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Abstract

Protein folding in the endoplasmic reticulum is an oxidative process that relies on protein disulfide 

isomerase (PDI) and endoplasmic reticulum oxidase 1 (ERO1). Over 30% of proteins require the 

chaperone PDI to promote disulfide bond formation. PDI oxidizes cysteines in nascent 

polypeptides to form disulfide bonds and can also reduce and isomerize disulfide bonds. ERO1 

recycles reduced PDI family member PDIA1 using a FAD cofactor to transfer electrons to oxygen. 

ERO1 dysfunction critically affects several diseases states. Both ERO1 and PDIA1 are 

overexpressed in cancers and implicated in diabetes and neurodegenerative diseases. Cancer-

associated ERO1 promotes cell migration and invasion. Furthermore, the ERO1-PDIA1 interaction 

is critical for epithelial-to-mesenchymal transition. Co-expression analysis of ERO1A gene 

expression in cancer patients demonstrated that ERO1A is significantly upregulated in lung 

adenocarcinoma (LUAD), glioblastoma and low-grade glioma (GBMLGG), pancreatic ductal 

adenocarcinoma (PAAD), and kidney renal papillary cell carcinoma (KIRP) cancers. ERO1A 
knockdown gene signature correlates with knockdown of cancer signaling proteins including 

IGF1R, supporting the search for novel, selective ERO1 inhibitors for the treatment of cancer. In 

this review, we explore the functions of ERO1 and PDI to support inhibition of this interaction in 

cancer and other diseases.
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1. Introduction

Reactive oxygen species (ROS) are partially reduced metabolites of oxygen with strong 

oxidizing capabilities that contribute to diseases related to cell metabolism, survival and 

death. There are two main classes of ROS: free radicals and non-radicals. Free radicals 

include hydroxyl radical (HO•), nitric oxide (•NO), peroxynitrite (ONOO−), superoxide 

anion (O2
•−), nitrogen dioxide (•NO2), peroxyl radicals (ROO•), and lipid peroxyl (LOO•). 

Non-radicals include hydrogen peroxide (H2O2), singlet oxygen (1O2) and lipid peroxide 

(LOOH). The most well-understood ROS are hydrogen peroxide (H2O2), superoxide anion 

(O2
•−), and hydroxyl radical (HO•) (Li, Jia, & Trush, 2016). At low doses, ROS maintain 

cellular homeostasis as secondary signaling molecules, and, at high concentrations, ROS can 

induce severe oxidative damage in proteins, lipids and DNA, earning their reputation as a 

double-edged sword (Cao & Kaufman, 2014; Puspita, Chung, & Shim, 2017; Sifuentes-

Franco, Pacheco-Moisés, Rodríguez-Carrizalez, & Miranda-Díaz, 2017).

ROS are generated via both non-enzymatic and enzymatic reactions. ROS generated as 

byproducts of oxidative phosphorylation and ATP production during electron transfer 

reactions in the mitochondria are the major source (Fig. 1). ATP generation depends on the 

mitochondrial respiratory chain in the inner mitochondrial membrane, which consists of 5 

major protein complexes (complex I, II, III, IV, and V) (Bolisetty & Jaimes, 2013). ATP is 

synthesized by F0F1-ATPase via the proton gradient across the membrane, and during this 

electron transfer, molecular oxygen accepts leaked electrons to form ROS (Dromparis & 

Michelakis, 2013). Complex I (NADH dehydrogenase subunits) and complex III (ubiquinol-

cytochrome C reductase complex subunits) are the major sites of electron leak in the 

mitochondrial respiratory chain (Borek, Sarewicz, & Osyczka, 2008; Warnau, et al., 2018). 

Furthermore, complex II (succinate dehydrogenase) also plays a role in ROS generation, and 

mutation or dysfunction of complex II can enhance ROS production (Kausar, Wang, & Cui, 

2018). In addition to the mitochondria, ROS are also produced by NADPH oxidases and 

xanthine oxidase in the cytoplasm, and generated in the endoplasmic reticulum (ER), 

peroxisome, and other organelles (Cao & Kaufman, 2014).

The purpose of this review is to address the dynamics of the ERO1-PDI interaction in 

intracellular ROS signaling and explore the rationale behind ERO1 inhibition in disease. 

ERO1 contributes up to 25% of the induced cellular ROS especially in heavily secretory 

cells (Chaudhari, Talwar, Parimisetty, Lefebvre d’Hellencourt, & Ravanan, 2014; Sevier & 

Kaiser, 2008; Tu & Weissman, 2004). ROS can act in several ways, including as signaling 

molecules to downstream pathways, and as cytotoxic elements. Furthermore, ERO1α (an 

ERO1 isoform) expression is upregulated in several cancers and plays an important role in 

the physiology of many diseases. These findings highlight a strong therapeutic potential for 

effectively targeting ERO1α and PDI as novel inhibitors become available.

2. Endoplasmic reticulum as an alternative source of ROS

Although mitochondria hold the reputation as the primary, ROS-inducing organelles of the 

cell, oxidative protein folding in the ER generates large quantities of ROS, and, in fact, the 
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ER lumen contains more ROS than mitochondria (Bulleid & Ellgaard, 2011; Malinouski, 

Zhou, Belousov, Hatfield, & Gladyshev, 2011). In eukaryotes, the ER is responsible for 

secreted and membrane-bound protein folding and calcium storage. ROS are generated 

during oxidative protein folding, when molecular chaperones, such as protein disulfide 

isomerases (PDIs), form disulfide bonds in nascent polypeptides. Active site cysteine 

residues in PDI accept electrons from free thiols in nascent polypeptides to generate a 

disulfide bond. PDI then transfers the electrons to membrane-bound ERO1 to perform 

another cycle of catalysis (Cao & Kaufman, 2014). ERO1 further transfers the electrons to 

O2 and generates H2O2. H2O2 produced by ERO1 in the ER lumen is involved in signaling 

and oxidative protein folding via peroxiredoxin 4 (Tavender & Bulleid, 2010; Zito, Melo, et 

al., 2010). In response to ROS generation, antioxidant enzymes, such as superoxide 

dismutase, catalase, and glutathione peroxidase, maintain redox homeostasis by converting 

ROS into water and oxygen. Other antioxidant molecules, including reduced glutathione 

(GSH), vitamin E, and NADH, can also inactivate ROS (Fig. 1) (Gomes, Silva, & de 

Oliveira, 2012; Tse, Yan, Chan, Tian, & Huang, 2016). In the ER, ROS can also be produced 

by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases downstream of 

PDIA1 activity (Laurindo, Araujo, & Abrahão, 2014).

The ER and mitochondria interact via a physical contact known as the mitochondria-

associated ER membrane (MAM). The MAM was first identified in 1986 as a major site of 

phospholipid synthesis and transportation and is now known to be essential for calcium 

homeostasis, energy metabolism and other signaling pathways (Rieusset, 2018; Vance & 

Vance, 1986) (Csordas, Weaver, & Hajnoczky, 2018; Thoudam, Jeon, Ha, & Lee, 2016). The 

MAM allows exchange of Ca2+, ROS, lipids, and nutrients between the ER and the 

mitochondria, thus promoting cellular bioenergetics and metabolism (Fig. 1). High 

concentrations of ER Ca2+ are released at MAM sites and taken up into the mitochondria by 

the Ca2+ uniporter on the inner mitochondrial membrane (Csordás, Várnai, Golenár, Sheu, & 

Hajnóczky, 2012). ROS generated by either the ER or mitochondria in H2O2 nanodomains 

generated by cristae can localize at the MAM interface and perturb calcium signaling 

(Booth, Enyedi, Geiszt, Várnai, & Hajnóczky, 2016). Importantly, ERO1, a key regulator of 

oxidative stress in the ER, is enriched at the MAM interface and regulates calcium flux 

(Anelli, et al., 2012; Gilady, et al., 2010). ERO1 localization at the MAM interface 

demonstrates the role of redox signaling on calcium flux through the mitochondria. ERO1 

does not cross the MAM but may exert its effect via diffusible H2O2. Dysfunction of the ER-

mitochondrial crosstalk at the MAM has been implicated in neurological diseases such as 

Alzheimer’s and Parkinson’s, thus ERO1 function at this interface may emerge as a critical 

driver of MAM disfunction (Hetz & Mollereau, 2014).

The oxidizing environment of the ER is maintained by the GSH/GSSG ratio to facilitate 

protein folding (Fig. 2) (Cao & Kaufman, 2014; Chakravarthi, Jessop, & Bulleid, 2006). 

