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Abstract

Extracellular acidification is a well-known driver of tumorigenesis that has been extensively 

studied. In contrast, the role of endosomal pH is novel and relatively unexplored. There is 

emerging evidence from a growing number of studies showing that the pH of endosomal 

compartments controls proliferation, migration, stemness, and sensitivity to chemo-radiation 

therapy in a variety of tumors. Endosomes are a crucial hub, mediating cellular communication 

with the external environment. By finely regulating the sorting and trafficking of vesicular cargo 

for degradation or recycling, endosomal pH determines the fate of plasma membrane proteins, 

lipids, and extracellular signals including growth factor receptors and their ligands. Several critical 

regulators of endosomal pH have been identified, including multiple isoforms of the family of 

electroneutral Na+/H+ exchangers (NHE) such as NHE6 and NHE9. Recent studies have shed light 

on molecular mechanisms linking endosomal pH to cancer malignancy. Manipulating endosomal 

pH by epigenetic reprogramming, small molecules, or nanoparticles may offer promising new 

options in cancer therapy. In this review, we summarize evidence linking endosomal pH to cancer, 

with a focus on the role of endosomal Na+/H+ exchangers and how they affect the prognosis of 

cancer patients, and also suggest how regulation of endosomal pH may be exploited to develop 

new cancer therapies.
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Introduction

Dysregulation of cellular pH is an established hallmark of malignancy [1–5]. In normal, 

differentiated cells, intracellular cytoplasmic pH is maintained at ~7.2 while extracellular pH 

stays at ~7.4. In contrast, cancer cells function in alkaline cytoplasmic pH conditions greater 

than 7.4 and hyperacidic extracellular pH of ~6.7–7.1 [1]. This reversal of the pH gradient 

between cytoplasmic and extracellular milieu promotes malignant phenotypes. High 

cytoplasmic pH is permissive to mitotic and meiotic re-entry in cells, and bypasses cell cycle 

checkpoints to promote cancer cell proliferation. Elevated cytoplasmic pH also helps cancer 

cells evade apoptosis since programmed cell death requires low cytoplasmic pH [6, 7]. In 

addition, the alkaline intracellular environment fosters genomic instability, which drives 

cancer evolution and therapeutic resistance by the generation of new subclones that establish 

the hierarchical organization of a tumor. Elevated H+ extrusion has been proposed as a driver 

of the metabolic shift toward aerobic glycolysis, well known as the Warburg effect [8]. 

Furthermore, the acidic extracellular microenvironment in cancer promotes the expression of 

stem cell markers, angiogenic factors and hypoxia response factors enhancing tumor 

aggressiveness and angiogenic potential [9–11]. In malignant cells, a change in activity or 

localization of plasma membrane transporters favors tumor cell migration and metastasis. 

There are numerous reviews that discuss the oncogenic consequences of the transport of H+, 

or their chemical equivalents HCO3
− and OH−, at the plasma membrane [1–3, 12].

In contrast to the extensive literature on the oncogenic role of extracellular pH, the impact of 

pH homeostasis within intracellular secretory or endo-lysosomal compartments on cancer 

growth, metastasis and drug resistance is only beginning to be appreciated. In the past 

decade, there have been several mechanistic studies that show the importance of endosomal 

pH in cancer phenotypes such as proliferation, migration, and stem cell-like properties [13–

15]. Genomic data implicate key players in endosomal pH regulation in cancer survival 

prognosis and response to chemoradiation therapy. Proteins that play crucial roles in 

regulating the endosomal milieu and impact endosomal trafficking may be useful targets for 

the development of novel therapeutic agents. In this review, we evaluate the growing 

literature on the relevance of endosomal pH in cancer initiation, progression and metastasis, 

with particular emphasis on the role of organellar Na+/H+ exchangers.

Endosomes as a Hub in Cancer Signaling

The secretory pathway and the endo-lysosomal system handle the post-translational 

trafficking of proteins that exit the endoplasmic reticulum (ER) and the Golgi apparatus to 

and from the plasma membrane. This tubulo-vesicular network of compartments is 

responsible for the delivery, removal and inter-organellar shuttling of surface receptor 

proteins and their ligands that are critical to the dynamic process of cell-microenvironment 

communication. The last decade of cancer research has revealed cancer to be a collaborative 

entity that actively communicates with the surrounding microenvironment, rather than an 

autonomous chunk of multiplying cells. New players within the cancer microenvironment 

include cancer-associated fibroblasts and immune cells such as macrophages that 

communicate with each other and the tumor cells by paracrine signaling. Pre-clinical studies 

have begun to highlight potential, novel cancer therapies that target the critical 
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communications between cancer cells and their microenvironment. Due to their important 

role in regulation of cell-microenvironment communication, endosomes have emerged as an 

important hub in cancer cell signaling [16, 17].

At the plasma membrane, signaling is initiated by the binding of growth factors, cytokines, 

peptide agonists and other ligands to their cognate receptors to mediate cancer cell survival, 

self-renewal, proliferation or migration. Termination of signaling typically occurs by 

endocytosis, with pH-dependent dissociation of ligands from their receptors occurring 

within the acidic milieu of the endosomal lumen, followed by delivery of membranes to the 

lysosome for receptor degradation. Alternatively, the receptor-ligand complex may be 

retrieved from early endosome for rapid return to the cell surface, or sorted to perinuclear 

recycling compartments for slower delivery to the plasma membrane [18]. Thus, endosomal 

trafficking could decide the fate of cancer cells by termination or prolongation of oncogenic 

signaling. In the case of the epidermal growth factor receptor (EGFR), one of many receptor 

tyrosine kinases (RTK) that play a central role in carcinogenesis, the magnitude of signaling 

has been clearly linked to endocytic fate by extensive studies [16, 17].

