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Abstract

Accurate power calculations are essential in small studies containing expensive experimental units 

or high-stakes exposures. Herein, power of the Wilcoxon Mann-Whitney rank-sum test of a 

continuous outcome is formulated using a Monte Carlo approach and defining P(X < Y) ≡ p as a 

measure of effect size, where X and Y denote random observations from two distributions 

hypothesized to be equal under the null. Effect size p fosters productive communications because 

researchers understand p = 0.5 is analogous to a fair coin toss, and p near 0 or 1 represents a large 

effect. This approach is feasible even without background data. Simulations were conducted 

comparing the empirical power approach to existing approaches by Rosner & Glynn (2009), Shieh 

et al. (2006), Noether (1987), and O’Brien-Castelloe (2006). Approximations by Noether and 

O’Brien-Castelloe are shown to be inaccurate for small sample sizes. The Rosner & Glynn and 

Shieh et al. approaches performed well in many small sample scenarios, though both are restricted 

to location-shift alternatives and neither approach is theoretically justified for small samples. The 

empirical method is recommended and available in the R package wmwpow.
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1. Introduction

Despite the current era of big data, there remains a practical need for power calculations of 

small preclinical, first-in-human, and basic science studies involving two independent 

samples. Accurate power calculations are critical when each experimental unit is expensive 

(e.g., macaques for preclinical HIV vaccine experiments) or the study is high stakes (e.g., 

novel HIV cure strategies where toxicity risks are unknown). Anti-conservative power 

approximations can result in an underpowered study, and conservative approximations can 

lead to using more experimental units than necessary. Owing to small sample sizes, 

determining power in this setting is challenging because asymptotic approximations may not 
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be reliable. An additional challenge common in many studies, such as preclinical or first-in-

human trials, is the absence of relevant background data to inform power calculations.

In small studies with a continuous outcome (e.g., Kulkarni et al. 2011; Archin et al. 2014; 

Denton et al. 2014), the Wilcoxon Mann-Whitney (WMW) rank-sum test is often utilized to 

test for differences between groups (Wilcoxon 1945; Mann and Whitney 1947). Thus it is of 

interest to compute power of the WMW test against different alternatives. Previous work on 

calculating power of the WMW test for a continuous outcome includes Haynam & 

Govindarajulu (1966), Noether (1987), Collings & Hamilton (1988), Lehmann (1998), Van 

de Wiel (2001), Chakraborti et al. (2006), Shieh et al. (2006), Zhao et al. (2008), Rosner & 

Glynn (2009), and Divine et al. (2010). Power of the WMW test for ordered categorical 

outcomes was considered previously by Hilton & Mehta (1993), Kolassa (1995), and Tang 

(2011, 2016).

In this paper, an approach for determining the power of the WMW test is formulated using 

Monte Carlo simulation. The approach is accurate and precise in that no asymptotic 

approximation is employed, and the amount of Monte Carlo error can be controlled by the 

user. In addition, an appealing aspect of this approach is that it can be implemented with or 

without background data. Effect size is defined by p = P(X < Y), where X and Y denote 

random observations from the two distributions being compared. Equivalently, the effect size 

can be expressed by the odds p/(1−p) (O’Brien & Castelloe 2006; Divine et al. 2013, 2017). 

Under a location-shift alternative, the WMW test null hypothesis is p = 0.5, analogous to a 

fair coin toss. This effect size can be easily understood by collaborative investigators. 

Moreover, when background data are lacking, it can be more productive to discuss plausible 

values for p with collaborators than to elicit parameterizations for each distribution or to 

quantify effect size using standard deviation units. Further, as shown here and by Rosner & 

Glynn (2009), in many design scenarios the underlying distributions have minimal impact on 

power for a fixed effect size p.

The outline of the remainder of this paper is as follows. Section 2 presents several 

approaches to calculating power of the WMW test (with details in the Appendices). Section 

3 presents simulation results comparing WMW test power calculations. Section 4 provides a 

motivating example, and Section 5 concludes with a discussion.