Correctly folded and processed proteins are transported out of the ER, while misfolded 

proteins can be either refolded or degraded via the ER-Associated Degradation (ERAD) 

pathway (Cao & Kaufman, 2014; Hwang & Qi, 2018). Therefore, the ER is equipped with a 

regulatory mechanism to accurately differentiate between unfolded/native, misfolded and 

correctly folded proteins. The rate of the reaction between PDI and GSSG or GSH is rapid, 

likely contributing to its role as an ER redox sensor (Lappi & Ruddock, 2011). In a disease 
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state, misfolded and unfolded proteins can accumulate to trigger ER swelling and the ER 

stress response (Oakes & Papa, 2015). During ER stress, the GSH/GSSG ratio is disturbed, 

further increasing ROS production and distorting the ER redox environment (Tu & 

Weissman, 2004). In eukaryotes, the ER is more susceptible to oxidative stress due to 

limited antioxidant enzymes, which indicates its important role in the induction of redox 

imbalance and cellular stress (Santos, Tanaka, Wosniak, & Laurindo, 2009). ER stress 

stimulates the unfolded protein response (UPR), which can promote cell survival, or upon 

prolonged ER stress, apoptosis ensues (Zeeshan, Lee, Kim, & Chae, 2016). Furthermore, ER 

stress can induce calcium release from the ER into the cytosol. Mitochondria uptake the 

released Ca2+, causing physical and metabolic changes. For example, ROS induces the 

release of cytochrome c to the cytoplasm, inhibiting complex III activity and further 

inducing ROS in the form of a ubisemiquinone radical intermediate (Cao & Kaufman, 

2014). Increased Ca2+ ions also enhance mitochondrial Krebs cycle dehydrogenases and 

nitric oxide synthase, both leading to the elevation of ROS. Most importantly, in a vicious 

cycle, the ER-induced mitochondrial ROS may accelerate release of Ca2+ from the ER to 

further increase mitochondrial oxidative stress (Cao & Kaufman, 2014). ERO1 silencing or 

pharmacological inhibition (EN460) blocks calcium re-uptake by mitochondria but not by 

the ER (Anelli, et al., 2012). Mitochondrial dysfunction alters ATP generation, which is 

required for protein folding and bond formation in the ER. Thus, mitochondrial dysfunction 

further aggravates ER stress (Cao & Kaufman, 2014).

3. ERO1 function & link to PDIA1

Endoplasmic reticulum oxidoreductase 1 (ERO1) is an ER-resident thiol oxidoreductase 

responsible for catalyzing disulfide bond formation in nascent polypeptide substrates via 

electron transfer through protein disulfide isomerase (PDI) with oxygen acting as the final 

electron acceptor (Fig. 2) (Frand & Kaiser, 1999). The enzyme was first studied in 

Saccharomyces cerevisiae as an essential component of the oxidative folding machinery (Tu 

& Weissman, 2004). ERO1 is highly conserved and uses flavin adenine dinucleotide (FAD) 

as a coenzyme for electron transfer during oxidative folding. The ERO1/PDI oxidative 

folding pathway releases H2O2; thus, increased oxidative protein folding is a source of ER 

ROS.

Saccharomyces cerevisiae contains a single homolog, ERO1p, that is essential for growth. In 

mammals, there are two paralogs of ERO1, ERO1α and ERO1β, and these enzymes are two 

of many enzymes that perform similar functions, highlighting the importance of the 

oxidative folding pathway. ERO1α is ubiquitously expressed in most cells, whereas ERO1β 
is specifically expressed in cells of the pancreas and stomach (Dias-Gunasekara, et al., 

2005). ERO1β is more active than ERO1α in vitro, and is highly expressed in the pancreas, 

emphasizing its importance in insulin biogenesis and glucose homeostasis (Zito, Chin, Blais, 

Harding, & Ron, 2010). ERO1α, encoded by the ERO1A gene, is induced by HIF1α 
(hypoxia-inducible factor 1α) and hypoxic conditions, whereas ERO1β is induced by the 

unfolded protein response (Cabibbo, et al., 2000; Gess, et al., 2003). Both isoforms are 

globular folds of alpha helices containing two essential CXXCXXC active sites and a 

regulatory loop region. Though the isoforms share 65.4% amino acid identity, ERO1β is 

missing the EF-hand calcium-binding motif contained in ERO1α. Furthermore, ERO1α 
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contains two sites for N-glycosylation, Asp280 and Asp384. Crystal structures of human 

ERO1α were solved in 2010 (Fig. 3A) (Inaba, et al., 2010). The electron shuttle from 

reduced PDI to molecular oxygen facilitated by ERO1 is tightly regulated, and ERO1 

activity is heavily dependent on the redox characteristics of PDI.

Tight regulation is crucial as unregulated ERO1 activity would lead to harmful 

concentrations of hydrogen peroxide, oxidative stress, and cell death. Active, partially 

oxidized ERO1α (OX1) can resist changes that could be induced by a reducing environment, 

whereas, inactive ERO1α (OX2) is readily reduced by dithiothreitol (Benham, van Lith, 

Sitia, & Braakman, 2013). Therefore, in the oxidizing environment of the ER, inactive, 

oxidized ERO1α is well-suited to donate a disulfide bond to PDI. ERO1 activity is regulated 

by disulfide bond combinations of four cysteines. Active ERO1α (OX1) contains a Cys94-

Cys99 disulfide bond. ERO1α is inactivated when those cysteines form bonds with other 

cysteines in the protein, to form two disulfide bond pairs (OX2): Cys94-Cys131 and Cys99-

Cys104 (Fig. 3B). ERO1β is similar, with a Cys90-Cys95 disulfide bond in the active form 

that is broken in the inactive form (OX: Cys90-Cys130). Upon reduction, ERO1α moves 

from the compact, inactive OX2 form to the more active OX1, and rapidly returns to the 

OX2 form when no longer needed (Benham, et al., 2013). A Cys81-Cys390 disulfide 

stabilizes ERO1β by linking the “loop cap” and “helical core.” A regulatory bond similar to 

the Cys94-Cys131 bond in ERO1α also exists as Cys90-Cys130 in inactive ERO1β (Wang, 

Zhu, & Wang, 2011). In general, ERO1β seems to be less tightly regulated than ERO1α and 

brings powerful oxidizing capacity when needed (Wang, et al., 2011).

An increase in protein folding for which the cell does not have biomolecular capacity could 

lead to toxic buildup of ROS molecules, ER oxidative stress, and apoptosis. The highly 

oxidizing environment of the ER is maintained by ERO1 and GSSG, though glutathione 

enters the ER in its reduced form and also provides potent reducing equivalents at high 

concentrations (Tu, Ho-Schleyer, Travers, & Weissman, 2000). In normal cells, H2O2 

generation as a consequence of ERO1-mediated disulfide bond formation is tightly 

regulated, and H2O2 is quickly reduced by glutathione peroxidase 8 (GPX8) (Ramming, 

Hansen, Nagata, Ellgaard, & Appenzeller-Herzog, 2014). Overexpression of ERO1p 

increases ROS in yeast cells, and those ROS levels are exacerbated even further with GPX8 

knockdown (Haynes, Titus, & Cooper, 2004; Ramming, et al., 2014). Thus, while ER ROS 

levels can exceed mitochondrial concentrations, increases in protein folding can be mitigated 

by overexpression of UPR-inducible GPX8 (Eletto, Chevet, Argon, & Appenzeller-Herzog, 

2014). Furthermore, additional substrates besides O2 could act as electron acceptors 

because, while the enzyme has a high affinity for oxygen, it can also function under 

anaerobic conditions in yeast cells (Tu & Weissman, 2002). In cervical cancer, ERO1-

dependent H2O2 promotes growth and migration via promotion of epithelial-to-

mesenchymal transition (EMT) (Zhang, et al., 2019). Thus, ERO1 is a key modulator of 

redox homeostasis in the ER.

Although ERO1 is the major contributor to ROS generation in the ER, knockdown in normal 

cells is not detrimental. ERO1p knockdown in yeast (S. cerevisiae) impairs the redox 

environment of the ER and disrupts protein folding (Frand & Kaiser, 1998; Pollard, Travers, 

& Weissman, 1998). ERO1β knockdown in mice hinders proinsulin folding, while double 
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knockdown of ERO1α and ERO1β in immunoglobulin-producing cells does not affect 

disulfide bond formation or secretion of immunoglobulin (Zito, Chin, et al., 2010). Thus, 

ERO1β plays a selective and important role in glucose homeostasis (Zito, Chin, et al., 2010). 