Endosomes may themselves serve as signaling platforms for the recruitment of scaffolding 

proteins by bringing the activated G protein coupled receptors (GPCR) or RTK in contact 

with localized pools of adaptors or effector molecules to control both the duration and 

spatial distribution of signaling. For example, endosomal AKT kinase phosphorylates 

GSK3β via the APPL1 scaffold, whereas plasma membrane AKT preferentially activates the 

TOR pathway through phosphorylation of TSC2 [19]. Altered endocytic trafficking in 

cancer cells is crucial for the maintenance and metastasis of tumors and has been 

comprehensively reviewed [17, 18, 20].

The Critical Role of pH in Endosomal Function

Given the importance of the endosome as a hub for trafficking, recycling and turnover of 

cellular cargo in tumor cells, endosomal pH emerges as a critical, but a largely under-

explored topic of investigation that could reveal new therapeutic opportunities in cancer. For 

normal function, the secretory pathway and endo-lysosomal system absolutely requires a pH 

gradient of increasing acidification of the luminal compartment from the Golgi through the 

trans Golgi network (pH 6.7 to 6), and from early (pH ~6.5) to late (pH ~5.5) endosomes 

and lysosomes (pH ~4.5)[21]. A shift in the tightly regulated compartmental pH disrupts a 

wide range of downstream processes such as protein sorting, quality control and 

degradation, activation of proteases, and exocytosis [13, 22]. In addition to these direct roles, 

endosomal pH is also inextricably linked to the flux of other ions such as Na+, K+, Cl−, 

Cu2+, Zn2+ and Ca2+ that are critical for signaling and biogenesis of enzymes. Movement of 

these ions in and out of the endosomes occurs through various ion transporters, pumps and 

channels that may be powered by the proton gradient established by the V-type H+-ATPase, 

or regulated by luminal pH.

The machinery underlying vesicle budding, targeting and fusion is orchestrated by small 

GTPases that appear to use endosomal pH as cues for critical sorting decisions. Thus, the 

recruitment of Arf1 and Arf6 small GTPases, and their guanine nucleotide exchange factor 
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(GEF) ARNO, to the endosomal membrane is pH-dependent and can be uncoupled by 

disruption of the endosomal pH gradient [23]. However, the molecular mechanism for 

sensing luminal pH and transmitting this information to the cytoplasmic face of the 

endosome remains largely mysterious. Marshansky and colleagues have proposed that the 

membrane-embedded VATPase a2 subunit may act as pH sensor, through histidine-rich 

intra-endosomal loops or termini [24] and that interactions between the V-ATPase subunit 

and GEFs may modulate GDP/GTP exchange activity [25].

In the following sections, we will discuss the key players involved in the intricate regulation 

of endosomal pH and how they may contribute to cancer initiation, progression, metastasis, 

and patient outcome.

Regulators of Endosomal pH

A plethora of ion transporters and channels have been implicated in the regulation of 

endosomal pH throughout different, endosomal compartments. Among these, the best known 

are the V-type H+-ATPase [22], and isoforms of Chloride transporters (CLCs) [22, 26], and 

Sodium-Hydrogen (Na+/H+) exchangers (NHEs) [27] that collaborate to finely tune 

compartmental pH as depicted in Figure 1.

(i) Proton pump:

The V-type H+-ATPase is an evolutionarily conserved pump that couples ATP hydrolysis 

within the large cytosolic domain to the uphill, transmembrane movement of protons into the 

lumen. However, the movement of positively charged protons generates an opposing 

membrane potential that will cause the V-ATPase to stall, hindering the build up of protons 

required to acidify the compartmental lumen. The electrical potential can be shunted by 

outward movement of cations, such as K+, or inward movement of anions, such as Cl−, 

allowing the formation of a pH (i.e., H+ chemical) gradient. Increased expression and 

relocation of the V-ATPase to the plasma membrane in cancer cells has been linked to 

oncogenic phenotypes including Warburg effect, autophagy, drug resistance and regulation 

of signaling pathways, and has been reviewed [28, 29].

(ii) Chloride transporters:

Members of the CLC family comprise Cl− channels as well as Cl−/H+ exchangers, including 

isoforms CLC3–7 that shunt the electrical potential generated by the VATPase to acidify the 

endo-lysosomal lumen [30]. Cl− flux is critical for endocytosis in renal tissue [31] where 

defects in CLC-5 (gene name CLCN5) underlie Dent’s disease characterized by proximal 

tubule dysfunction and low molecular weight proteinuria [32, 33]. Consistent with their 

essential role in pH regulation, loss of function mutations in the chloride transporter isoform, 

CLC-7 (gene name CLCN7), phenocopy V-ATPase defects in the fatal disorder, 

osteopetrosis in which defective acidification by osteoclasts results in failure to remodel 

bone [34]. Thus, H+ and Cl− fluxes within the endo-lysosomal system are tightly 

intertwined, and they both play critical roles in cargo trafficking, vesicular transport and 

compartment maturation [35]. The CLC3 isoform has been implicated in several cancer 
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types, including breast, cervical and prostate cancer, where it promotes drug resistance and 

metastatic phenotypes [36].

(iii) Cation Proton Exchangers:

Na+(K+)/H+ exchange is remarkably rapid, with transport rates of 1,500 ions per second [37] 

so that small changes in activity can cause large pH shifts within the confines of the 

endosomal lumen. Several members of the SLC9A/NHE family are major contributors to pH 

homeostasis within secretory and vesicular compartments. Based on evolutionary origin and 

sequence similarities, the family is subdivided into two major groups: the plasma membrane 

and intracellular subgroups [38]. The plasma membrane subgroup consists of isoforms 

NHE1–5, which are coupled to the Na+ gradient established by the Na+,K+-ATPase, whereas 

members of the intracellular subgroup, NHE6–9, are driven by the vesicular V-type H+ 

pump. Although belonging to the plasma membrane subgroup, both NHE3 and NHE5 have 

significant presence in endocytic compartments where they exchange luminal Na+ ions for 

cytoplasmic H+, contributing to luminal acidification [39, 40]. The existence of this 

additional machinery for luminal acidification, along with V-ATPases, may explain rapid re-

acidification of synaptic vesicles upon endocytosis with experimentally measured time 

constant of ~0.4s [41] or 4–5s [42] in cultured hippocampal neurons. NHE3-mediated 

acidification was shown to be important for receptor-mediated endocytosis of albumin in the 

first part of the endocytic pathway in a renal epithelial cell model [40]. Similarly, NHE5 is a 

potent acidifier of recycling endosomes in rat pheochromocytoma PC12 cells, and 

attenuation of NHE5 expression via shRNA decreased the steady state level of Tropomyosin 

Receptor Kinase A (TrkA) on the plasma membrane [43].