2. Methods

Suppose X1,…,Xm and Y1,…,Yn are independent identically distributed (iid) random 

variables with continuous cumulative distribution functions F and G, respectively. It is of 

interest to test the null hypothesis H0 : F = G versus the two-sided alternative hypothesis 

HA : F ≠ G. The WMW test statistic is W = ∑i = 1
m ∑j = 1

n φ(Y j − Xi) where φ(Yj − Xi) =1 

when Yj > Xi, and 0 otherwise; i.e., the WMW statistic counts the number of times a Yj is 

larger than a Xi. Under H0, the WMW statistic has mean μ0 = mn/2 and variance 

σ0
2 = mn(N + 1)/12 where N = n + m; as m and n tend to infinity,(W−μ0)/σ0 has a limiting 

standard normal distribution under H0 (Mann & Whitney 1947).
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Shieh et al. (2006) derived a large-sample approximation for power of the WMW test using 

an exact variance of W under the alternative hypothesis HA, and demonstrated that their 

approach was more accurate than the Noether (1987) and Lehmann (1998) approximations. 

Effect size in Shieh et al. was defined in terms of G(x) = F(x−θ), where θ is the location 

shift in the cumulative distribution function (CDF) and H0 : θ = 0. The Shieh et al. method is 

reformulated here using effect size p (Appendix A) to facilitate interpretation and 

comparison to other approaches to estimating power of the WMW test. For large m and n, 

power for the two-sided WMW test against a specific alternative hypothesis can be 

approximated by:

P W − μ0
σ0

> zα/2 HA ≈ Φ μ − μ0 − zα/2σ0
σ + Φ μ0 − μ − zα/2σ0

σ (1)

where α is the significance level, Φ(·) is the CDF of a standard normal distribution, zα/2 = Φ
−1(1−α/2), and μ and σ are the mean and standard deviation of the WMW statistic under HA, 

respectively. The mean under HA, μ = mn/p, depends upon effect size p, and the variance 

under HA can be expressed as:

σ2 = mn p(1 − p) + (n − 1)(p2 − p2) + (m − 1)(p3 − p2) (2)

where σ2 depends upon effect size p and underlying distributions F and G through p2 and p3 

(Lehmann 1998; Shieh et al. 2006).

The approach from Noether (1987) provides an approximation to the power of the WMW 

test which also relies on the normal approximation in Equation 1, but does not require 

selecting parametric models for F and G. Instead, two additional assumptions are supposed: 

(i) σ2 = σ0
2, i.e., the variance of W under HA is equal to the variance of W under H0; and (ii) 

N/(N + 1) ≈ 1 (Appendix B). Assumptions (i) and (ii) may be dubious for small sample 

sizes. Clearly the approximation N/(N + 1) ≈ 1 only holds for large N. In addition, a study 

with small m and n will have adequate power only for large effect sizes, in which case σ will 

not, in general, equal σ0 (Shieh et al. 2006).

Rosner and Glynn (2009) also provide a method for estimating the power of the WMW test 

which relies on the normal approximation in Equation 1 but does not require selecting 

parametric models for F and G. Rosner and Glynn derive a closed-form estimate of power 

for location-shift alternatives defined after first applying a probit transformation to F and G.

With modern computing, empirical (Monte Carlo) power calculation for the WMW test is 

feasible and accurate, particularly for small studies. As described below, empirical power 

computation entails repeated sampling from F and G. Options for selecting F and G include: 

(i) specifying parametric distributions for both F and G; (ii) specifying a parametric 

distribution for F and choosing a value for p, which in turn imply a distribution for G; or (iii) 

resampling from a sufficient amount of background data (Collings & Hamilton 1988; 

Hamilton & Collings 1991). For studies where background data are unavailable or sparse, 

the resampling approach (iii) is not feasible. While approach (i) is feasible for small studies, 

it can be harder to interpret (e.g., presenting a mean difference in standard deviation units) 
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compared to (ii) where one selects effect size p or odds. Options (i) and (ii) are available in 

the R package described below.

In practice, the empirical method can provide power estimates that are effectively exact. The 

general approach entails simulating multiple datasets from F and G, and computing the 

proportion of simulated datasets where the WMW test rejects the null. As the number of 

simulated datasets approaches ∞, empirical power converges in probability to the true 

power of the WMW test. For a finite number of simulated data sets, the Monte Carlo error 

can be quantified, such that the number of simulations may be chosen to ensure this error is 

within an acceptable tolerance. In particular, let Q be the number of rejections of H0 among 

S simulated datasets and let pq be the probability of rejecting H0 with Q ~ Binomial(S, pq). 