The modest effect of ERO1 knockout on phenotype indicates mammalian cells rely on 

redundant pathways for disulfide bond formation and ERO1-independent mechanisms. For 

example, ERO1-deficient cells still form disulfide bonds (Appenzeller-Herzog, et al., 2010). 

Knockout of ERO1α, ERO1β, and the antioxidant enzyme peroxiredoxin 4 (PRDX4) leads 

to a deficiency in procollagen maturation, depletion of ascorbic acid, and scurvy in mice 

(Zito, Hansen, Yeo, Fujii, & Ron, 2012). In cervical cancer cells, knockdown of ERO1 

impaired tumorigenesis (Zhang, et al., 2019).

Whole body knockout of ERO1β specifically impairs pancreatic β cell function because 

ERO1β is expressed in the pancreas; in addition to the pancreas, ERO1β is selectively 

expressed in the testis, liver, appendix, thyroid, and pituitary gland (Pagani, et al., 2000; 

Zito, Chin, et al., 2010). This specific tissue expression may explain the fact that, in general, 

ERO1B was not expressed as highly as ERO1A in our TCGA pan-cancer RNA-Seq data 

survey. Figure 5 shows expression of ERO1A or ERO1B that has been z-score normalized 

per patient so that a z-score of 0 indicates average expression of all genes per patient. All 

TCGA cohorts had ERO1A median expression greater than zero, and nearly all cohorts had 

ERO1B median expression greater than zero. Median ERO1B expression was higher than 

median expression compared to ERO1A expression in PRAD, though the relevance for this 

has yet to be explored. ERO1B had the highest median expression in LIHC and PAAD; thus, 

ERO1β inhibition may be a potential treatment for pancreatic cancer. Furthermore, ERO1β 
knockout renders cells susceptible to ER stress; the capability of normal cells to withstand a 

level of ER stress may promote ERO1β as a selective inhibitor of tissue-specific cancers, 

such as pancreatic or prostate (Khoo, et al., 2011). However, because ERO1β plays such a 

significant role in insulin signaling, ERO1β inhibitors may cause side effects such as glucose 

intolerance. In addition, it has not yet been studied whether ERO1β would be expressed to 

compensate for the loss of ERO1α activity or if ERO1β is induced upon ER stress in tissues 

besides the ones in which basal expression is high. For example, in the progression of 

diabetes, as ER stress increases, ERO1B transcript expression decreases, unlike other UPR 

genes Bip and CHOP (Awazawa, et al., 2014). To consider the importance of ERO1β 
expression in cancer, we must establish 1) whether ERO1β expression is induced in 

cancerous tissues and 2) whether ERO1β expression induced by the UPR is critical for 

cancer progression. Based on the TCGA patient ERO1 expression data, median ERO1B 
expression is higher than average gene expression (zScore = 0) in most cancers assessed. 

Thus, it will be important to determine whether this higher than average expression is a 

critical driver of cancer progression.

ERO1α mediates rapid disulfide bond generation in oxidative protein folding via PDIA1 

(Appenzeller-Herzog, et al., 2010). PDI is an abundant multifunctional oxidoreductase 

catalyzing disulfide bond formation, isomerization, and reduction (Shergalis & Neamati, 

2017). In vascular smooth muscle cells where ROS are key signaling molecules, PDIA1 

regulates NADPH oxidase activity (Laurindo, Fernandes, Amanso, Lopes, & Santos, 2008). 

PDIA1 (also known as PDI, but referred to in this review as PDIA1 for clarity), the 

canonical member of the PDI family of 22 members, is the major substrate of ERO1α. 
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Additionally, ERO1β preferentially associates with PDIA1 and PDIp, among the other PDI 

family members (Wang, et al., 2011). PDIA1 contains catalytic a and a’ thioredoxin-like 

domains, a conserved CXXC active site, and b and b’ domains that are homologous to the a 
and a’ domains and also contain the thioredoxin-like fold, without the CXXC active site 

(Hatahet & Ruddock, 2009). ERO1α preferentially oxidizes the a’ domain of human PDIA1 

over the a domain (Wang, et al., 2008). The cysteines in the CGHC active site of PDIA1 

have high biochemical reduction potentials (−180 mV) and are poised to accept electrons 

from nascent polypeptides (Lundström & Holmgren, 1993). ERO1α interacts with PDIA1 

via hydrophobic and electrostatic interactions in the b’ domain of PDIA1 (Fig. 3C). 

Specifically, Phe240, Phe249, and Phe304 in the b’ domain likely form non-covalent 

interactions with the β-hairpin region of ERO1α (Masui, Vavassori, Fagioli, Sitia, & Inaba, 

2011). Furthermore, Val101 and Trp272 of ERO1α are necessary for PDI-ERO1 complex 

formation (Zhang, et al., 2019). These interactions position Cys397 and Cys400 in the a’ 
domain active site of PDIA1 near the disulfide-bonded cysteines in the shuttle loop of 

ERO1α and allow ERO1α to perform the disulfide exchange.

ERO1α activity is regulated by the redox state of PDI in the ER. An abundance of reduced 

PDIA1, or a PDIA1 molecule that has transferred its disulfide bond to an unfolded protein, 

can activate ERO1α by reducing the regulatory disulfide bonds (Appenzeller-Herzog, 

Riemer, Christensen, Sørensen, & Ellgaard, 2008). Reduced PDIA1 has a much higher 

affinity for ERO1α than oxidized PDIA1, and oxidation generates one molecule of H2O2 

(Masui, et al., 2011). The generated H2O2 is typically scavenged by ER peroxidases 

PRDX4, GPX7, and GPX8, before it diffuses out of the cellular compartment (Ramming & 

Appenzeller-Herzog, 2013; Wang, Zhang, Niu, Sitia, & Wang, 2014). GPX7 and PRDX4 

oxidize PDIA1 and catalyze disulfide bond formation independent of ERO1 (Zito, Melo, et 

al., 2010). Overexpression of ERO1 shifts PDIA1 towards an oxidized state, which promotes 

oxidation of PDIA1 substrates (Bhandary, Marahatta, Kim, & Chae, 2012). Inhibition of 

ERO1 may prevent or slow reoxidation of PDIA1 and impair protein folding in tumor cells.

Post-translational modifications on folding chaperones can have downstream signaling and 

protein folding consequences. For example, nitrosative stress generated by sustained levels 

of nitric oxide, often during chronic inflammation, can lead to S-glutathionylation of 

proteins (Hofseth, Hussain, Wogan, & Harris, 2003; Townsend, et al., 2009). Furthermore, 

S-nitrosylation of PDIA1 can lead to sulfinic acid (−SO2H) modification. S-

glutathionylation is a post-translational modification on cysteine residues and an indicator of 

redox stress. Furthermore, nitrosative stress has been shown to be induced by electrophilic 

chemotherapy drugs, primarily affecting ER-located proteins (Townsend, 2007). Because ER 

protein folding relies on robust redox signaling, post-translational modifications arising from 

ER stress may have unexpected consequences. However, the ER is built to handle flux in 

redox signaling as part of its mechanisms for UPR activation. For example, S-

glutathionylation of PDIA1 induced by nitrosative stress from O2-[2,4-dinitro-5-(N-methyl-

N-4-carboxyphenylamino)phenyl]1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate 

(PABA/NO) activates the PERK and IRE1 branches of the UPR (Townsend, et al., 2009). 

PERK activation promotes protein degradation pathways, and IRE1 activation halts protein 

translation. Similarly, studies have shown that S-glutathionylation of PDIA1 by glutathione 
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S-transferase P (GSTP) is cytoprotective when ER stress is induced (Ye, et al., 2017). S-

glutathionylation, along with cysteine nitrosylation and sulfenilation, of PDIA1 was 

observed upon exposure to chemicals in cigarette smoke and also induced the UPR (Kenche, 

et al., 2016). Thus, S-glutathionylation of PDIA1 halts protein folding until cell homeostasis 

is restored.

