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Background. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, which represents the 9th most
frequently diagnosed cancer. However, the molecular mechanism of occurrence and development of ccRCC is indistinct. Therefore,
the research aims to identify the hub biomarkers of ccRCC using numerous bioinformatics tools and functional experiments.
Methods. The public data was downloaded from the Gene Expression Omnibus (GEO) database, and the differently expressed
genes (DEGs) between ccRCC and normal renal tissues were identified with GEO2R. Protein-protein interaction (PPI) network
of the DEGs was constructed, and hub genes were screened with cytoHubba. Then, ten ccRCC tumor samples and ten normal
kidney tissues were obtained to verify the expression of hub genes with the RT-qPCR. Finally, the neural network model was
constructed to verify the relationship among the genes. Results. A total of 251 DEGs and ten hub genes were identified. AURKB,
CCNA2, TPX2, and NCAPG were highly expressed in ccRCC compared with renal tissue. With the increasing expression of
AURKB, CCNA2, TPX2, and NCAPG, the pathological stage of ccRCC increased gradually (P < 0:05). Patients with high
expression of AURKB, CCNA2, TPX2, and NCAPG have a poor overall survival. After the verification of RT-qPCR, the
expression of hub genes was same as the public data. And there were strong correlations between the AURKB, CCNA2, TPX2,
and NCAPG with the verification of the neural network model. Conclusion. After the identification and verification, AURKB,
CCNA2, TPX2, and NCAPG might be related to the occurrence and malignant progression of ccRCC.

1. Introduction

Worldwide, renal cell carcinoma (RCC) represents the 9th
most frequently diagnosed cancer in men and the 10th in
women, accounting for 5% and 3% of all oncological diagno-
ses, respectively, [1]. According to the most updated data
provided by the World Health Organization, there are more
than 140 000 RCC-related deaths yearly, with RCC ranking
as the 13th most common cause of cancer death worldwide.
Age and gender factors are closely related to the risk of
RCC. Other potential risk factors include lifestyle, complica-
tions, drugs, and environmental factors [2]. The diagnosis

and management of RCC have changed remarkably rapidly
in the past decades through the unremitting efforts of gener-
ation after generation of researchers. Despite progression in
cancer control and survival, locally advanced disease and dis-
tant metastases are still diagnosed in a notable proportion of
patients. Nevertheless, uncertainties, controversies, and
research questions remain [3]. Further advances are expected
from the diagnosis, treatment, and prognosis evaluation.

RCC is a group of heterogeneous tumors with different
genetic and molecular changes, clear cell renal cell carcinoma
(ccRCC), papillary RCC (type 1 and type 2), and chromo-
phobe RCC are the most common solid RCC, accounting
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for 85.90% of all malignant RCC [4]. Among them, ccRCC is
the most common subtype of kidney cancer. Both sporadic
and inherited RCC are usually associated with structural
changes in the short arm of chromosome 3 [5]. In addition,
the occurrence of RCC is related to multiple gene alterations,
such as VHL, PBRM1, BAP1, SETD2, TCEB1, and KDM5C
[3]. Although our understanding of the biology of RCC has
improved, surgery is still the main treatment method of
RCC. Drugs and comprehensive therapies, identification of
new target pathways, and optimal sequencing and combina-
tion of existing targeted drugs are areas that are worth
researching [6].

Bioinformatics tools can screen differentially expressed
genes (DEGs) between diseased and normal tissues [3, 7, 8].
These DEGs are related to the pathological stage, lesion
grade, and prognosis of patients. Zou et al. used microarray
technology to identify the hub genes between malignant
glioblastoma and normal brain tissue and obtained the
important targets related to brain glioma [9]. Through a
series of bioinformatics analysis, Meng et al. concluded that
TPM2 may be an important biomarker for the occurrence
and development of atherosclerosis [10].