Intracellular members of the NHE superfamily are distributed in the Golgi (NHE8), trans-

Golgi network (NHE7), recycling (NHE9) and early (NHE6) endosomes. Compartment-

specific localization of these transporters appears to be linked to their binding partners that 

include members of the secretory carrier membrane protein (SCAMP), caveolins and 

receptor for activated protein C kinase (RACK1) [44–46]. Unlike the strict Na+-selectivity of 

the plasma membrane group, intracellular NHE can transport K+ as well as Na+ ions [47, 

48], thereby taking advantage of the abundance (~140 mM) of K+ in the cytoplasm. Thus, 

the prevailing pH and K+ gradients across the vesicular membrane favor luminal H+ efflux in 

exchange for K+ loading by NHE6 and NHE9 (Figure 1). This is consistent with the 

majority of studies, which report that NHE6, NHE7 and NHE9 alkalinize the compartmental 

lumen [13, 47, 49–53], in contrast to the “plasma membrane” subtype isoforms, NHE3 and 

NHE5 that acidify endosomal lumen [40].

Endosomal pH in Cancer Progression and Metastasis

Cancer is a multi-step process which begins with the accumulation of 2–3 driver mutations 

[54] en route to full transformation [55]. For metastasis to occur, primary tumor cells locally 

invade the surrounding tissue, then intravasate into the blood stream to eventually 

extravasate to initiate secondary tumors, often at a distant site [56]. Considering that most 

cancer patients succumb to this final step in cancer progression, there is an urgent need to 

understand the biology underlying metastasis and to uncover molecular targets to slow or 
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prevent metastasis. There is evidence that organellar pH is altered during cell 

transformation: for example, fibroblasts transformed with ras oncogene displayed more 

alkaline lysosomes [57]. It has long been appreciated that the papillomavirus protein E5 

mediates cellular transformation by binding to, and inhibiting the V-ATPase, consequently 

slowing endosomal acidification, neutralizing Golgi pH and alkalinizing lysosomes [58]. 

Intriguingly, extracellular vesicles known as large oncosomes are shed from primary 

glioblastoma cells. These oncosomes, carrying VATPase V1G1 subunit and homeobox 

proteins, require active V-ATPase activity to mediate cell-cell signaling and tumor 

reprogramming of the non-neoplastic environment [59].

Acidic metabolic by-products are produced and accumulate due to the hypoxic tumor 

microenvironment. Along with the evolutionary selection of cancer-driving mutations, the 

acidic tumor microenvironment favors and drives cancer progression [1], particularly in local 

invasion and metastasis [5], genetic instability [60–64], cancer stem cells [9], epigenetic 

alterations [64], proliferation [1, 65], and survival [66–68]. Acidic extracellular pH between 

6.4 and 6.8 was found to increase lysosome size and promote anterograde trafficking to the 

cell periphery resulting in increased secretion of proteolytic enzymes [69, 70]. Interestingly, 

the anterograde trafficking of the lysosomes is inhibited with treatments with broad Na+/H+ 

Exchanger (NHE) inhibitors, 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) and troglitazone, 

suggesting a potential involvement of endosomal NHE isoforms, NHE6 and NHE9 [69] and 

consistent with recent pre-clinical and clinical studies implicating these endosomal NHE 

isoforms to local invasion [13] and metastatic potential in cancer [71].

Molecular mechanisms linking endosomal pH to cancer

In recent years, significant progress has been made towards elucidating the cellular 

processes and signaling pathways that link endosomal pH, and particularly dysregulated 

expression or activity of intracellular NHE isoforms to oncogenesis and chemoresistance. 

These studies are invaluable in revealing potential drug synergies and new molecular targets 

that could be developed for cancer therapy. Table 1 summarizes studies on intracellular NHE 

in cancer, with emerging mechanistic insights described below.

(i) Hypoxia-driven drug resistance:

Hyperacidification of the endosomal lumen promotes the partitioning of weakly basic drugs 

into endosomes and confers multidrug resistance (MDR) by preventing drug accumulation 

in the target cell or organelle, and also by facilitating exocytosis of the drug [72–74]. This 

type of resistance to therapy is intensified in an intratumoral hypoxic environment [75]. 

Examples of weakly basic drugs include the anthracyclines - for example, doxorubicin 

(Dox), mitoxantrone (Mtx), and daunorubicin (Dnr) - that exert their chemotherapeutic 

effect by damaging DNA; therefore, the effectiveness of such cytotoxic drugs requires 

accumulation inside the nucleus. In addition to genetic alterations, therapeutic resistance to 

anthracycline drugs can arise from physical and chemical changes in the tumor 

microenvironment, such as extracellular pH, that prevent accumulation of the drugs in 

cancer cells [76–78]. Lucien et al. showed that hypoxic conditions of 1% oxygen cause 

hyperacidification of the endosomal lumen [52, 79]. This caused trapping of Dox in the 
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endosomes (Figure 2A), diverting the drug from the nucleus and resulting in four to eight-

fold higher drug resistance in breast cancer MDA-MB-231 and fibrosarcoma HT-1080 tumor 

cells [52]. Hypoxia-induced drug resistance was reversed when the cells were treated with 

chloroquine or V-ATPase inhibitor (Bafilomycin A1) to alkalinize the endosomal 

compartments, consistent with a causal role for endosomal pH in drug resistance. The 

number of endosomes and lysosomes did not change in hypoxia, consistent with a role for 

altered luminal pH in drug resistance, rather than changes in the relative population of endo-

lysosomal compartments. Lucien et al. found that silencing NHE6 but not NHE9 increased 

endosomal drug sequestration, even under normoxia. We note that co-localization of Dox 

with transferrin within 20 min of uptake is consistent with the early endosomal function of 

NHE6 and suggest that Dox sequestration is crucially affected by the pH of the early 

endosomal compartment.