While PDIA1 is the canonical ERO1 partner protein, other PDI family members have been 

shown to interact with ERO1. For example, ERp44 is a PDI family member that may have 

the ability to regulate ERO1α-PDIA1 complex formation and enable ERO1 retention in the 

ER (Anelli, et al., 2002; Masui, et al., 2011). ERp44 is induced during ER stress and 

associates with ERO1α at the same rate as PDIA1, however, its dissociation rate is faster 

(Masui, et al., 2011). ERp44 also interacts with inositol trisphosphate receptor and inhibits 

its function (Li, et al., 2009). Inositol trisphosphate receptor maintains balanced calcium flux 

between the ER and mitochondria and activity can be regulated by oncogenes to promote 

tumor growth. Hyperoxidation via increases in ROS levels disrupt the interaction between 

ERp44 and inositol trisphosphate receptor to lead to calcium release and apoptosis (Li, et al., 

2009). ERO1 can also form mixed disulfides with PDI family members ERp57 and ERp72 

(Appenzeller-Herzog, et al., 2010). ERp57 associates with ERO1α in vivo, suggesting 

ERO1α has the ability to oxidize ERp57 (Jessop, et al., 2007). ERp72, a PDI family member 

with a CGHC active site similar to ERp44 and PDIA1, also binds to ERO1α, likely in an 

active site-independent manner (Araki, et al., 2013). Therefore, while PDIA1 is the 

canonical ERO1 partner protein, other PDI family members may be involved in the link 

between ERO1 function and disease.

Because of the critical role of PDIA1 in protein folding, it has been linked to various 

diseases including cancer (Xu, Sankar, & Neamati, 2014), thrombosis (Bekendam & 

Flaumenhaft, 2016), Huntington’s disease (Zhou, et al., 2018), Parkinson’s disease (Cheng, 

Wang, & Wang, 2010), and diabetes (Zhang, Lai, Teodoro, & Volchuk, 2008). In several 

cancers, PDIA1 is overexpressed to meet the increased proliferation demands of the tumor. 

PDIA1 regulates integrin-mediated platelet function, thus, inhibition of PDIA1 has shown 

promise as a potential thrombosis inhibitor (Bekendam & Flaumenhaft, 2016). In 

neurodegenerative diseases, PDIA1 is overexpressed and causes apoptosis, and modulation 

of PDIA1 with small molecule inhibitors is neuroprotective in Huntington’s disease models 

(Conn, et al., 2004; Duennwald & Lindquist, 2008; Lee, et al., 2010; Zhou, et al., 2018). In 

diabetes, PDIA1 knockdown promotes proinsulin export and overexpression of PDIA1 leads 

to proinsulin retention in the organelle (Rajpal, Schuiki, Liu, Volchuk, & Arvan, 2012; 

Zhang, et al., 2008). Thus, PDIA1 seems to prevent insulin export and may be a promising 

target for inhibition in diabetes (Sun, et al., 2015; Zhang, et al., 2008). Because of the 

ubiquitous nature of PDIA1 function, the enzyme is an attractive drug target and multiple 

inhibitors and modulators have been identified for various indications; however, PDIA1 

inhibitors are still in preclinical and early stage clinical studies. Pharmacological inhibition 

of PDIA1 by bisphenol A blocks ERO1α binding in the b’ domain and subsequently inhibits 

PDIA1-ERO1α-mediated disulfide bond formation (Okumura, et al., 2014). Furthermore, 

blocking the PDIA1-ERO1α interaction suppresses cervical cancer growth, thus providing 

validation for a b’ domain PDIA1 inhibitor in the context of cancer (Zhang, et al., 2019).
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As ER-resident enzymes, both ERO1 and PDI are critically involved in the UPR. Under 

normal conditions, the UPR responds to the protein synthesis load and mediates the protein 

folding machinery by upregulating chaperones, halting protein synthesis, or initiating cell 

death (Hetz, 2012). ER stress, or an imbalance between the newly synthesized proteins and 

machinery expressed and ready to fold and secrete them, triggers the UPR via three major 

arms: protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α), 

and activating transcription factor 6 (ATF6). The UPR affects downstream signaling in a 

complicated manner dependent on physiological conditions (Hetz, Chevet, & Harding, 

2013). For example, in cancer, the UPR can be activated by the hypoxic environment and 

can contribute to tumor growth (Hetz, et al., 2013; Moenner, Pluquet, Bouchecareilh, & 

Chevet, 2007; Rouschop, et al., 2010).

Both ERO1α and ERO1β respond to ER stress; however, ERO1α is induced by hypoxic 

conditions, while ERO1β is induced by the UPR (Pagani, et al., 2000). ERO1α expression is 

regulated by the ER stress transcription factor CHOP (C/EBP homologous protein) 

(Marciniak, et al., 2004). CHOP is activated downstream of phosphorylation of eukaryotic 

initiation factor 2α under the PERK arm of the UPR and activates the translation of several 

ER stress response proteins (Fig. 4). Increased protein synthesis leads to an increase in ROS 

and ERO1α knockdown actually rescues cell death when CHOP and ATF4 are activated 

(Han, et al., 2013). However, under prolonged ER stress, increased disulfide bond formation 

can produce excess levels of H2O2 that can leak out of the ER and cause apoptosis (Tu & 

Weissman, 2004). It has been suggested that ERO1-mediated generation of H2O2 during ER 

stress leads to apoptosis; however, the origin of ROS may actually be the mitochondria 

(Bulleid & Ellgaard, 2011). Furthermore, overexpressing ERO1 in yeast did not increase 

ROS levels (Sevier, et al., 2007). ER stress leads to calcium release from the ER into the 

cytoplasm, increased mitochondrial calcium uptake, increased mitochondrial metabolism, 

and higher levels of ROS (Chaudhari, et al., 2014).

A major role of the ER involves calcium storage, and research in recent years furthered our 

understanding of the role in calcium signaling. In addition to being highly oxidizing 

compared to other cellular compartments, the ER differs in that calcium concentrations are 

higher such that free calcium concentration is 100–800 μM (Carreras-Sureda, Pihán, & Hetz, 

2018). ROS (O2
•−, H2O2, and HO•) also communicate bidirectionally with calcium in a 

complex relationship. Calcium signaling is necessary for ROS production, and ROS can 

regulate calcium signaling (Gordeeva, Zvyagilskaya, & Labas, 2003; Görlach, Bertram, 

Hudecova, & Krizanova, 2015). In mitochondria, calcium promotes metabolism via both the 

tricarboxylic acid cycle (McCormack & Denton, 1993) and oxidative phosphorylation 

(Murphy, Kelleher, & Fiskum, 1990). In turn, ROS regulate calcium signaling by modulating 

plasma membrane and intracellular calcium channels and Ca2+ ATPases (Görlach, et al., 

2015).

Calcium signaling and ROS interact in many cellular compartments, including the 

mitochondria, ER, nucleus, and Golgi apparatus, but the extent of signaling is tissue specific. 

In the ER, sarco/endoplasmic-reticulum Ca2+ ATPase proteins use ATP to import calcium 

into the ER lumen. Increased ROS can increase sarco/endoplasmic-reticulum Ca2+ ATPase 

activity, in turn increasing calcium levels in the ER. ER calcium is released passively 
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through ryanodine receptors and inositol 1,4,5-triphosphate-receptors (IP3R). ERO1α 
regulates calcium release by regulating IP3R (Anelli, et al., 2012). ERO1α expression 

increases passive calcium flux, which can lead to apoptosis (Li, et al., 2009). Many ER 

chaperones use calcium as a cofactor to aid protein folding, thus calcium depletion can 

affect protein folding. Calcium-binding chaperones include PDIA1, calnexin, calreticulin, 

GRP78, and GRP94 (Coe & Michalak, 2009). PDIA1 binds calcium with high capacity (19 

mol Ca2+/mol protein) and may regulate ER calcium homeostasis (Primm & Gilbert, 2000). 

Crosstalk between the ER and mitochondria via MAMs is regulated by the flow of calcium. 

Within the ER and second to the rough ER, MAMs have the highest concentration of ER 

chaperones and oxidoreductases that may aid in regulating calcium flux (Gilady, et al., 2010; 

Hayashi, Rizzuto, Hajnoczky, & Su, 2009). ERO1α localizes at MAMs under oxidizing 

conditions (Anelli, et al., 2012; Gilady, et al., 2010). MAM signaling is important in 

biological processes including lipid biosynthesis, cell death, and macroautophagy (Phillips 

& Voeltz, 2016).

4. Clinical implications & disease relevance

ERO1 knockout in mammals is not as lethal as it is in yeast, suggesting that mammalian 

systems have evolved redundant pathways to compensate for ERO1 loss. Evolution and 

redundancy of several oxidative folding enzymes explains the viability of ERO1 KO mice. 

Abnormalities associated with dysfunctional ERO1 include cardiac conduction irregularities 

in ERO1α mutant mice (Chin, et al., 2011) and problems with insulin folding and secretion 

(Zito, Chin, et al., 2010). In adult worms, attenuated expression of ero-1 promotes viability 

and prolongs lifespan (Curran & Ruvkun, 2007). However, ERO1-related ROS generation 

may promote cancer growth through EMT (Zhang, et al., 2019).