For simulations under H0, pq equals the type I error rate, and for simulations under a 

particular alternative hypothesis HA, pq equals power. Power (or type I error) is estimated 

empirically by pq = Q/S. By the central limit theorem, for large S, pq will be approximately 

normal with mean pq and the standard error of pq will be no larger than 1/ 4S, which is ≈ 

0.0016 for S = 100,000. This implies that S = 100,000 simulated datasets will provide a 

precise power estimate to two decimal places. For example, suppose S = 100,000 and Q = 

80,000; then pq = 0.8 and the corresponding 99% Wald confidence interval (CI) for pq 

rounded to two decimal places is (0.80, 0.80). With S = 10,000 the standard error of pq is no 

larger than ≈ 0.005, and for Q/S = 8,000/10,000 the 99% CI for pq is (0.79, 0.81).

The wmwpow R package provides three functions for estimating power: wmwpowp, 

wmwpowd, and shiehpow. For all three functions, the user inputs the sample sizes (m,n) and 

the significance level (α). The function wmwpowp also takes inputs of the distribution for F 
and the effect size p, and returns empirical power. For example, suppose the user inputs an 

exponential distribution with rate parameter μ for F and a particular value for p; then 

wmwpowp solves for G. Available choices in wmwpowp for F are the exponential, normal, 

and double exponential (Laplace) distributions, corresponding to the derivations in 

Appendix C. These distributions were selected following from the work by Shieh et al. In 

each case, F and G are assumed to be in the same family or class of distributions; e.g., if F is 

specified to be normal with mean μx and variance σx2, then G is assumed to be normal as 

well. If F is exponential with rate μ and p is fixed, then G is completely specified. On the 

other hand, if F is normal or double exponential and p is fixed, then G is not completely 

specified without additional assumptions. Therefore, for the normal and double exponential 

distributions, the function wmwpowp also takes as an input the scalar k which specifies the 

ratio of standard deviations for F and G. For k = 1, choosing p ≠ 0.5 corresponds to a 

location-shift alternative. Choosing k ≠ 1 allows for unequal variances and thus a wider class 

of alternative hypotheses.

When specifying parametric distributions for both F and G is preferred, the function 

wmwpowd can be used to compute empirical power; wmwpowd allows the user to select 

from many standard continuous parametric distributions, including beta, exponential, 

normal, and Weibull. The function wmwpowd outputs the empirical power as well as the 

effect size p and the equivalent odds corresponding to the F and G specified by the user.
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The wmwpow package also includes the function shiehpow, which implements the Shieh et 

al. method for location-shift alternatives assuming normal, shifted exponential, or double 

exponential distributions. The function shiehpow uses a shifted exponential distribution, 

whereas the exponential distribution in wmwpowp uses one rate parameter that defines both 

shape and location such that a common support [0,∞) is maintained for F and G.

3. Empirical Comparisons

The performance of methods by Noether (1987), O’Brien-Castelloe (2006), Shieh et al. 

(2006), and Rosner & Glynn (2009) were compared to empirical power results. Each method 

was formulated such that α, m, n, and p were the inputs, as well as an assumed probability 

distribution, when required. Power was estimated for effect size p ranging from 0.50 to 0.95 

by 0.05 (odds ranging from 1 to 19).

The approach of Shieh et al. was implemented using the R package wmwpow, function 

shiehpow with the formulae shown in Appendix A. The Noether approach (Appendix B) 

was also implemented in R. The O’Brien-Castelloe approach was applied using the SAS 

Power procedure (twosamplewilcoxon, SAS/STAT v14.2); default settings were used and 

distributional assumptions were X ~ N(0,1) and Y ~ N(μy,1), solving for μy by inputting 

values of p into the equation shown in Appendix C.2. Rosner & Glynn (2009) provided a 

SAS macro (%WilcxPowerContinuousNties) for their approach. Empirical power was 

computed as the proportion of rejections of H0 under a specific alternative hypothesis over S 
simulated datasets; S = 100,000 simulated datasets were used for n,m < 20, and S = 10,000 

simulated datasets for n,m ≥ 20. Computations were conducted in R version 3.4.3 and SAS 

version 9.4 (Cary, NC).

Empirical power for large effect sizes (p ≥ 0.8) over a range of small samples sizes (n = m = 

6 to 15) is shown in Figure 1a as calculated using wmwpowp. Comparisons between the 

empirical power calculations and results from Shieh et al., Rosner-Glynn, Noether, and the 

O’Brien-Castelloe methods are shown in Table 1 and Figure 1b–1d. For a given p, varying 

the assumed distributions for F and G had only a small effect on power. For n = m = 6 per 

group, the Shieh et al. and Rosner-Glynn methods provided very similar results (Figure 1b). 