The hypoxia-induced reduction in endosomal pH was traced to a relocalization of NHE6 

from endosomes to plasma membrane, without alteration in NHE6 transcript and protein 

level [52]. Activation of protein kinase C (PKC) by hypoxia recruited the scaffold protein 

RACK1 (receptor for activated C Kinase 1), previously shown to bind to the C-terminal 

cytoplasmic domain of NHE6 [44]. Accordingly, treatment of cells with the NHE6527−588 

peptide from the RACK1 binding region was effective in disrupting the interaction between 

RACK1 and NHE6, to abrogate Dox sequestration in hypoxic condition. The potential for 

NHE6527−588 peptide as a therapeutic agent in enhancing Dox efficacy was demonstrated in 

a human cancer cell ex-ovo chorioallantoic membrane (CAM) xenograft model in live 

chicken embryos [52]. This study presented a previously unknown role of NHE6 in cancer 

and suggested a novel, molecular mechanism for hypoxia-driven, endosomal pH-dependent 

drug resistance [79].

(ii) Response to chemoradiation therapy:

Consistent with high amplification of SLC9A9 (Figure 3), NHE9 was found to be a 

prognostic predictor for poor survival in esophageal squamous cell carcinoma [80]. 

Esophageal cancer is the ninth most common cancer in the world based on the collected data 

from 2018, causing 572,034 new cases and 508,585 deaths worldwide [81]. The highest 

rates of incidence for esophageal cancer occur in eastern Asia, southern Africa, and eastern 

Africa [81]. Esophageal cancers can be divided into two main histological subtypes: 

esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EA). 

Despite the discoveries of new therapeutic agents for ESCCs, patient prognosis has remained 

poor with the five-year survival rate of less than 20% [82]. Using overexpression and 

shRNA-mediated knockdown strategies, Chen et al. [83] demonstrated a role for NHE9 in 

increased resistance to apoptosis induced by chemotherapy agents, including cisplatin 

(DNA-damaging) and vinorelbine (microtubule inhibitor), and X-ray radiation. The 

increased chemoradiation resistance with NHE9 expression was also shown in xenograft 

model in mice. The pro-survival function of NHE9 was attributed to the interaction with 

RACK1 through a conserved region in the C-terminal tail (Figure 2B). RACK1 is known to 

suppress apoptosis by increasing p-Akt and p-Src, and Chen et al. showed that NHE9 

increases anti-apoptotic and pro-survival pathways such as p-GSK3b, Bcl-2, β-catenin, p-

Akt and p-Src to inhibit cleavage of PARP or Caspase-3. The NHE9-RACK1 interaction was 
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weakened following chemoradiation treatment, presumably activating pro-survival pathways 

from RACK1, although the mechanism linking NHE9 activity and endosomal pH to RACK1 

in mediating pro-survival pathways remains to be determined.

(iii) Aggressive tumor growth and migration:

Repositories of patient data are a useful starting point to focus on the role of individual gene 

loci in specific cancers and their molecular subtypes. Glioblastoma patients with elevated 

NHE9 expression were associated with decreased survival and increased resistance to 

chemoradiation therapy by Kaplan-Meier analysis of data from The Cancer Genome Atlas 

(TCGA). Kondapalli et al. noted that NHE9 transcript was elevated in glioblastoma patients, 

especially in the aggressive mesenchymal subtype, compared to non-malignant neural stem 

cells [13]. Using patient derived glioblastoma cell lines they demonstrated that up regulated 

expression of NHE9 significantly alkalinized endosomal lumen, to pH ~6.5. Elevated 

endosomal pH blocked lysosomal degradation of EGFR, increased persistence of EGFR on 

the tumor cell surface and prolonged downstream signaling by p-AKT and p-ERK, driving 

malignant phenotypes such as increased tumor proliferation and migration (Figure 2C). 

Similarly, high levels of NHE9 expression correlated with increased metastasis and worse 

prognosis in colorectal cancer patients, where a positive correlation with EGFR signaling 

was also noted [71]. Post-translational oncogenic activation of EGFR was dependent on 

alkalinization of endosomal pH because autism-associated loss-of-function mutations, 

S438P and L236S, failed to phenocopy wild type NHE9 in glioblastoma cells. The increased 

aggressiveness of tumor due to higher NHE9 level was confirmed in orthotopic patient-

derived xenograft (PDX) models [13].

The study by Kondapalli and co-workers provided a molecular explanation of the role of 

NHE9 in a human malignancy, uncovering an unexplored link between endosomal pH 

dysregulation and glioblastoma. However, the underlying reason for hyperexpression of 

NHE9 in brain tumors remained unanswered. Zubieta et al. followed up by demonstrating 

that microRNA-135a with a seed sequence targeting 3’-UTR of SLC9A9 was down 

regulated in glioblastoma cell lines, compared to normal human brain tissue, resulting in 

increased NHE9 expression [84]. Functional restoration of miR-135a by ectopic expression 

in GBM cell lines resulted in down regulation of SLC9A9 transcript, acidification of 

endosomal pH and decreased GBM cell proliferation and migration. Colocalization of 

intracellular EGFR with the lysosomal marker LAMP1 was enhanced by miR-135a, 

suggesting that decreased endosomal pH due to down regulation of NHE9 facilitated 

lysosomal degradation of EGFR.