Therefore, this study will use bioinformatics technology
to explore the gene molecular markers of abnormal expres-
sion during the occurrence of ccRCC and discuss the related
potential mechanisms. These differentially expressed genes
may affect the initiation and malignant progression of ccRCC
and can be used as targets for diagnosis and treatment.

2. Material and Methods

2.1. Download Public Data. The Gene Expression Omnibus
(GEO) database (http://www.ncbi.nlm.nih.gov/geo) is the
largest, most comprehensive, and publicly available source
of gene expression data.

On 20 December, 2019, we set key words “(clear cell renal
cell carcinoma) AND (normal kidney)” to detect the datasets,
using a filter of “expression profiling by array.” The inclusion
criteria includes a diagnosis of clear cell renal cell carcinoma
(data from papillary renal cell carcinoma diagnoses were
excluded), the dataset including the gene expression profile
of normal kidney (datasets which were composed of only
tumor data were excluded), a sample number of more than
forty per dataset (samples of less than forty were excluded),
data from Homo sapiens (data from other species were
excluded), and a series entry type, expression profiling by
array (data using methylation profiling only by array were
excluded).

Therefore, GSE105288 (GPL10558, Illumina HumanHT-
12V4.0 expression beadchip) and GSE66272 (GPL570(HG-
U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0
Array) were obtained from the GEO database. A total of 44
samples, including 35 ccRCC tissues and 9 normal renal tis-
sues, were selected from GSE105288. A total of 53 samples,
including 26 ccRCC tissues and 27 normal renal tissues, were
selected from GSE66272.

2.2. Differentially Expressed Genes (DEGs) between Normal
and PCRC. GEO2R (http://www.ncbi.nlm.nih.gov/geo/

geo2r) could import data of the GEO database into the R lan-
guage and perform differential analysis, essentially through
the following two R packages, including limma packages
and GEOquery. Therefore, through the GEO2R tool, DEGs
were identified between the normal and ccRCC groups. The
P values < 0.001 was defined as significant. The gene symbols
were necessary. SangerBox (https://shengxin.ren), one open
tool, was used to draw volcano maps. Venn diagrams were
delineated using FunRich software (http://www.funrich.org/),
which would visualize common DEGs shared between
GSE105288 and GSE66272.

2.3. GO and KEGG Analysis. One online tool, DAVID
(https://david.ncifcrf.gov/home.jsp) (version 6.8, Maryland,
America), was applied to carry out the functional annotation
for DEGs. Gene Ontology (GO) [11] generally performs
enrichment analysis of genomes. And there are mainly cellu-
lar components (CC), biological processes (BP), and molecu-
lar functions (MF) in the GO analysis. Kyoto Encyclopedia of
Genes and Genomes (KEGG) (https://www.kegg.jp/) [12] is a
comprehensive database of genomic, chemical, and systemic
functional information. Therefore, DAVID was used to make
the analysis of GO and KEGG. The Biological Networks
Gene Oncology tool (BiNGO) (version 3.0.3) was used to
analyze and visualize the DEGs’ cellular component, biolog-
ical process, and molecular function [13].

2.4. Protein-Protein Interaction (PPI) Network. The common
DEGs, shared between GSE105288 and GSE66272, were
converted into differently expressed proteins. The STRING
(Search Tool for the Retrieval of Interacting Genes) online

Table 1: Primers and their sequences for PCR analysis.