The O’Brien-Castelloe approximation was typically anti-conservative for small m and n 
(e.g., n = m = 6). The Noether approximation was both anti-conservative or over-

conservative depending upon effect size p and sample sizes (Figures 1b and 1c). For 

example, when n = m = 6 and effect size p = 0.95 the Noether approximate power was 77% 

and normal empirical power was 92%, a 15% power under-estimation from the Noether 

formula (Figure 1b). For n = m = 6 and p = 0.85 the O’Brien-Castelloe power was 69% and 

normal empirical power was 56%, resulting in a 13% over-estimation of power from the 

O’Brien-Castelloe approximation (Table 1). As m and n increase, power results from the 

methods evaluated here became increasingly similar, as expected. For m,n ≥ 50, all of the 

methods yielded similar results (Figure 1d).

Generally, the Shieh et al. and Rosner-Glynn approaches tended to well approximate the 

empirical power. However, for small unequal sample sizes (e.g., m = 6,n = 12), the Shieh et 

al. and Rosner-Glynn power estimates can differ, as demonstrated in the bottom of Table 1. 
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Note the Rosner-Glynn approach gives the same power estimate when m = 6,n = 12 

compared to m = 12,n = 6, for a fixed effect size p. In contrast, Shieh et al. power estimates 

need not be the same when the values of m and n are interchanged, as can be seen from 

Equation 2 and Appendix A (p2 and p3 are unequal for non-symmetric distributions).

Empirical power for alternative hypotheses where F and G are normal with unequal 

variances is shown in Figure 2a. For m = n = 6, power decreases as the degree of variance 

heterogeneity increases (i.e., as k increases). Varying k had less impact for m = n = 15. Note 

that if k ≠ 1, then the null hypothesis H0 : F = G does not hold even if p = 0.5. Hence, in 

Figure 2b the empirical power is above α = 0.05 for p = 0.5 and k = 3,4.

4. Motivating Example

Consider a proposed study of m = n = 15 per group with the sample size limited by ethical 

(e.g., safety), recruitment, or budgetary constraints. Given the limited feasible sample size, 

an accurate assessment of power is crucial for deciding whether the study should proceed as 

planned. In this study, background data on the outcome are dearth, and yet power 

calculations are still needed if null hypothesis significance testing is planned. In some cases, 

the study team should change the study design to focus on estimation and collection of pilot 

data without hypothesis testing. Here we proceed assuming that group comparisons are 

essential to the study objectives.

For example, in early phase clinical trials evaluating potential cures for HIV, sample sizes 

are typically limited to mitigate potential risks to participants. An outcome of interest, HIV 

replication index, is a relatively new measure used in HIV cure research with limited 

background data. Replication index is defined as the mean number of live daughter cells 

created by each parent cell over a specific length of time; this provides proliferative capacity 

on a per-cell basis, independent of the number of cells that originally started to proliferate 

(Clutton et al. 2016), and is closely related to proliferation index (Migueles et al. 2009).

Suppose the investigators choose a 0.05 significance level and decide p = 0.8 or larger is a 

meaningful effect size, i.e., an 80% or larger true probability that the HIV replication index 

for any given individual in the placebo group is higher than for any given individual in the 

treatment group. Assuming p = 0.8 (or equivalently, a true odds of 4 or larger) and using an 

empirical power approach, thirty individuals (m = n = 15 per group) will provide 85% power 

to detect a difference between two independent groups (placebo versus treatment). Rosner-

Glynn, and O’Brien-Castelloe power estimates were both 87% and the Shieh et al. estimate 

was 86%, whereas the Noether approximation was conservative in this example (81% 

power). Empirical power for the exact 2-sided WMW test was conducted assuming a normal 

distribution for log10 replication index and 100,000 datasets of size m = n = 15 were 

generated.

5. Discussion

Empirical power calculation is accurate and feasible for many power scenarios, including 

small sample settings, unequal variances, and unequal group sample sizes. The power 

approximations of Noether and O’Brien-Castelloe are not reliably accurate for small sample 
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sizes. The Rosner & Glynn and Shieh et al. approaches performed well in many small 

sample scenarios, though both are restricted to location-shift alternatives and neither 

approach is theoretically justified to provide accurate power estimates for small samples. In 

contrast, the empirical power approach can evaluate a wider class of alternative hypotheses 

and is valid for any sample size.