The importance of endosomal pH in the regulation of receptor trafficking and degradation in 

tumor glioma cells was also observed in the context of NHE5, with intriguingly opposite 

effects to that of NHE9, highlighting the exquisite specificity of NHE isoforms in targeting 

distinct trafficking pathways. The expression of NHE5 is greatly enriched in neurons, and 

although not detected in glia-rich regions, was found to be elevated in the rat C6 glioma cell 

line where it partially colocalized with some endosomal markers, including TfR and Rab11 

[14]. Fan et al. showed that NHE5 knockdown and treatment with the V-ATPase inhibitor 

bafilomycin had independent and additive effects in alkalinizing TfR-positive recycling 
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endosomal compartments by small, but significant amounts of ~0.2–0.3 pH units. Surface 

levels of the receptor tyrosine kinase MET decreased with NHE5 knockdown, with 

concomitant reduction in downstream activation by hepatocyte growth factor (HGF) of 

PI3K/Akt pathway and activities of critical regulators of cytoskeleton remodelers such as the 

Rho family small GTPase protein, Rac1, and CDC42 (Figure 2D). Decreased association of 

Rac1 with the leading edge of C6 rat glioma was attributed to decreased cell migration in 

vitro and polarity in NHE5 knockdown cells [14]. In addition, Fan et al. showed that NHE5 

knockdown abrogated the recycling of MET receptor, but not Tfn receptors, whereas the 

endosome recycling inhibitor, primaquine, inhibited recycling of both MET and Tfn. 

Subsequent study from Fan et al. further showed that NHE5 increases the total level of 

EGFR and MET while abrogating the downstream signaling proteins’ activation in C6 rat 

glioma cells. The authors also demonstrated that NHE5 regulates intracellular trafficking of 

integrin 1β to enhance attachment and migration of cancer cells (Figure 4D) [85]. These 

studies provide interesting perspective to the field of endosomal pH and its contribution to 

cancer aggressiveness. Further validation of the role of NHE5 in multiple, patient-derived 

glioma cells would be useful in clarifying differences in the roles of NHE isoforms in 

glioma [86], and provide better insights on how to utilize this knowledge to benefit patients 

in clinic.

(iv) Cancer initiation and stemness:

For the past decades, the capacity of cancer stem cells (CSCs) to initiate new tumor has been 

extensively appreciated [55]. Further investigation also revealed that CSCs are major players 

in recurrence [87], metastasis[88], and chemoradiation resistance [89] of cancer. There has 

been growing interest in defining molecular factors that regulate CSCs to exploit them as 

potential therapeutic targets [87, 90]. In vitro evaluation of self-renewal and cancer initiation 

capacity of CSCs is performed by sphere- or colony-formation assay. shRNA-mediated 

knockdown of NHE9 significantly decreased the sphere-forming ability [71]. In addition, 

forced differentiation of patient-derived glioblastoma cells by serum treatment decreased the 

level of NHE9 [13], indicating that alkalinization of endosomal compartment via NHE9 

could play a critical role in stemness maintenance.

Although localized primarily in the trans-Golgi network, NHE7 also dynamically traffics 

between the endosomes and the plasma membrane, regulating the luminal pH of organelles 

[91]. Onishi et al. expressed NHE7 in a triple negative breast cancer cell line, MDA-

MB-231, and observed increased growth, invasiveness, and colony formation in soft agar, 

consistent with a potential role for NHE7 in cancer growth, metastasis, and tumorigenesis 

[92]. Although this is an intriguing result, more mechanistic studies in multiple cell lines of 

different types of malignancy still remain to be done to establish clear relevance to cancer 

patients.

Phylogenetic analysis identified NHE8 as an intracellular NHE, albeit clustering in a distinct 

subgroup, separate from NHE6, NHE7, and NHE9 [38]. Indeed, when expressed in CHO 

and HeLa cells, NHE8 localizes to mid- to trans- Golgi, and to a lesser extent in the 

endosome [47]. However, NHE8 also localizes to the apical side of the proximal tubule of 

the kidney and the intestine, playing a critical role in gastric mucosal integrity and protection 
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against bacterial infection [93, 94]. Gene disruption of NHE8 causes mice to become more 

susceptible to spontaneous colitis, dysbiosis, and increased epithelial cell proliferation [93]. 

Xu et al. showed that NHE8 is highly expressed at the colonic epithelial lining of normal 

tissue, but is absent in colorectal cancer tissue from patients [95]. NHE8 knockout mice had 

10-fold higher incidence of tumor in an inflammation-associated colon cancer model. The 

authors attributed this difference to increased number of Lrg5-expressing cells and elevated 

Wnt/β-catenin activation. Lgr5-expressing cells have been shown to be the cell of origin for 

colorectal cancer, maintaining cellular hierarchy and driving metastasis [96, 97]. These 

findings justify the need for more mechanistic studies on how NHE8 contributes to Lgr5 

levels and Wnt/β-catenin signaling.

(v) Cancer Metastasis:

It is well known that the acidic microenvironment resulting from hypoxia, increased 

interstitial pressure and the accumulation of acid metabolites is associated with regional and 

distant metastasis. For example, acidic pH was found to promote lung metastases of human 

melanoma cells in the athymic mouse model through the activation of extracellular 

proteases, including cathepsins [98]. In human metastatic breast cancer cells, the presence of 

large acidic vesicles was associated with invasion, consistent with a requirement for 

endosomal acidification for cathepsin D maturation and activation [99]. It remains to be 

determined if excessive acidification resulting from loss of NHE6 expression or increased V-

ATPase activity in early endosomes promotes secretion of extracellular proteases. On the 

other hand, alkalinization of recycling endosomes has been associated with cancer cell 

migration and metastasis. Using intracranial xenograft models of glioblastoma, NHE9 

expression increased tumor infiltration in the mouse brain [13]. A histological analysis of 

colorectal cancer in 6 patients revealed elevated expression of NHE9 in liver metastases 

[71]. More work remains to be done to determine if endosomal pH dysregulation is 

associated with specific organ metastases.