Primer Sequence (5′–3′)
VEGFA-hF GGCAACTTACTTAGCCTCTT

VEGFA-hR AGGACAGTCTGAGTATGGGT

AURKB-hF GTTCGCATTCAACCTACCT

AURKB-hR GACGCCCAATCTCAAAGT

CCNA2-hF AACTGGGATAAGGAAGCT

CCNA2-hR CAGAAAGTATTGGGTAAGAA

MCM2-hF TTCTCCCTCACTTGTCCC

MCM2-hR CCTGTAATCCCAGCACTTT

MCM7-hF GGGGTAGGCAGAACTCAA

MCM7-hR CATGGAAGCGGTCTCAAA

SMC4-hF AGTGGCGTAGCACAGTAA

SMC4-hR ATTCCAAGATGATCCCTC

TPX2-hF GCAATCCTTCTGCCTTAG

TPX2-hR AGACCATCCTGGCTAACA

SLC2A1-hF GAGACGGGAAACCATCAA

SLC2A1-hR CTGCTCCTTCTTCAAACCAC

MCM5-hF GGGTGCGAGGAGAACAGT

MCM5-hR TGAGTCTGAGCCAGGGAG

NCAPG-hF AGAGTATTGTTGGCTTCC

NCAPG-hR AACTTCTGGACCATCACA
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database (http://string-db.org) could construct the PPI net-
work, which was visualized by Cytoscape (version 2.8) [14].

2.5. Significant Module and Hub Genes. Molecular Complex
Detection tool (MCODE) (version 1.5.1) [15], an open
plug-in of Cytoscape, was performed to identify tested most
significant module from the PPI network, and the criteria
was that the maximum depth = 100, MCODE scores > 5,

cut − off = 2, k − score = 2, and node score cut − off = 0:2.
Then, cytoHubba [16], a free plug-in of Cytoscape, was
applied to authorize the hub genes, when the degree ≥ 10.

2.6. Expression Analysis of Hub Genes. The clustering analysis
of expression level of hub genes was performed using heat
maps based on the GSE105288 and GSE66272. Also, the
expression profiles of hub genes in the ccRCC and normal
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Figure 1: (a) The differentially expressed genes on chromosomes between ccRCC and normal kidney tissue. (b) One volcano plot presents the
DEGs in the GSE105288. (c) Another volcano plot presents the DEGs in the GSE66272.
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groups were analyzed using Gene Expression Profiling Inter-
active Analysis (GEPIA, http://gepia.cancer-pku.cn/) [17].

2.7. Effect of Hub Gene Expression for Pathological Stage and
Overall Survival. The effect of hub gene expression for path-
ological stage and overall survival was analyzed by the
GEPIA. Finally, the correlation and linear regression analyses
between AURKB, CCNA2, TPX2, and NCAPG were per-
formed. And the receiver operator characteristic (ROC)

curve analysis was performed to test the sensitivity and spec-
ificity of the hub gene expression for the diagnosis of ccRCC.
The SPSS software (version 21.0; IBM; New York; America)
was used to conduct all the statistical analysis. A P value <
0.05 was defined as statistically significant.

2.8. RT-qPCR Assay. A total of 10 ccRCC participates were
recruited. After surgery, 10 ccRCC tumor samples from
ccRCC patients and 10 adjacent normal kidney tissues
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Figure 2: (a) The Venn diagrammanifested that a total of 251 DEGs exist in the two datasets (GSE105288 and GSE66272) simultaneously. (b)
The PPI network of the common DEGs.
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Figure 3: Continued.
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samples were obtained. The research conformed to the Dec-
laration of Helsinki and was authorized by the Human Ethics
and Research Ethics Committees of the Fourth Hospital of
Hebei Medical University. The informed consents were
obtained from all participates.

Total RNA was extracted from 10 ccRCC tumor samples
and 10 adjacent normal kidney tissue samples by the RNAiso
Plus (TRIzol) kit (Thermo Fisher, Massachusetts, America
and reverse transcribed to cDNA. RT-qPCR was performed
using a Light Cycler® 4800 System with specific primers for
genes. Table 1 presents the primer sequences used in the
experiments. The RQ values (2−ΔΔCt, where Ct is the thresh-
old cycle) of each sample were calculated and are presented
as fold change in the gene expression relative to the control
group. GAPDH was used as an endogenous control.