Although the knockout phenotype is mild, ERO1 dysfunction may stimulate ER stress and 

lead to diseases related to oxidative stress and ER malfunction. For example, ERO1 may 

impact the folding and secretion of insulin in pancreatic beta cells and malfunction could 

lead to diabetes (Nardai, et al., 2005; Wang, et al., 1999). ERO1α overexpression decreases 

mutant proinsulin-G(B32)V misfolding in a model of mutant Ins-gene-induced diabetes of 

youth. Similarly, ERO1α expression can reduce ER stress caused by proinsulin misfolding 

(Wright, et al., 2013). Furthermore, ERO1α is responsible for adiponectin secretion in 

adipocytes (Qiang, Wang, & Farmer, 2007). Adiponectin is a hormone that is protective 

against type 2 diabetes and cardiovascular disease (Matsuzawa, 2005). ERp44 forms a 

covalent bond with adiponectin to promote its retention in the secretory pathway, and 

ERO1α can release adiponectin, likely because it is a competitive binder of ERp44 (Cortini 

& Sitia, 2010; Wang, et al., 2007). Thus, in this context, knockout or inhibition of ERO1α 
could lead to potential side effects caused by improper folding and release of functional 

adiponectin. ERO1β deficiency in mice causes problems with insulin folding and production 

to contribute to a diabetic phenotype (Zito, Chin, et al., 2010). Furthermore ERO1β 
deficiency is linked to ER stress-induced cell death, and hampers insulin secretion by 

delaying proinsulin folding (Khoo, et al., 2011). ERO1β expression is lower in the islets of 

mouse models of diabetes, and expression decreases with age (Awazawa, et al., 2014). 

However, in the diabetic mouse model, increasing ERO1β expression led to ER stress and 

impaired insulin secretion; thus, the dysfunction caused by lower levels of ERO1 expression 
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may be part of a complex pathway that ERO1β cannot rescue (Awazawa, et al., 2014). 

ERO1β deficiency may be linked with the pathogenesis of type 2 diabetes (Marselli, et al., 

2010). ERO1α is primarily in the oxidized state in diabetic mice, possibly indicating ERO1 

inactivation (Awazawa, et al., 2014; Nardai, et al., 2005). In other mouse models of diabetes, 

in addition to promoting cell survival and decreasing oxidative damage, CHOP deletion 

decreased ERO1α expression, reflecting the role of ERO1α as a target of CHOP (Song, 

Scheuner, Ron, Pennathur, & Kaufman, 2008). Thus, ERO1α activation may be a strategy to 

improve the oxidative folding capacity of the ER in diabetes.

There are some links between ERO1α and the immune system. For example, ERO1α 
overexpression promotes tumor growth and inhibits T cell response (Tanaka, et al., 2015). In 

breast cancer, ERO1α upregulates programmed cell death ligand 1, the immune response 

ligand that blocks antitumor response by programmed cell death 1 (Tanaka, et al., 2017). 

Additionally, ERO1α expression affects the function and oxidative folding of major 

histocompatibility complex class I H chain (Kukita, et al., 2015). Furthermore, in 

macrophages, ER stress-induced apoptosis may occur via ERO1α-induced inositol 1,4,5-

triphosphate (IP3) receptor activation (Li, et al., 2009). Thus, ERO1 has a complex role in 

immuno-oncology, but may be a therapeutic target for inhibition in some cases.

5. Relevance of ERO1 in cancer

ERO1α RNA expression is upregulated significantly in several cancers and may indicate 

sensitivity to ERO1α inhibitors. Furthermore, ERO1α overexpression is associated with 

poor prognosis of cervical (Zhang, et al., 2019), gastric (Seol, et al., 2016), breast (Kutomi, 

et al., 2013), lung (Endoh, et al., 2004), hepatocellular (Yang, et al., 2018), and multiple 

myeloma (Hayes, et al., 2019) cancers, and knockdown of ERO1α in mice inhibited tumor 

growth (Kutomi, et al., 2013). To further uncover the role of ERO1α across multiple 

cancers, we surveyed ERO1A mRNA expression using The Cancer Genome Atlas (TCGA) 

patient data (Lee, Palm, Grimes, & Ji, 2015). Patient RNA-Seq data was downloaded from 

the GDAC Firehose (https://gdac.broadinstitute.org/), log2 transformed, and z-score 

normalized per patient. Across all 33 diseases (9726 unique patient samples), median 

ERO1A expression is higher than average gene expression (> z-score = 0), indicating that 

ERO1A is being consistently and actively expressed in cancer patient cohorts (Fig. 5). We 

observed that esophageal carcinoma (ESCA), head and neck squamous cell carcinoma 

(HNSC), and lung squamous cell carcinoma (LUSC) patients tended to express ERO1A the 

most; thus, inhibitors may be effective in these diseases. Median patient ERO1A expression 

was higher than median patient ERO1B expression in 28 of 33 (85%) diseases reinforcing its 

greater relevance to cancer (Fig. 5).

To further identify ERO1α-related signaling programs and pathways, we analyzed ERO1A 
association with cancer patient reduced survival and disease progression. We identified four 

diseases in which ERO1A expression was significantly associated with reduced survival and 

disease progression (tumor stage, grade, or glioma type). As previously described by 

Shergalis et al., TCGA disease cohorts were stratified into patient groups with high and low 

ERO1A expression; differences in survival of patient groups were evaluated using a log-rank 

statistic and confirmed using the GDAC Firebrowse mRNA coxph survival analysis (Center, 
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2016; Shergalis, Bankhead, Luesakul, Muangsin, & Neamati, 2018). High ERO1A 
expression was associated with reduced survivability in glioma (GBMLGG), kidney renal 

papillary cell carcinoma (KIRP), lung adenocarcinoma (LUAD), and pancreatic ductal 

adenocarcinoma (PAAD) patients (Fig. 6). ERO1A expression in these disease cohorts was 

also associated with tumor progression endpoints (e.g. stage, grade). For example, LUAD 

patients with higher pathological stage (III and IV) had significantly higher ERO1A 
expression (Wilcoxon p = 0.0067) than patients with lower pathological stage (I and II). 

Glioblastoma patients with more aggressive disease than lower grade glioma patients 

expressed significantly higher ERO1A (Wilcoxon p = 5e-15). These observations are 

supported by previous studies (Endoh, et al., 2004; Kutomi, et al., 2013; Zhang, et al., 2019). 

We also note that no TCGA diseases had significant associations with ERO1B expression or 

reduced survival and disease progression using the criteria described above.

We performed a co-expression analysis to identify transcriptional programs involving 

ERO1α in diseases for which ERO1A expression was associated with patient survival and 

tumor progression. Using Gene Set Enrichment Analysis (GSEA), we identified fourteen 

common gene sets across LUAD, GBMLGG, KIRP, and PAAD (Fig. 7) that were 

significantly enriched for genes correlating with ERO1A expression. Included in the 

common gene set sets was the Hallmark hypoxia gene set. HIF1α regulates ERO1α 
expression, and hypoxic tumors may be more sensitive to ERO1α inhibitors (May, et al., 

2004). Additionally, inhibition of ERO1 activity may prevent tumor growth in hypoxic 

tumors as ERO1α was identified as an adaptive response element in VEGF-mediated 

angiogenesis (May, et al., 2004). Identifying the link between hypoxia and ERO1α 
expression provided validation that this analysis could robustly identify key connections 

with canonical ERO1α-related pathways. This analysis also implicated ERO1α expression 

with cell cycle regulation, E2F signaling, epithelial-to-mesenchymal transition, and 

interleukin 6 JAK (Janus kinase)-STAT3 (signal transduction and transcription 3) signaling 

and provides additional hypotheses regarding the link between ERO1α, patient survival, and 

disease progression. The link between EMT and ERO1 has been previously established in 

cervical cancer, and the ERO1-PDIA1 interaction was identified to contribute to epithelial-

to-mesenchymal transition in cervical cancer (Zhang, et al., 2019). On the other hand, ERO1 

overexpression in osteosarcoma enhanced the cytotoxicity of microtubule-targeting agent 

CYT997 (lexibulin) and inhibition decreased cell death (Wang, et al., 2019). The link 

between ERO1α and interleukin 6 JAK-STAT3 signaling was demonstrated in hepatocellular 

carcinoma (HCC). Knockdown of ERO1α blocked STAT3 phosphorylation in cancer cells 

(Yang, et al., 2018). STAT3 is a critical signaling transducer responsible for cancer cell 

growth and migration. The link between ERO1α, cell cycle, and E2F1 may indicate a 

connection between p53 function and ER stress, or more directly, ERO1 activity. Tumor 

suppressor p53 function is inhibited by ER stress (Mahdi, Rizvi, & Parveen, 2016). 