Genomic Profiling of eNHE in Cancer

(i) Genome-Wide Association Studies (GWAS):

The link between NHE9 (SLC9A9) and cancer initially arose out of large-scale genomic 

studies on patient samples, ranging from single nucleotide polymorphism (SNP) analysis to 

expression profiling. In a comprehensive molecular characterization of human colon and 

rectal cancer, whole-genome sequencing of 276 samples revealed SLC9A9 was one of 7 

most frequent targets of mutation in hypermutated cancers [100]. Picelli et al. investigated 

genome-wide linkage between chromosomal regions and familial susceptibility to colorectal 

cancer in 30 families with strong history of colorectal cancer and reported that the strongest 

linkage with colorectal cancer susceptibility was found in chromosome 3q, which included 

SLC9A9 among the top 20 cancer susceptibility genes [101]. Transcriptional down 

regulation of SLC9A9 was associated with tumor progression into hormone-refractory stage 

in prostate cancer [102], potentially through NHE9-mediated post-translational effects on 

surface expression of the androgen receptor. These studies have firmly established NHE9 as 

a strong candidate for cancer susceptibility in cancers of the gastrointestinal tract where it is 

considered a driver gene, as well as brain, breast, prostate and ovarian cancers. More 
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recently, mechanistic studies have begun to provide insight into oncogenic pathways altered 

by NHE9, described ahead.

(ii) Expression Profiling in Cancer Databases:

Analysis of patient data in The Cancer Genome Atlas (TCGA) datasets revealed SLC9A9 
and SLC9A6 expressions are relatively evenly distributed across 32 cancers, depicted in the 

order of increasing expression in Figure 3. These findings are consistent with ubiquitous 

expression of SLC9A9 and SLC9A6 across all tissues, with generally higher expression of 

SLC9A6 than SLC9A9 [103]. Robust expressions of SLC9A9 and SLC9A6 in the brain 

have been previously reported in the literature in the context of normal and psychiatric 

conditions consistent with high levels of expression in glioma patients [103–105]. Gene 

amplification events were more common in SLC9A9, especially in cervical, ovarian and 

head and neck cancers, and in lung squamous cell carcinoma (Figure 3). In contrast, 

majority of patients across all cancer types had shallow deletions in SLC9A6. For SLC9A9, 

gene amplification was observed in 14% of esophageal squamous cell carcinoma, 9% of 

cervical squamous cell carcinoma, and 6% of non-small cell lung cancer patients. On the 

other hand, the most frequently observed genetic alterations in SLC9A6 were gene 

mutations, reported in 7% of endometrial carcinoma, 3% of melanoma, and 2% of non-small 

cell lung cancer patients. Thus, genetic alterations in SLC9A9 and SLC9A6 are cancer type-

specific and isoform-specific, which should be taken into consideration when trying to target 

endosomal NHE in cancer.

(iii) Mutational Analysis:

Recurring somatic mutations in cancer have been proposed to confer selective advantage, 

such as charge-changing mutations in pH sensing [106]. Despite the cancer-specific 

enrichment of mutation incidents in SLC9A6, the overall somatic mutation frequencies for 

both SLC9A9 and SLC9A6 were comparable at 1.5% and 1.1%, respectively (Figure 4). In 

SLC9A9, the most frequent mutation, S355L, was present in four uterine endometrioid 

carcinoma and one tubular stomach adenocarcinoma patients; Interestingly, according to the 

dbPTM database (http://dbptm.mbc.nctu.edu.tw/index.php), S355 residue is a potential 

phosphorylation site [107], which may influence the function and trafficking of NHE9. 

Other post-translational modification sites that were mutated are N96Y, an N-glycosylation 

site [108, 109], and Y631*, a tyrosine phosphorylation site [107]. Mutation at R468 in the 

predicted cytosolic domain of NHE6 was observed in four patients: R468Q in one head and 

neck squamous cell carcinoma patient, R468* in one rectal adenocarcinoma patient and one 

uterine endometrioid carcinoma patient, and R468L in one cutaneous melanoma patient. 

Overall, of gene alterations in SLC9A9, 81% were missense mutations, 14% truncating 

mutations, and 4% fusion events while, in SLC9A6, 84% were missense mutations and 16% 

were truncations (Figure 4). While the pathogenicity of missense mutations remains to be 

assessed, truncating mutations within the conserved, transmembrane NHE coding region are 

likely to be detrimental to protein function and stability.

(iv) MicroRNA:

Genomic profiling of cancer samples has consistently revealed an interesting link between 

NHE6 and microRNAs (miRNA). MiRNAs are small (18–25 nucleotides), single stranded, 
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evolutionarily-conserved non-coding RNA molecules that target complementary mRNA for 

degradation in order to negatively regulate gene expression [110]. Alterations in expression 

of various miRNAs have been noted in multiple malignancies where they significantly 

correlate with patient outcomes [111]. However, their heterogeneous tissue expression and 

lack of specificity make it difficult to classify individual miRNA as tumor suppressors or 

oncogenes resulting in conflicting reports in the literature. Despite these challenges, 

SLC9A6 has emerged as a target gene of significantly altered microRNAs in neoplastic 

samples. miR-196a is one of the most significantly over-expressed miRNAs in cervical 

cancer where it targets SLC9A6 along with well-known genes involved with development 

and cellular remodeling, HOXC8 and HOXA7[111]. Another frequently altered miR-196 

family member in cancer is miR-196b which is down regulated in cervical cancer [112] and 

overexpressed in recurrent epithelial ovarian cancer cells [113], driving malignant growth 

and invasiveness. SLC9A6 is one of the top target genes of mir-196b. These findings suggest 

that the absence of NHE6 is related to tumor progression. This hypothesis is supported by a 

mechanistic study of SLC9A6 in breast cancer cells, described ahead.