2.9. The Confirmation Using The Cancer Genome Atlas
(TCGA) Data. The gene expression dataset of ccRCC in the
TCGA was downloaded using the University of California
Santa Cruz (UCSC) Xena (https://xena.ucsc.edu/welcome-
to-ucsc-xena/). There were a total of 944 samples including
537 ccRCC samples and 407 normal renal samples. The

IlluminaHiSeq was selected as gene expression RNAseq in
the research. In addition, the gene expression levels of
VEGFA, AURKB, CCNA2, MCM2, MCM7, SMC4, TPX2,
SLC2A1, MCM5, and NCAPG between ccRCC and normal
renal samples were compared using the one-way ANOVA.

Furthermore, the effect of the gene expression of VEGFA,
AURKB, CCNA2, MCM2, MCM7, SMC4, TPX2, SLC2A1,
MCM5, and NCAPG on overall survival was analyzed by
using the TCGA data.

2.10. The Construction of Neural Network Model. The train-
ing group was randomly divided into the calibration data
and training data according to the proportion of 3 : 7. There
were 6 samples in the calibration data, and 20 samples in
the training data. We used MATLAB (version 8.3) to
accomplish the normalization processing of variable values,
network simulation, network training, and network initiali-
zation. The number of input neurons in the input layer is
the same as the number of input variables, and the number
is two. The hidden layer is designed as 1 layer, and the out-
put layer is also designed for 1 layer. One output variable is
the intima-media thickness. When training to 2000 steps
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Figure 3: (a) Detailed information relating to changes in the biological processes (BP) of DEGs in ccRCC and normal kidney tissue. (b)
Detailed information relating to changes in the cellular components (CC) of DEGs in ccRCC and normal kidney tissue. (c) Detailed
information relating to changes in the molecular functions (MF) of DEGs in ccRCC and normal kidney tissue. (d) KEGG pathway
analysis for DEGs. (e) The BP analysis for DEGs via the BiNGO software.
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after repeated training, the falling gradient is 0, and the
training speed is uniform [10]. At the same time, the train-
ing error ≤ 0:05, and the R (relativity) value reached 0.9906.

3. Results

3.1. DEGs between Normal Kidney and ccRCC Samples. There
are plenty of DEGs on all chromosomes between the ccRCC
and normal samples (Figure 1(a)). One volcano plot presents
the DEGs in the GSE105288 (Figure 1(b)), and another vol-
cano plot presents the DEGs in the GSE66272 (Figure 1(c)).
The Venn diagram manifested that a total of 251 DEGs exist
in the two datasets (GSE105288 and GSE66272) simulta-
neously (Figure 2(a)).

3.2. Construction of the PPI Network. After construction of
the PPI network for the common DEGs, there are 189 nodes
and 406 edges in the PPI network (Figure 2(b)).

3.3. The Functional Enrichment Analysis of DEGs via GO and
KEGG. GO analysis manifested that variations in DEGs
related with biological processes (BP) were significantly
enriched in canonical glycolysis, glycolytic process, peptidyl-
proline hydroxylation to 4-hydroxy-L-proline, angiogenesis,
cell proliferation, fructose metabolic process, cell division,
DNA replication initiation, regulation of insulin secretion,
mitotic nuclear division, regulation of actin cytoskeleton orga-
nization, carbohydrate phosphorylation, glycine catabolic pro-
cess, glycine decarboxylation via glycine cleavage system,
cellular response to hypoxia, and so on (Figure 3(a)). The var-
iations in DEGs related with cellular components (CC) were
significantly enriched in the basolateral plasma membrane,
endoplasmic reticulum lumen, membrane, extracellular exo-
some, melanosome, cytosol, MCM complex, and so on
(Figure 3(b)). The variations in the DEGs related with molec-
ular functions (MF) were significantly enriched in protein
binding, procollagen-proline 4-dioxygenase activity, identical