However, ERO1α function is not directly under the regulation of p53 transcription (May, et 

al., 2004). Additionally, our co-expression analysis strengthens the connection between 

ERO1α and known pathways, such as EMT and STAT3 signaling, and provides rationale for 

further studying the relationship between ERO1α and E2F signaling.

To identify genes that were most highly correlated with ERO1A expression, we compared 

ERO1A to all other genes using Pearson correlation and ranked genes based on their 
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correlation with ERO1A. Using the top 300 ERO1A co-expressed genes in LUAD, 

GBMLGG, PAAD, and KIRP TCGA diseases, we identified 10 common genes across the 

four diseases (Fig. 8A). P4HA1 (Prolyl 4-hydroxylase subunit alpha-1) was the top gene co-

expressed with ERO1A in the four diseases studied (Fig. 8B). P4HA1 is part of a protein 

complex with PDIA1 that catalyzes the hydroxylation of proline to promote collagen 

maturation, important for cancer progression and metastasis. The P4H complex (collagen 

prolyl 4-hydroxylase) is responsible for stabilizing HIF1α, which enhances angiogenesis. 

Because tumor cells grow rapidly, they have increased metabolic demands and consume 

higher rates of oxygen. Higher oxygen consumption leads to hypoxic tumor conditions and 

activation of the HIF1α pathway to promote cell survival. Furthermore, inhibitors of P4H 

sensitize breast cancer cells to docetaxel and doxorubicin (Xiong, et al., 2018). Similarly, 

knockdown of P4HA1 prevented collagen synthesis and neovascularization in glioma (Zhou, 

et al., 2017), and its expression could serve as a prognostic biomarker for high grade glioma 

(Hu, et al., 2017). Additionally, HIF1α can activate P4HA1 and promote extracellular matrix 

remodeling (Gilkes, Bajpai, Chaturvedi, Wirtz, & Semenza, 2013). P4HA1 is activated by 

transcriptional repressors EZH2 and CtBP1 through miR-124 downregulation (Chakravarthi, 

et al., 2014). In ovarian cancer, an upstream repressor of P4HA1, miR-122, is typically 

downregulated, and overexpression can prevent epithelial to mesenchymal transition (Duan, 

et al., 2018). The link between ERO1α and P4HA1, rather than P4HB (PDIA1), emphasizes 

the important role of ERO1α in hypoxia signaling in cancer.

Using the top 100 ERO1A-correlated genes in GBMLGG, a ClueGO network was used to 

visualize gene ontology (GO) biological process gene set enrichment and highlight ERO1α-

related GO categories (Bindea, et al., 2009). We identified ERO1A co-expressed genes 

involved in cell-matrix adhesion, VEGFR signaling pathway, and COPII vesicle coating 

(Fig. 9). COPII vesicle coating functions in concert with ER protein trafficking. Co-

expression of ERO1α with proteins involved in COPII vesicle coating points to its role in 

lipid trafficking and biosynthesis, although this relationship has yet to be explored in detail. 

Co-expressed genes were also involved in cell-matrix adhesion and VEGR signaling. In 

HCC, ERO1α was demonstrated to trigger angiogenesis via the S1PR1/STAT3/VEGF-A 

signaling pathway (Yang, et al., 2018). Thus, our findings are consistent with previous 

research on ERO1α function.

6. ERO1α knockdown associations with Connectivity Map analysis

We evaluated ERO1α knockdown data from Connectivity Map (CMap), a reference 

database containing gene expression profiles from cancer cells treated by drugs or gene 

modification (knockdown or overexpression) (Lamb, et al., 2006). CMap is widely used to 

find connections between drugs, genes, and diseases in order to understand the drug 

mechanisms and identify drug repurposing opportunities (Musa, et al., 2017; Qu & Rajpal, 

2012). We first analyzed the CMap ERO1α knockdown data to find novel biological 

pathway connections. We focused on lung cancer cell lines because ERO1α expression is 

associated with reduced LUAD patient survival.

The Touchstone database in CMap contains ERO1α knockdown data in two non-small cell 

lung cancer cell lines, A549 and HCC515. We examined the correlated signatures across 
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perturbagen classes, compounds, gene knockdown and gene overexpression to generate a 

hypothesis about ERO1α-related genes, pathways and pharmacological activities. All 

perturbagen types were ranked by their connectivity score in each cell line, and perturbagens 

with a score over + 90 or below − 90 were considered a strong connection. Among the top 

50 correlated compounds, ERO1α knockdown showed a strong positive connectivity score 

with 8 diverse classes of compounds in both cell lines (Table S1, Fig. 10A). These classes of 

compounds may have novel connections to ERO1α. Among them are p38 MAPK inhibitor, 

JAK inhibitor, and EGFR inhibitor, which relate to kinase signaling and cell growth, 

suggesting these inhibitors induce a similar gene expression profile as ERO1α knockdown 

(Fig. 10B). This also suggests that ERO1α knockdown may affect kinase signaling, such as 

JAK, p38, and other protein kinases. Similar gene expression profiles from CMap can be 

used to generate hypotheses about their similar pathways and synergistic anti-cancer 

combinations (Hassane, et al., 2010; Qu & Rajpal, 2012). Thus, this CMap analysis 

demonstrated a link between ERO1α and kinase pathways. ERO1α inhibition or knockdown 

may be lethal to cancer cells when combined with EGFR inhibitors, JAK inhibitors, or other 

kinase inhibitors. We did not observe common negative compound perturbagen hits between 

the two cell lines (Table S2).

We also identified genes that, when knocked down, have a similar signature as ERO1α 
knockdown in two lung cancer cell lines. In particular, there were three highly significant 

genes (except ERO1L) among the top 50 knockdown perturbagens: IGF1R, PRKCQ, and 

HEXIM1 (Table S3, Fig. 10C, D). IGF1R (insulin-like growth factor 1 receptor) is a 

receptor that binds insulin-like growth factor, has tyrosine kinase activity, and is involved in 

the PI3K/AKT and Ras/MAPK pathways. IGF1R is overexpressed in tumors and mediates 

tumor proliferation, invasion and metastasis (Riedemann & Macaulay, 2006). As a 

membrane-bound protein, IGF1R requires processing through the endoplasmic reticulum in 

order to function properly. PRKCQ (protein kinase c theta isoform) is a member of the 

Protein Kinase C (PKC) family, another critical membrane-bound protein family of 

signaling kinases. The role of PKC in cancer is complex, but overexpression of PRKCQ can 

promote tumor growth in triple-negative breast cancer (Byerly, Halstead-Nussloch, Ito, 

Katsyv, & Irie, 2016). PKCs are connected downstream of IGF1R/PI3K signaling via 

activation by phosphoinositide-dependent kinase 1, further confirming the relevance of 

ERO1α to IGF1R signaling pathways. HEXIM1 (hexamethylene bisacetamide inducible 1) 

is a member of the 7SK small nuclear ribonucleoprotein complex that inhibits positive 

transcription elongation factor b and control mRNA synthesis (Michels, et al., 2004). 

HEXIM1 has also been demonstrated as a robust pharmacodynamic marker for 

bromodomain and extraterminal domain inhibitors (Lin, et al., 2017). Furthermore, 

HEXIM1 is downregulated during cancer progression, and expression sensitizes prostate 

cancer cells to anti-androgens. HEXIM1 induces expression of the histone demethylase 

KDM5B (lysine-specific demethylase 5B) to inhibit histone methylation (Yeh, et al., 2014). 

It stabilizes p53 tumor suppressor by associating with the C-terminal negative domain (Lew, 

et al., 2012). In addition to the three significantly connected perturbagens in CMap, P4HB 
overexpression is positively correlated with ERO1α knockdown in HCC515 cells (ranked 

127 out of the 215 hits with a connectivity score > +90), suggesting there may be a 

compensatory expression mechanism (Table S4, Fig. 10D).
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A STRING (Search Tool for the Retrieval of Interacting Genes) protein interaction network 

was constructed to highlight proteins associated with ERO1α (ERO1A) (Fig. 11) 

(Szklarczyk, et al., 2015). ERO1α protein-protein interactions primarily included protein 

folding and cell redox homeostasis pathways. Many of the interactions are with PDI family 

members (PDIA1, PDIA3, PDIA4, PDIA6, ERP29, and TXNDC5). Insulin and GRP78 are 

also closely associated with ERO1α.