Targeting endosomal pH in cancer

(i) eNHE inhibitors:

While there are currently available inhibitors that effectively target members of the plasma 

membrane NHE subtype, specific and selective inhibitors or activators against the 

endosomal NHE are lacking and urgently needed. It is possible to exploit the wide range of 

drugs already targeted against plasma membrane NHE isoforms as a starting point in 

inhibitor screening and development. Proof-of-principle experiments have illustrated the 

potential utility of targeting endosomal NHE: for example, EIPA was shown to effectively 

inhibit NHE9 and increase drug efficacy of anti-EGFR inhibitor erlotinib and reduce 

tumorsphere formation in gliobastoma models [13]. EIPA has also been used and effective to 

inhibit NHE7 and abrogate proton-loading mechanism in endocytosis [114].

(ii) Gene modifiers:

Alternatively, genetic approaches could be used to elevate or ablate NHE transcripts. 

Epigenetic modifiers such as histone deacetylase inhibitors were used to regulate endosomal 

pH by enhancing expression of NHE6 transcript in an Alzheimer disease model [115, 116]. 

Poly (beta-amino ester) (PBAE) nanoparticles that harbor positively charged amine groups 

capable of binding nucleic acids such as siRNA could be used as a non-viral delivery 

method to target isoform-selective mRNAs. Recent success has been achieved in using 

PBAE nanoparticles for combinatorial siRNA delivery to selectively target brain tumor cells, 

while sparing stroma cells in the microenvironment [117, 118].

(iii) Nanoparticles:

Kondapalli and co-workers recently exploited the endocytosis-enhancing ability of NHE9 to 

target macrophages with gold nanoparticles [119]. Selective uptake of these particles in 

NHE9-overexpressing glioblastoma cells by receptor-mediated endocytosis rendered them 

susceptible to near-infra red radiation, resulting in apoptotic death of tumor cells. 

Furthermore, the ability of macrophages loaded with gold nanoparticles to cross the blood 
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brain barrier points to the potential for nanoparticle based therapy to target brain tumors. 

Interestingly, nanoparticles could directly regulated luminal pH along the endo-lysosomal 

pathway: for example, acidic nanoparticles contain FDA-approved poly (DL-lactide-co-

glycolide) (PLGA), which is hydrolyzed rapidly to lactic acid in the endosomal lumen 

releasing protons [120, 121], offering an innovative way to acidify hyper-alkaline pH.

(iv) Weak acid/base drugs and peptides:

Another approach is to repurpose drugs that partition into the acidic endosomal lumen and 

mildly alkalinize the pH. Examples of such drugs include bepridril and amiodarone, already 

in clinical use as calcium antagonists, used to correct endosomal pH in Alzheimer disease 

models of amyloid peptide processing [122]. Lucien et al. described the use of short peptides 

to compete against RACK1 binding of NHE6 and reverse endosomal acidification [52, 79]. 

Such innovative approaches arise by exploiting newly found understanding of the basic 

mechanisms that contribute to tumor growth and drug resistance.

Remaining Challenges

Although significant advances have been made in understanding how the luminal pH of the 

secretory and endo-lysosomal pathway is regulated, new players are still being identified. 

For example, a recently discovered acid-activated chloride leak channel in endosomes may 

serve to limit vesicular acidification [123] although its role, if any, in driving oncogenic 

change has not been explored. The precise roles and interactions between endosomal NHE 

isoforms also remain to be determined. These differences may be cell type and therefore, 

cancer subtype specific. Surprisingly, both alkalinization as well as acidification of 

endosomes due to increased NHE9 and NHE5 activity respectively, has been linked to 

glioma. Early and recycling endosome pH may play distinct and potentially opposing roles 

in promoting cancer growth, invasion and chemoresistance, which need to be resolved. It is 

possible that a deviation from optimal pH regardless of the direction could be critical in 

cancer malignancies, emphasizing the importance of precisely tuned luminal pH. 

Distribution of intracellular NHE isoforms is likely to be cell and tissue specific, illustrating 

the need for more investigations with appropriate cell lines and primary cells of the tissue of 

interest in order to make the most relevant observations. Consistent with their similar, yet 

distinct subcellular localizations, NHE6 and NHE9 also have overlapping, yet non-

redundant effects on plasma membrane retention of cell surface receptors and their ligands. 

A non-biased proteomic analysis could help define these receptor pools, which could add 

specificity to future therapeutic efforts.

The oncogenic role of binding partners of the C-terminal tail of endosomal NHE proteins 

still remained to be explored. Plasma membrane NHE isoforms have been heavily studied in 

this regard, exemplified by studies showing that the C-terminal tail of NHE1 regulates 

trafficking and activity of the membrane embedded transporter domain by protein binding 

and phosphorylation [124, 125]. Similar investigations on the C-terminal tail of endosomal 

NHE isoforms and their binding partners and post-translational modifications are urgently 

needed to provide insights on their trafficking and transport function. Such additional 
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knowledge will enable us to understand the physiological regulatory mechanisms of 

endosomal NHEs and how those processes can go awry, leading to malignant phenotypes.