Carbohydrate kinase activity

Kinase activity

6-Phosphofructo-2-kinase
activity

Phosphofructokinase activity

Transferase activity, transferring 
phosphorus-containing groups 

Phosphotransferase activity, 
alcohol group as acceptor 

Transferase activity

Oxidoreductase activity

Catalytic activity

Procollagen-proline
dioxygenase activity 

Procollagen-proline
4-dioxygenase activity 

Peptidyl-proline 4-dioxygenase 
activity

Kinase binding

Substrate-specific
transmembrane transporter 

activity

Transmembrane transporter 
activity

Transporter activity

Substrate-specific transporter 
activity

Ion transmembrane transporter 
activity

TAP2 binding

Peptide binding

Peptide antigen binding

Antigen binding

TAP1 binding

Protein binding Molecular_function

Binding Peptidyl-proline dioxygenase 
activityTAP binding

Protein complex binding

Enzyme binding

Intermediate filament binding

(b)

Figure 4: (a) The CC analysis for DEGs via the BiNGO software. (b) The MF analysis for DEGs via the BiNGO software.
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protein binding, anion transmembrane transporter activity,
apolipoprotein binding, L-ascorbic acid binding, actin bind-
ing, and so on (Figure 3(c)). The KEGG pathway enrichment
analysis showed that the top pathways related with DEGs
were fructose and mannose metabolism, carbon metabolism,
collecting duct acid secretion, DNA replication, HIF-1 sig-
naling pathway, and so on (Figure 3(d)).

The BP analysis for DEGs is presented in Figure 3(e)
via the BiNGO software (Figure 3(e)). The CC analysis for
DEGs is presented in Figure 4(a) via the BiNGO software
(Figure 4(a)). The MF analysis for DEGs is presented in
Figure 4(b) via the BiNGO software (Figure 4(b)).

3.4. Significant Module Network and Identification of Hub
Genes. A significant module was screened from the PPI

network, and one module network consisted of 14 nodes
and 84 edges (Figure 5(a)). Another module network con-
sisted of 15 nodes and 32 edges (Figure 5(b)). And ten hub
genes were identified, including VEGFA, AURKB, CCNA2,
MCM2, MCM7, SMC4, TPX2, SLC2A1, MCM5, and
NCAPG (Figure 5(c)).

3.5. Difference of Expression of Hub Genes between ccRCC
and Normal Kidney Samples. Hierarchical clustering allowed
for simple differentiation of ccRCC tissues from normal colo-
rectal tissues via the expression levels of hub genes in the
GSE105288 and GSE66272 datasets. One heat map showed
that the expressions of all the hub genes were higher in the
ccRCC samples than the normal samples in the GSE105288
(Figure 6(a)). Another heat map also showed that the
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Figure 5: (a) A significant module was screened from the PPI network, and one module network consisted of 14 nodes and 84 edges. (b)
Another module network consisted of 15 nodes and 32 edges. (c) Ten hub genes were identified, including VEGFA, AURKB, CCNA2,
MCM2, MCM7, SMC4, TPX2, SLC2A1, MCM5, and NCAPG.
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expressions of all the hub genes were higher in the ccRCC
samples than the normal samples in the GSE66272
(Figure 6(b)). Through the GEPIA analysis, the expressions
of hub genes in the ccRCC patients were higher than the nor-
mal individuals (Figure 7(a)).

3.6. Association between Hub Gene Expression, Pathological
Stage, and Overall Survival. The results of GEPIA manifested
that the expressions of AURKB, CCNA2, TPX2, and NCAPG
were significantly positively related with pathological stage