Three compounds have been reported to inhibit ERO1 (Fig. 12). Erodoxin was selective for 

yeast ERO1 compared to mouse ERO1α (IC50 > 400 μM) (Costanzo, et al., 2010). Another 

series of ERO1p inhibitors was identified through virtual screening techniques with 

biochemical IC50 values as low as 3 μM (Chu, Chen, Yang, & Tang, 2011). Probe molecules 

EN460 and QM295 were identified from a biochemical high throughput screen to inhibit 

ERO1α-mediated reduction of thioredoxin A with IC50 values around 1.9 μM (Blais, et al., 

2010). EN460 interacts reversibly with the reduced, active form of ERO1α, displacing the 

FAD moiety. EN460 inhibition of ERO1α prevents H2O2 production when ERO1α function 

is stimulated. EN460 also prevents replication of the chikunguya virus (Langsjoen, et al., 

2017). However, EN460 is not selective for ERO1 and also inhibits other FAD-containing 

enzymes including monoamine oxidase A, monoamine oxidase B, and LSD-1 (Hayes, et al., 

2019). Recently, the interaction between ERO1α and PDIA1 was demonstrated to depend on 

Val101 of ERO1α; thus, inhibition of the ERO1α-PDIA1 interaction around Val101 may be 

a potential anti-cancer strategy (Zhang, et al., 2019). One hypothesis may be that ERO1α 
inhibition would block PDIA1 re-oxidation, and thus be another strategy for selective 

PDIA1 inhibition. Because this interaction involves the conserved a’ domain of PDIA1, it is 

possible that inhibiting the ERO1α-PDIA1 interaction may disrupt associations between 

ERO1α and other PDI family members, such as ERp46 and P5 (PDIA6). ERp46 is critical 

for prostate cancer progression (Duivenvoorden, Hopmans, Austin, & Pinthus, 2017), and P5 

activates the Wnt/β-catenin pathway in HeLa cells (Gao, et al., 2016). Thus, inhibiting this 

interaction may have a broader application to cancers other than cervical cancer. However, 

the development of a pan inhibitor may lead to unexpected side effects because of the broad, 

complex roles these proteins play in different tissues. Thus, careful consideration of off-

target effects should be monitored when developing ERO1α inhibitors. Furthermore, in vivo 
toxicity to tissues such as pancreas and liver should be observed closely to identify 

undesired consequences of off-target ERO1α complex inhibition.

Inhibition of PDIA1 has been linked to many diseases and a number of inhibitors have been 

discovered. In more recent years, PDIA1 has been studied in the context of cardiovascular 

diseases, particularly in thrombus formation mechanisms (Cho, Furie, Coughlin, & Furie, 

2008; Jasuja, et al., 2012), but is also linked to cancer (Xu, et al., 2014), neurodegenerative 

diseases (Uehara, et al., 2006), diabetes (Rajpal, et al., 2012), and viral entry (Stolf, et al., 

2011). Polymorphisms in P4HB have been linked to Cole Carpenter syndrome 

(Porntaveetus, Theerapanon, Srichomthong, & Shotelersuk, 2018). PDI overexpression has 

been linked to several cancers, including glioblastoma, lymphoma, kidney, ovarian, prostate 

and lung cancers (Xu, et al., 2014). In highly secretory cancers such as multiple myeloma, 

PDI inhibitors have been particularly effective (Robinson, et al., 2018; Vatolin, et al., 2016). 

A broad class of electrophilic compounds have been identified that target the PDIA1 active 

site cysteines (Cole, et al., 2018; Kyani, et al., 2018; Xu, et al., 2012). PDIA1 inhibitors that 
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do not bind in the active site are in high demand, likely because these types of inhibitors are 

more selective for PDIA1 inhibition. Furthermore, a well-designed b’ domain inhibitor has 

the potential to block the ERO1α-PDIA1 interaction (Zhang, et al., 2019). PDIA1 has 

multiple binding sites, including the substrate-binding pocket in the b’ domain and hormone 

reservoirs for estradiol and TH hormone (Primm & Gilbert, 2000). Bepristat 1a binds in the 

b’ substrate binding pocket and exhibits antithrombotic properties (Bekendam, et al., 2016). 

Furthermore, BAP2, a chalcone-containing PDIA1 and PDIA2 inhibitor, was reported to 

bind in a pocket in the b’xa’ domain (Yang, et al., 2019). Additionally, isoquercetin, in 

Phase II clinical trials to decrease thrombosis in at risk advanced cancer patients (Bekendam, 

et al., 2016; Zwicker, et al.), and analogues bind in the b’x domain (Lin, et al., 2015). 

CRISPR/Cas9-mediated PDIA1 knockout prevents ROS production induced by 

lipopolysaccharide (LPS) and inactivates the NF-κB pathway (Xiao, et al., 2018). PDIA1 

has been linked to a major source of ROS, Nox (Laurindo, et al., 2008), and PDIA1 

overexpression leads to an increase in ROS levels via increased Nox activity (Gimenez, et 

al., 2019; Santos, Stolf, et al., 2009). Furthermore, ROS production by PDIA1 in leukocytes 

was found to be redox-dependent; oxidized PDIA1 stimulated ROS production, whereas 

reduced PDIA1 did not (de A. Paes, et al., 2011). Studies have not yet demonstrated whether 

b’ domain inhibitors of PDI prevent ERO1α interaction.

7. Conclusions

Roughly 25 % of intracellular ROS originate from the ER. Thus, the ER is a critical, yet 

underrepresented ROS-producing organelle. Most of the generated ROS remain within the 

organelle, without leaking out, and are reduced by high concentrations of ER antioxidants 

(Tu & Weissman, 2004). Furthermore, during the unfolded protein response, the ER is 

resistant to redox imbalances, supporting that ROS do not leak from the ER (Avezov, et al., 

2013). However, increased ROS levels are observed in cells overexpressing ERO1, and, in 

some disease states, ROS leakage may occur (Yang, et al., 2018). Thus, ROS remain critical 

signaling molecules in the ER. Increasing evidence (including results presented in this 

paper) demonstrates that ERO1α expression correlates with survival and is upregulated in 

several cancers, despite the existence of compensatory oxidative folding pathways in the 

cell. ERO1 function is essential in yeast systems; however, mammalian cells can survive 

ERO1 knockout, indicating redundant pathways for disulfide formation. This provides an 

opportunity to develop tumor-selective inhibitors, as normal cells may have the mechanisms 

to cope with ERO1 inhibition, while tumor cells overexpressing ERO1 may suffer. As 

interest in developing ERO1 inhibitors grows, more selective inhibitors are needed as probe 

molecules. The discovery that the PDI-ERO1α interaction is critical for cervical cancer 

progression validates the development of inhibitors with anticancer potential.

Overall, overexpression of ERO1α suggests cancer cells depend on its expression and dual 

inhibition of ERO1 and PDI may be a lethal combination in several diseases. However, the 

field has lacked selective ERO1 inhibitors to explore inhibition in in vivo disease models. 

Selective ERO1 inhibitors may be able to discriminate between cancerous cells and healthy 

cells because of the reliance of cancer cells on ERO1 expression. Furthermore, our 

bioinformatics analysis demonstrated that ERO1 inhibitors may be effective in lung cancer, 

uncovering a potential avenue of therapeutic value to be explored. Thus, this space 
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represents novel opportunity with enormous potential for the development of first-in-class 

inhibitors of ERO1α.
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Abbreviations:

ATF6 activating transcription factor 6

Cmap Connectivity Map

CHOP C/EBP homologous protein

EMT epithelial-to-mesenchymal transition

ER endoplasmic reticulum

ERAD ER-associated degradation

ERO1 endoplasmic reticulum oxidase 1

ERp endoplasmic reticulum protein

ESCA esophageal carcinoma

FAD flavin adenine dinucleotide

FBXO2 F-box only protein 2

GBMLGG glioma

GO gene ontology

GPX glutathione peroxidase 8

GSEA Gene Set Enrichment Analysis

GSH reduced glutathione

GSSG oxidized glutathione

HCC hepatocellular carcinoma

HEXIM1 hexamethylene bisacetamide inducible 1

HIF1α hypoxia-inducible factor 1α

HNSC head and neck squamous cell carcinoma
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GRP78 78 kDa glucose-regulated protein

