in the reference panels. These issues may be accentuated 

when considering trans-ethnic populations or heavily admixed samples.

The annotation of the human genome is far from uniform or balanced. Traditionally, genes 

with known biological function and appearance in experimental and candidate-gene studies 

are more likely to be annotated. It is conceivable, and has actually been shown (Haynes, 

Tomczak, & Khatri, 2018), that these genes may be favoured when reporting associations 

over markers and genes for which less is known, even if the molecular evidence of 

association is strong. In other words, investigators themselves can introduce biases in their 

GWAS reports, related to the qualitative interpretation of their findings (Kraft, 2008). 

Haynes and colleagues (Haynes et al., 2018) suggest that the research community can 

overcome this form of bias by prioritizing empirically derived hypotheses and inferences. 

On the other hand, other areas of the human genome [e.g., the human leukocyte antigen 

(HLA) region] are highly polymorphic (Brandt et al., 2015) and are commonly excluded 

altogether from the reporting of GWAS results.

7. Selection bias

Selection bias, a known threat to the validity of most types of biomedical research, is also 

relevant to the GWAS domain. Conceivably, markers associated with severe health outcomes 

impacting longevity, may be systematically under-represented in a cross-sectional study of 

middle-age adults, as they are being selectively removed from the population allele pool. In 

a similar fashion, selection on or exclusion of specific sub-types of disease from a GWAS 

may also introduce bias, as it is equivalent to conditioning on a collider (Munafo, Tilling, 

Taylor, Evans, & Davey Smith, 2018). Theoretically, this bias can be accounted for, if the 

selection effect can be quantified (Xiao & Boehnke, 2009) and examined in population-

based birth cohorts with longitudinal follow-up. An interesting scenario arises when 

longitudinal outcomes (e.g., survival, prognosis or incident events) that are conditional on 

outcome diagnosis and thus susceptibility are interrogated in the context of a GWAS. Such 

analyses are prone to “index event bias” wherein this form of selection bias can introduce 

spurious associations, unless accounted for (Dudbridge et al., 2019).

8. Genotype information quality

High-density genotyping entails the determination (i.e., “calling”) of often millions of single 

nucleotide polymorphisms and this comes with an unavoidable error rate. Poorly genotyped 

or imprecisely imputed markers can induce both spurious associations and result in 

decreased power to detect true associations. For this reason, GWAS employ stringent quality 

assessment and quality control procedures beginning at the genotyping stage. For instance, 

to address genotyping platform batch effects, cases and controls may be equally distributed 
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across plates, while other important study variables may be randomized for the same reason. 

Other sources of error can be attributed to possibly different DNA extraction methods 

between cases and controls (if they have been ascertained separately or asynchronously). 

Additional quality filters and exclusions are conventionally applied at the SNP level (i.e., 

excluding markers that do not meet pre-specified criteria for call rate, imputation quality, 

Hardy-Weinberg equilibrium, etc.) and at the individual participant level (i.e., sex 

mismatches, genetic outliers, etc.). Detection of genomic inflation due to residual population 

stratification or other systematic sources of error can be determined by the generation and 

inspection of quantile-quantile Q-Q plots of observed versus expected association p-values. 

A consensus report of all analytical procedures, including quality control, for GWAS in the 

oral/dental domain has been recently reported (Agler et al., 2019).

9. Lack of diversity

An astonishing figure--in 2009, 96% of participants in GWAS were of European descent, 

and in 2016 only 20% of participants were not of European descent (Popejoy & Fullerton, 

2016). There are several reasons behind this persistent issue including but not limited to 

available research funding allocation and prioritization, unequal inclusion in biomedical 

research and historic reasons. Hispanic/Latinos, African, and Indigenous populations 

continue to be greatly under-represented in the genomics evidence base to-date. The 

systematic exclusion of population segments from the evidence base of genetic associations 

with health outcomes is problematic from multiple standpoints, ranging from biological to 

social justice.

Importantly, genetic association signals discovered from GWAS in populations of European 

descent do not always transfer or generalize to non-European populations. This is due to 

differences in genetic architecture (i.e., linkage disequilibrium), association of risk 

polymorphisms with ancestry-informative markers, allele frequency, study power, as well as 

other reasons (Zanetti & Weale, 2018). These authors suggest that, although transethnic 

differences may be at play in some instances, strong causal effects are largely shared among 

human populations, motivating the use of transethnic data for fine mapping of these regions. 

For this reason, the current lack of racial/ethnic diversity overall, and specifically in the 

available cohorts and samples with oral/dental phenotypes and genotypes, is a major 

limitation that must be addressed. This issue hampers the generalizability and ultimate 

translation of the emerging genomics evidence-base into what is aspirationally envisaged as 

oral health promotion for all.

10. Conclusion and recommendations

While numerous sources of bias exist in performing and interpreting GWAS of oral and 

dental traits, these are analogous to most other study designs. Here, we emphasize that 

measurement is a primary source of bias in the oral/dental domain, as both dental caries and 

periodontal disease are subject to important and variable sources of measurement error and 

misclassification. Efforts to improve measurement are best invested prior to study execution, 

whereas quantification of the possible magnitude of error introduced can be carried out post 
hoc. We caution that genetic models employed in GWAS as subject to known issues that are 

Agler and Divaris Page 6

Community Dent Health. Author manuscript; available in PMC 2020 June 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relevant in observational research, including collider bias (i.e., when adjusting for heritable 

covariates) and non-differential misclassification bias towards the null. Additional issues that 

mainly result in necessary caution in interpretation include type I and II errors, available 

panels for imputation and information on gene annotation. We stress that the lack of racial/

ethnic diversity in the currently available cohorts and samples with oral/dental traits and 

genotypes is a critical issue that must be addressed with concerted, international efforts. 

Recognizing and adequately controlling for those known biases will help expand our 

understanding of the genetic underpinnings of oral and dental traits and ultimately help 

improve oral health and care.
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