(P < 0:05), while the expressions of VEGFA, MCM2,
MCM7, SMC4, SLC2A1, and MCM5 were not
(Figure 7(b)). The results showed that the expression level
of VEGFA was not related with the overall survival of
ccRCC patients (P > 0:05, Figure 8(a)). The overall sur-
vival analysis showed that ccRCC patients with high
expression levels of AURKB (Figure 8(b)) and CCNA2
(Figure 8(c)) had poorer overall survival times than those
with low expression levels (P < 0:05). The expression level
of MCM2 was not related with the overall survival of
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Figure 6: (a) One heat map showed that the expressions of all the hub genes were higher in the ccRCC samples than the normal samples in the
GSE105288. (b) Another heat map also showed that the expressions of all the hub genes were higher in the ccRCC samples than the normal
samples in the GSE66272.
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ccRCC patients (P > 0:05, Figure 8(d)). The expression level
of MCM7 was not related with the overall survival of ccRCC
patients (P > 0:05, Figure 8(e)). The expression level of SMC4
was not related with the overall survival of ccRCC patients
(P > 0:05, Figure 8(f)). The overall survival analysis showed
that ccRCC patients with high expression levels of TPX2
had poorer overall survival times than those with low expres-

sion levels (P < 0:05, Figure 9(a)). The expression levels of
SLC2A1 (Figure 9(b)) and MCM5 (Figure 9(c)) were not
related with the overall survival of ccRCC patients (P > 0:05).
The overall survival analysis showed that ccRCC patients
with high expression levels of NCAPG had poorer overall
survival times than those with low expression levels
(P < 0:05, Figure 9(d)).
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Figure 7: (a) The comparison of expressions of all hub genes between ccRCC and normal kidney samples. (b) The relationship between the
expression of hub genes and pathological stage.
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Figure 8: The overall survival Kaplan-Meier of six hub genes. (a) VEGFA, (b) AURKB, (c) CCNA2, (d) MCM2, (e) MCM7, and (f) SMC4.
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3.7. The Interaction Analysis among the Hub Genes. Through
the Pearson correlation test, heat maps manifested that there
were strong correlations among hub genes in the GSE105288
(Figure 10(a)) and GSE66272 (Figure 10(b)) datasets. The
correlation between AURKB, CCNA2, TPX2, and NCAPG
was strong (Figures 10(c)–10(h)).

3.8. ROC Analysis. To identify accurate thresholds for hub
genes to predict ccRCC, we constructed ROC. The expression
of all hub genes was associated with a diagnosis of ccRCC.
The ROC curve of AURKB in the GSE105288 was shown
in Figure 11(a). The ROC curve of CCNA2 in the
GSE105288 was shown in Figure 11(b). The ROC curve of
TPX2 in the GSE105288 was shown in Figure 11(c). The
ROC curve of NCAPG in the GSE105288 was shown in
Figure 11(d). The ROC curve of AURKB in the GSE66272
was shown in Figure 11(e). The ROC curve of CCNA2 in
the GSE66272 was shown in Figure 11(f). The ROC curve

of TPX2 in the GSE66272 was shown in Figure 11(g). The
ROC curve of NCAPG in the GSE66272 was shown in
Figure 11(h).

3.9. Results of RT-qPCR Analysis. As presented in Figure 12,
the relative expression levels of VEGFA, AURKB, CCNA2,
MCM2, MCM7, SMC4, TPX2, SLC2A1, MCM5, and
NCAPG were significantly higher in the ccRCC samples,
compared with the normal kidney tissues groups. The result
demonstrated that VEGFA, AURKB, CCNA2, MCM2,
MCM7, SMC4, TPX2, SLC2A1, MCM5, and NCAPG might
be considered biomarkers for ccRCC.

3.10. The Verification by TCGA. According to the above
expression analysis, VEGFA, AURKB, CCNA2, MCM2,
MCM7, SMC4, TPX2, SLC2A1, MCM5, and NCAPG were
markedly upregulated in ccRCC tumor samples compared
with the normal renal samples. After confirmation using

0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0
Overall survival

Months

Pe
rc

en
t s

ur
vi

va
l

Log-rank P = 0.0041
 HR(high)= 1.6
P(HR) = 0.0044
n(high) = 256
n(low) = 257

Low TPX2 TPM
High TPX2 TPM

(a)

0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0
Overall survival

Months

Pe
rc

en
t s

ur
vi

va
l

Logrank P = 0.49
 HR(high) = 0.9
P(HR) = 0.49
n(high) = 258
n(low) = 258

Low SLC2A1 TPM
High SLC2A1 TPM

(b)