Conclusion

Hyperacidified extracellular pH in cancer has been highly scrutinized through mechanistic 

studies on plasma membrane transporters such as NHE1. However, changes in intracellular 

pH accompanying malignancy are just beginning to be appreciated. Endosomes have been 

recognized as a critical signaling hub in tumor cells and a busy way station for the 

trafficking, degradation, and recycling of oncogenic receptors and other cargo. Each of these 

functions is critically impacted by endosomal pH, with profound effects on patient survival 

prognosis. More studies are needed to distinguish between the oncogenic role of pH in 

different endosomal populations, and to track dynamic localization of endosomal NHE 

isoforms in malignant disease settings for insights on underlying mechanisms. We suggest 

that endosomal pH drives malignant phenotypes ranging from unregulated growth and 

migration to chemo-radiation resistance, justifying the need for further studies on endosomal 

pH regulators in various cancer types. Development of endosomal NHE-specific inhibitors 

and activators with minimal off-target effect will be critical for translating findings from 

bench to bedside.
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Figure 1. Endosomal pH is determined by a balance of proton pump and leak mechanisms.
The concerted action of the V-type H+-ATPase and members of the CLC family of H+/Cl− 

exchangers acidifies the lumen of endosomes. Intracellular members of the NHE family of 

Na+/H+ exchangers finely tune endosomal pH by leaking protons in exchange for Na+ and K
+.
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Figure 2. Molecular mechanisms proposed for NHE isoforms in cancer.
A. In response to hypoxia, RACK1 mediates the translocation of NHE6 from the endosomes 

of breast cancer cells to the plasma membrane. This results in acidification of endosomal 

compartment and sequestration of weakly basic drugs such as doxorubicin. B. Upon 

treatment of cancer cells with chemotherapy and radiation, RACK1 is released from the C-

terminal tail of NHE9 to facilitate downstream activation of Src/Akt/β-Catenin and Bcl-2 

pathway, resulting in chemoradiation resistance. C. In glioblastoma, NHE9 is highly 

expressed, resulting in alkalinization of the endosomal lumen. As a result, oncogenic 

receptors such as EGFR escape degradation and are recycled back to the plasma membrane 

to drive tumor growth, migration and chemoresistance. D. NHE5 level is elevated in rat C5 

glioblastoma cell line, where it acidifies the endosomal compartment. High levels of NHE5 

are proposed to increase EGFR, MET, and integrinβ on the cell surface to drive proliferation 

and migration of cancer cells.
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Figure 3. Gene alterations in endosomal NHE across cancer subtypes.
Alterations are shown for NHE9 (top) and NHE6 (bottom) and comprise mutation, 

amplification, and deep deletion. Amplifications may include focal gene amplifications or 

larger chromosome parts such as whole chromosome gains. Combined RNA-Seq V2 and 

mutational data from 10,953 patients included in the TCGA PanCancer study across 32 

tumor types. Dataset is from cBioPortal.
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Figure 4. Somatic mutations in endosomal NHE found in cancer.
Lollipop representation of the frequency and types of somatic mutations found in NHE9 

gene (SLC9A9, top) and NHE6 gene (SLC9A6, bottom). Predicted PTM (post-translational 

modification) sites are also indicated. The data shows SLC9A9 gene harbors mutations on 

two phosphorylation sites (S355L and Y631*) and one N-linked glycosylation site (N96Y) 

in cancer.
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Table 1.

Summary of alterations in intracellular NHE isoforms reported in cancer types.

Cancer type Intracellular 
NHE Protein

Expression in 
Cancer Study Model(s) Summary Citation

GBM 
(Glioma)

NHE9 ↑
Kondapalli KC et 
al. Nat. Comm. 

2015

1. Patient-
derved human 
glioblastoma 

cells
2. Orthotopic, 

intracranial 
mouse 

xenograft

Up-regulation of NHE9 
expression alkalinizes endosomal 
compartment and results in EGFR 
stabilization on the cell surface in 

glioblastoma cells, driving 
proliferation and migration

[13]

NHE5

↑
SH Fan et al. 

Mol. Biol. Cell. 
2016

Rat Glioma cell 
line: C6

Up-regulation of NHE5 
expression acidifies endosomes 
and facilitates recycling of MET 

to drive cell migration in Rat 
glioma cell line

[14]

↑
Kurata T et al. 

Clin. Exp. 
Metastasis. 2019

Comparison study between NHE1 
and NHE5 knockdown shows 

unique role of NHE5 in integrin 
stabilization and MET/EGFR 

signaling, resulting in defects in 
migration and proliferation

[85]

Breast Cancer

NHE7 ? Onish I et al. 
Oncol. Rep. 2012

MDA-MB-231 
cell line

Overexpression of NHE1 and 
NHE7 in triple negative breast 

cancer cell line, MDA-MB-231, 
shows the role of NHE7 in cancer 

cell growth, migration, and 
colony formation

[92]

NHE6

Translocation 
to the plasma 
membrane in 

hypoxic 
condition

Lucien F et al. 
Nat. Comm. 2017

MDA-MB231 
cell line

Under hypoxic cancer 
microenvironment, NHE6 is 
mislocalized to the plasma 

membrane, depleting the pool of 
NHE6 protein in the endosomal 

vesicles. This results in 
acidification of endosomal 

compartment in which weak-base 
chemotherapy drugs are trapped.

[52]

Fibrosarcoma HT-1080 cell 
line [52]

Colorectal 
Cancer NHE8 ↓

Xu H et al. Cell 
Mol 

Gastroenterol. 
Hepatol. 2019

1. Chemically 
induced 

colorectal 
cancer model in 
NHE8 knockout 

mice
2. HT-29 human 

colorecetal 
cancer line

Azoxymethane/dextran sodium 
sulfate colon cancer model with 

NHE8 knockout background 
reveals a previously unexlplored 
role of NHE8 in suppressing colo 

cancer initiation.

[95]

Esophageal 
Squamous 

Cell 
Carcinoma

NHE9 ↑ Chen J et al. 
Oncotarget 2015

Eca190 and 
KYSE30 cell 

lines

NHE9 is upregulated in 
esophageal squamouse cell 

carinoma patients. NHE9 also 
induces chemo- and radiation-

therapy resistance by decreasing 
pro-apoptotic signaling pathway 
via losing its direct interaction 

with RACK1 scaffold protein and 
activating Src/Akt/β-catenin and 

Bcl-2

[83]
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