Future related work could consider evaluating power of the rank-sum test when the outcome 

data are anticipated to include ties. Ties can arise when the underlying variable is continuous 

and the variable is measured or recorded with limited granularity such that two or more 

individuals may have the same recorded value. Estimating power of the WMW test when 

ties may or may not be present was not considered here because it is often not practical to 

ascertain the a priori probability of a tie occurring. Zhao et al. (2008) generalized the 

Noether (1987) method to handle ties, making the assumption that the variance of the test 

statistic W under the alternative HA is the same as under H0; this assumption may be 

dubious when group sample sizes are small. If adequate background information is available 

regarding ties, one can simulate data accordingly (e.g., resample from the background data), 

and proceed with empirical power calculation. Ordered categorical data can be thought of as 

an extreme case of ties, and can be simulated directly using category probabilities (e.g., the 

tabled distribution within the SAS function RAND). WMW test power calculation for 

ordered categorical data is also available in StatXact software (Hilton & Mehta 1993).

The empirical Monte Carlo approach has a few limitations. One limitation is the use of a 

finite number of samples, though in practice it is often computationally feasible to generate 

100,000 simulated datasets, which provides a precise power estimate to two decimal places 

at a 99% confidence level. Still, to get fully reproducible power results a random seed will 

need to be set. For large study sizes, computation time may become an issue. With modern 

computing we did not experience a computational burden for small sample sizes, which is 

the design setting where a Monte Carlo approach is most useful. At equal sample sizes of 50 

or more per group, each power approach evaluated here provided a similar result. Another 

limitation of the Monte Carlo approach used here entails sampling from a user-specified 

parametric distribution. If this parametric assumption is incorrect, the resulting power 

estimates may not be accurate. Alternatively, if sufficient background data are available, one 

could sample from the empirical distribution of the background data, rather than from an 

assumed parametric distribution.

Accurate and precise power calculation via Monte Carlo simulation is recommended 

whenever computationally feasible. Empirical power calculation for the rank-sum test is 

available in the commercial software PASS by inputting parametric distributions for F and 

G. However, PASS version 16 does not yet provide p or odds as an input or output value. 

The R package wmwpow can be used to compute empirical power with either p or odds as 

an input (or alternatively F and G), and is free and publicly available on CRAN.

Acknowledgements

We thank Genevieve Clutton, Kristina De Paris, and J. Victor Garcia-Martinez and the UNC HIV research 
community for requesting power calculations that motivated this work. We also thank the reviewers and Nader 

Mollan et al. Page 7

J Biopharm Stat. Author manuscript; available in PMC 2021 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gemayel for helpful comments and suggestions, and Marion McPhee and Bernard Rosner for providing an updated 
SAS macro for the Rosner & Glynn approach.

Funding

This research was supported by the University of North Carolina at Chapel Hill Center for AIDS Research (CFAR), 
an NIH funded program P30 AI50410.

Appendices

Appendix A

As shown in Lehmann (1998) and Shieh et al. (2006), the variance σ2 of the WMW statistic 

under HA depends on F and G; this dependence can be formulated using p2 and p3 for a 

location-shift alternative, with p2 = p3 when distributions F and G are symmetric. When the 

underlying distributions of F and G are shifted exponential (a non-symmetric 

distribution),θ= −ln[2(1−p)] for p in (0.5,1), p2 = 1−2/3e−θ, and p3 = 1−e−θ+1/3e−2θ. When 

the distributions of F and G are double exponential (Laplace), θ= −L(4(p−1)/e2) where L is 

the Lambert-W function used to solve for x when y = xex and p2 = p3 = 1−(7/12+θ/2)e−θ

−1/12e−2θ. Lastly, for the normal case, F ~ N(0,1), θ = 2Φ−1(p) and p2 = p3 = E[{Φ(Z
+θ)}2], where Z ~ N(0,1).

Appendix B

Noether (1987) provided an approximation to the power of the WMW test assuming σ = σ0, 

and N/(N+1) ≈ 1, where N = m + n. Consider a one-sided WMW test, in which case the 

power equals:

1 − β = P Z >
μ0 − μ

σ +
zασ0

σ .

Let c = m/N and zβ = Φ−1(1−β). Then under the assumption σ = σ0, it follows that

μ0 − μ
σ0

2
= 12N2c(1 − c)(p − 0.5)2

N + 1 = (zα + zβ)2

or equivalently

N2
N + 1 =

(zα + zβ)2

12c(1 − c)(p − 0.5)2
.

Assuming N/(N+1) ≈ 1, it follows that

N ≈
(zα + zβ)2

12c(1 − c)(p − 0.5)2

and therefore power of the WMW test is approximated by
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1 − β ≈ Φ[ 12Nc(1 − c)(p − 0.5)2 − zα].