Overall survival

0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0

Months

Pe
rc

en
t s

ur
vi

va
l

Log-rank P = 0.17
 HR(high) = 0.81

 P(HR) = 0.17
n(high) = 258
n(low) = 258

Low MCM5 TPM
High MCM5 TPM

(c)

Overall survival

0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0

Months

Pe
rc

en
t s

ur
vi

va
l

Logrank P = 0.014
 HR(high) = 1.5
 P(HR) = 0.015
n(high) = 258
n(low) = 257

Low NCAPG TPM
High NCAPG TPM

(d)

Figure 9: The overall survival Kaplan-Meier of another four hub genes. (a) TPX2, (b) SLC2A1, (c) MCM5, and (d) NCAPG.

14 BioMed Research International



the TCGA data, these gene expression levels in the ccRCC
samples were also significantly higher than the normal renal
samples (P < 0:05, Figure 13).

The results showed that the expression level of VEGFA
(P = 0:4946), MCM2 (P = 0:5249), MCM7 (P = 0:092),
SMC4 (P = 0:856), SLC2A1 (P = 0:209), and MCM5
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Figure 10: (a) Heat maps showing the correlations between hub genes in the GSE105288 datasets. (b) Heat maps showing the correlations
between hub genes in the GSE66272 datasets. (c) The correlation between AURKB and CCNA2. (d) The correlation between AURKB and
TPX2. (e) The correlation between AURKB and NCAPG. (f) The correlation between CCNA2 and TPX2. (f) The correlation between
AURKB and NCAPG. (g) The correlation between CCNA2 and NCAPG. (h) The correlation between TPX2 and NCAPG.

15BioMed Research International



Specificity

Se
ns

iti
vi

ty

1.0 0.8 0.6 0.4 0.2 0.0

0.0

0.2

0.4

0.6

0.8

1.0
6.829 (0.857, 1.000)

AUC: 0.937

AURKB

(a)

Specificity

Se
ns

iti
vi

ty

1.0 0.8 0.6 0.4 0.2 0.0

0.0

0.2

0.4

0.6

0.8

1.0 7.237 (0.829, 1.000)

AUC: 0.933

CCNA2

(b)

Specificity

Se
ns

iti
vi

ty

1.0 0.8 0.6 0.4 0.2 0.0

0.0

0.2

0.4

0.6

0.8

1.0

7.209 (0.743, 0.889)

AUC: 0.895

TPX2

(c)

Specificity

Se
ns

iti
vi

ty

1.0 0.8 0.6 0.4 0.2 0.0

0.0

0.2

0.4

0.6

0.8

1.0
7.256 (0.829, 1.000)

AUC: 0.940

NCAPG

(d)

Specificity

Se
ns

iti
vi

ty

1.0 0.8 0.6 0.4 0.2 0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.083 (0.846, 0.926)

AUC: 0.930

AURKB

(e)

Specificity

Se
ns

iti
vi

ty

1.0 0.8 0.6 0.4 0.2 0.0

0.0

0.2

0.4

0.6

0.8

1.0

−0.389 (1.000, 0.852)

AUC: 0.983

CCNA2

(f)

Figure 11: Continued.
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(P = 0:303) was not related with the overall survival of ccRCC
patients. The overall survival analysis showed that ccRCC
patients with high expression levels of AURKB (P = 0:000),
CCNA2 (P = 0:000), TPX2 (P = 0:000), and NCAPG
(P = 0:000) had poorer overall survival times than those with
low expression levels (Figure 14).