IGF1R insulin-like growth factor 1 receptor

IL6 interleukin 6

IP3R inositol 1,4,5-triphosphate-receptors

IRE1α inositol-requiring protein 1α

JAK Janus kinase

KIRP kidney renal papillary cell carcinoma

KW Kruskal-Wallis

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma

MAM mitochondrial-associated membrane

P4HA1 prolyl 4-hydroxylase subunit alpha-1

P4HB protein disulfide isomerase A1

PAAD pancreatic ductal adenocarcinoma

PDI protein disulfide isomerase

PERK RNA-like ER kinase

PRDX4 peroxiredoxin 4

PRKCQ Protein Kinase C theta isoform

ROS reactive oxygen species

STAT3 signal transducer and activator of transcription 3

STRING Search Tool for the Retrieval of Interacting Genes

TCGA The Cancer Genome Atlas

TXNDC5 thioredoxin domain-containing protein 5

UPR unfolded protein response

VEGF vascular endothelial growth factor
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Fig. 1. 
General ROS production in the cell cytoplasm, mitochondria and ER. The various types of 

ROS are generated based on cell requirements and extracellular stimuli. Mitochondria and 

ER are the two major organelles that control ROS signaling.
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Fig. 2. 
The ER (pink) is an oxidizing environment, maintained by redox sensor glutathione (GSH/

GSSG), with a reduction potential much larger than that of the cytoplasm (ER ε: −170 to − 

185 mV; cytoplasm ε: −280 to −320 mV). The oxidizing environment promotes nascent 

protein folding and disulfide bond formation. ERO1 is a key mediator of disulfide bond 

formation in the ER. Disturbed protein folding may cause ER stress and increased ER ROS 

production, further affecting the mitochondrial and cellular metabolism. Reduced 

polypeptides are oxidized by PDI, which transfers its electrons to ERO1. ERO1 is reoxidized 

by oxygen and produces H2O2. H2O2 is reduced through various mechanisms in the ER 

including catalase, glutathione peroxidases (GPX7 and GPX8), peroxiredoxin 4 (PRX4), and 

ascorbate peroxidase (APX). Background image created in Blender 2.79.
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Fig. 3. 
Structures of ERO1 and PDI. A) Hyperactive ERO1α (3AHQ) (Inaba, et al., 2010), with 

FAD moiety represented as a stick model. Blue spheres represent active site cysteines. 

Black, dark gray and light gray spheres indicate structural disulfides. B) A schematic of the 

disulfide bonds of ERO1α, ERO1β, and ERO1p (blue line - active site disulfides, pale 

orange line - flexible loop shuttle disulfides, black line - structural disulfides, dashed red line 

- regulatory cysteines (inactive ERO1), green line - auxiliary regulatory disulfides). ERO1p 

is a Saccharomyces cerevisiae homolog. C) Reduced PDI (4EKZ) is predicted to bind 

ERO1α via the substrate-binding pocket in the b’ domain (circled in magenta). Active site 

cysteines are depicted in yellow.
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Fig. 4. 
ER stress upregulates ERO1 via CHOP expression. ER stress and the unfolded protein 

response activate membrane-bound PERK. PERK phosphorylates eukaryotic initiation factor 

2α (eIF2α), which leads to induction of CHOP. CHOP expression promotes ER stress by 

inducing ERO1 and GADD34. ERO1α expression increases ROS levels in the ER, leading 

to hyperoxidation and an increase in misfolded proteins. Additionally, CHOP downregulates 

Bcl-2 to promote apoptosis.
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Fig. 5. 
Pan-disease mRNA expression of ERO1A and ERO1B across 33 TCGA diseases. Z-scores 

were calculated per patient per disease. The majority of patients across all diseases show 

higher than average expression (z-score = 0) of ERO1A. Adrenocortical carcinoma (ACC), 

bladder urothelial carcinoma (BLCA), breast invasive carcinoma cohort (BRCA), cervical 

squamous cell carcinoma and endocervical adenocarcinoma (CESC), cholangiocarcinoma 

(CHOL), colon adenocarcinoma (COAD), lymphoid neoplasm diffuse large B-cell 

lymphoma (DLBC), esophageal carcinoma (ESCA), glioblastoma multiforme (GBM), head 

and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal 

clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), acute myeloid 

leukemia (LAML), brain low-grade glioma (LGG), liver hepatocellular carcinoma (LIHC), 

lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), mesothelioma 

(MESO), ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), 

pheochromocytoma and paraganglioma (PCPG), prostate adenocarcinoma (PRAD), rectum 

adenocarcinoma (READ), sarcoma (SARC), skin cutaneous melanoma (SKCM), stomach 

adenocarcinoma (STAD), testicular germ cell tumors (TGCT), thyroid carcinoma (THCA), 

thymoma (THYM), uterine corpus endometrial carcinoma (UCEC), uterine carcinosarcoma 

(UCS), uveal melanoma (UVM).
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Fig. 6. 
Analysis of ERO1α in cancer. A) Significant reduction in survival is observed for patients 

with high expression of ERO1α in glioma. B) ERO1A mRNA expression is significantly 

higher in more aggressive GBM gliomas than LGG. C) Significant reduction in survival is 

observed for patients with high ERO1A expression in KIRP. D) ERO1A mRNA expression 

is significantly higher in higher stages of KIRP. E) Significant reduction in survival is 

observed for patients with high ERO1A expression in LUAD. F) ERO1A mRNA expression 

is significantly higher in higher stages of LUAD. G) Significant reduction in survival is 

observed for patients with high ERO1A expression of in PAAD. H) ERO1A mRNA 

expression is significantly higher in increasing grades of PAAD. Kruskal-Wallis (KW) and 

survival analysis statistics were calculated using the R statistical programming language 

(Gravendeel, et al., 2009; Madhavan, et al., 2009).
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Fig. 7. 
Common gene sets enriched for genes that are co-expressed with ERO1A. A) Gene set 

enrichment analysis (GSEA) was used to identify enriched pathways with genes that are co-

expressed with ERO1A. A Chow-Ruskey diagram shows overlap of significant gene sets 

correlated with ERO1A expression within LUAD, GBMLGG, PAAD, and KIRP TCGA 

diseases. Fourteen gene sets commonly enriched among the four diseases are shown in the 

heatmap. B) GSEA was used to identify enriched pathways with genes that are correlated 

with ERO1α. Heatmap coloring indicates normalized enrichment score (NES). C) GSEA 

running sum statistic visualizations are shown for the Hallmark gene set, Hypoxia, that was 

significantly enriched in GBMLGG, KIRP, LUAD, and PAAD TCGA diseases. All common 

gene sets were Hallmark except for the KEGG “Small Cell Lung Cancer” gene set. 

GSEAv2.2.3 was used with v6 gene sets sourced from MSigDB. 10,000 gene set 

permutations were performed using weighted mode scoring and Pearson metric 

(Subramanian, et al., 2005). Only genes with evidence of expression in > 50 % of a disease 

patient population were considered.
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Fig. 8. 
A) Chow-Ruskey diagram shows overlap of the top 100 genes correlated with ERO1A 
expression within GBMLGG, KIRP, PAAD, and LUAD TCGA diseases. B) P4HA1 was one 

of the top co-expressed genes in common across GBMLGG, KIRP, PAAD, and LUAD. 

Gene log2RSEM expression values are shown in scatter plots.
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Fig. 9. 
GO pathways associated with top 100 genes correlated with ERO1 expression in TCGA 

glioma generated by ClueGO. Terms with Bonferroni corrected p values < 0.05 are shown.
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Fig. 10. 
Highly connected CMap perturbagens reveal potential genes and signaling pathways with 

which ERO1α is involved in A549 and HCC515 cell lines. A) Eight classes of compounds 

are shared between A549 and HCC515 cell lines among the top 50 positively connected 

compound perturbagens. B) Select compound perturbagens with high connectivity score (≥ 

+90) in two lung cancer cell lines. C) Four gene KD perturbagens are shared between two 

cell lines among the top 50 positively connected hits. D) Select gene KD profiles with high 

connectivity score (≥ +90) in two lung cancer cell lines. P4HB overexpression is included 

since it is positively correlated with ERO1A knockdown in the HCC515 cell line.
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Fig. 11. 
STRING analysis of protein interactions with ERO1L. ERO1LB, ERO1-like protein beta; 

ERP29, endoplasmic reticulum resident protein 29; FBXO2, F-box only protein 2; HSPA5, 

78 kDa glucose-regulated protein; INS, insulin; P4HB, protein disulfide isomerase A1; 

PDIA3, protein disulfide isomerase A3; PDIA4, protein disulfide isomerase A4; PDIA6, 

protein disulfide isomerase A6; TXNDC5, thioredoxin domain-containing protein 5.
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Fig. 12. 
Reported ERO1 inhibitors
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