Appendix C

Consider the general form for p = P (X < Y ) = ∫−∞
∞ ∫−∞

y fX(x)gY (y)dxdy = ∫−∞
∞ gY (y)FX(y)dy, 

where fX(x) and gY(y) are probability density functions for X and Y, respectively. The 

following three distributions are implemented in the R package wmwpow, function 

wmwpowp.

C.1: Exponential

Let X ~ Exp(μ) and Y ~ Exp(λ), where μ and λ are exponential rate parameters. Then 

p = P (X < Y ) = ∫0
∞∫x

∞μλe−μxe−λydydx = μ/(λ + μ), and therefore λ = μ(1−p)/p.

C.2: Normal

Let X N(μx,σx2) and Y N(μy,σy2) such that X − Y N(μx − μy,σx2 + σy2). This implies 

p = P (X − Y < 0) = Φ
μy − μx
σx2 + σy2

, and therefore μy = μx + Φ−1(p) σx2 + σy2.

C.3: Double Exponential

Let X ~ Laplace(μx,σx) and Y ~ Laplace(μy,σy). Then μy can be found as follows. Recall the 

cumulative distribution function of a Laplace random variable is

FX(x) =

1
2e

x − μx
σx if x ≤ μx

1 − 1
2e−

x − μx
σx if  x  >  μx.

This implies p = P(X < Y)

= ∫−∞

μx 1
2e

y − μx
σx

1
2σy

e−
y − μy

σy dy + ∫μx
∞

1 − 1
2e−

y − μx
σx

1
2σy

e−
y − μy

σy dy.

Thus μy can be found by solving numerically

∫∞

μx 1
2e

y − μx
σx

1
2σy

e−
y − μy

σy dy + ∫μx
∞

1 − 1
2e−

y − μx
σx

1
2σy

e−
y − μy

σy dy − p = 0

using any standard one-dimensional root finding method given p, μx, σx, and σy.
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Figure 1: 
Power and type I error for the 2-sided Wilcoxon Mann-Whitney rank-sum test, α = 0.05. 

Sim = empirical simulation. Panel (a) presents power from the empirical Monte Carlo 

method with a normal distribution and equal standard deviations (k = 1), and panels (b-d) 

compare power results for a given sample size per group.
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Figure 2: 
Empirical power for F and G normal with standard deviation ratio k = σy/σx = 1,2,3,4, α = 

0.05.
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Table 1:

Power and type I error for the 2-sided Wilcoxon Mann-Whitney rank-sum test, α = 0.05

Sample Size Method Effect Size

p=0.5 p=0.7 p=0.75 p=0.8 p=0.85 p=0.9

n=6, m=6 Noether 3 22 32 44 56 67

O’Brien-Castelloe n/a 26 39 54 69 82

Rosner-Glynn 5 19 27 38 53 74

Empirical - Normal 4 18 28 40 56 75

Empirical - Exp 4 18 28 40 56 74

Empirical - Laplace 4 18 28 39 55 72

Shieh - Normal 5 18 27 38 53 74

Shieh - Shifted Exp 5 19 28 39 53 72

Shieh - Laplace 5 19 27 38 53 72

n=15, m=15 Noether 3 48 66 81 91 97

O’Brien-Castelloe n/a 52 72 87 96 99

Rosner-Glynn 5 46 67 87 98 >99

Empirical - Normal 5 47 67 85 96 >99

Empirical - Exp 5 46 68 86 96 >99

Empirical - Laplace 5 46 68 85 95 99

Shieh - Normal 5 46 67 86 98 >99

Shieh - Shifted Exp 5 46 67 85 97 >99

Shieh - Laplace 5 46 67 86 97 >99

n=6, m=12 Rosner-Glynn 5 25 37 53 73 92

Empirical - Exp 4 24 37 54 73 90

Shieh - Shifted Exp 5 23 36 54 74 93

n=12, m=6 Rosner-Glynn 5 25 37 53 73 92

Empirical - Exp 4 26 39 55 72 86

Shieh - Shifted Exp 5 27 39 53 69 86

Above, n and m are the two sample sizes. p is a measure of effect size, i.e., the probability that the first random variable is less than the second 
variable, P(Y > X). Statistical power (%) is displayed rounded to the nearest whole percentage. Effect size H0 : p = 0.5 presents type I error. 

Exp=Exponential
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