3.11. The Neural Network Prediction Model between AURKB,
CCNA2, TPX2, and NCAPG. The mean squared error is
<0.05 (Figure 15(a)). The relativity of training is 0.9906.
The relativity of validation is 0.99768. The relativity of test
is 0.93812. And the relativity of all procedure is 0.97977
(Figure 15(b)). Through verifying the predicted value of the
data against the actual value, we found that there are only
small differences in the comparison chart of training results
(Figure 15(c)) and error analysis diagram (Figure 15(d)).
Based on the above result, we could speculate that there were
strong correlations between AURKB, CCNA2, TPX2, and
NCAPG.

Through the cubic spline interpolation algorithm, we
find the high-risk warning indicator of TPX2: CCNA2 < 5:0
and 5:2 < AURKB. The three-dimensional stereogram could
present the warning range well (Figure 15(e)). The plane
graph is also shown (Figure 15(f)).

4. Discussion

RCC is a common disease in the urinary system. According
to the statistics of the World Health Organization in 2018,
its incidence is second only to prostate cancer and bladder
cancer and is increasing year by year [1]. Although many
genes are considered potential therapeutic targets and prog-
nostic predictors of RCC, the molecular mechanism of the
occurrence and development of RCC remains controversial.

With the continuous progress of science, microarray
technology, as a special data mining method, is very influen-
tial at present. This revolutionary technology transforms
traditional molecular research from a situation that relies

on personal experience and subjective guesses to a more
objective science [18–20].

In this paper, bioinformatics tools are used to mine the
targeted biomarkers of ccRCC. The results showed that
AURKB, CCNA2, TPX2, and NCAPG were highly expressed
in ccRCC compared with renal tissue. With the increasing
expression of AURKB, CCNA2, TPX2, and NCAPG, the
pathological stage of ccRCC increased gradually. Compared
with the individuals with low expression of AURKB,
CCNA2, TPX2, and NCAPG, patients with high expression
of AURKB, CCNA2, TPX2, and NCAPG have a poor overall
survival.

Aurora kinase B (AURKB) is a serine/threonine kinase
that participates in the regulation of chromosome arrange-
ment and segregation by binding to microtubules [21].
Numerous studies have found that the overexpression of
AURKB exists in a variety of cancer cell lines [22–24]. Sor-
rentino et al. found that AURKB is highly expressed in thy-
roid carcinoma, and its expression level is related to
malignant degree. The block of AURKB expression or by
using an inhibitor of Aurora kinase activity significantly
reduced the growth of thyroid carcinoma cells [23].
Katayama et al. have similar findings in colorectal cancer
[25], Smith et al. in lung cancer [22], and Chieffi et al. in pros-
tate cancer [24]. Abnormal mitotic regulation can induce the
production of aneuploid cells and act as a driving role in the
process of malignant progression, while serine/theronine
protein kinases of the Aurora family genes play a critical role
in the regulation of key cell cycle processes. The abnormal
expression of AURKB can produce malignant and invasive
aneuploid cells. This further indicates that AURKB is related
to tumorigenesis [26, 27]. With the discovery of abnormal
expression of AURKB in cancer cells, researchers realized
that it may become a new target for cancer treatments. At
present, many AURKB inhibitors have been developed,
including AZD1152, AT9283, VX-680/MK-0457, PHA-
680632, AMG-900, PHA-739358, and CYC-116, and some
of them have entered clinical trials [28].
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Figure 11: ROC curves of hub genes for ccRCC.
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Figure 12: Relative expression of VEGFA, AURKB, CCNA2, MCM2, MCM7, SMC4, TPX2, SLC2A1, MCM5, and NCAPG by RT-qPCR
analysis. ∗P < 0:05, compared with normal kidney tissues.
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The proteins encoded by CyclinA2 (CCNA2) belong to a
highly conserved cyclin family, which promotes cell transfor-
mation by binding and activating cyclin-dependent kinases
(CDKs) through G1/S and G2/M [29]. Previous studies have
found that the overexpression of CyclinA2 occurs in lung
cancer [30, 31], breast cancer [32, 33], colorectal cancer
[34], and other tumors and related to poor prognosis of
cancer patients. Aaltomaa et al. found that CyclinA2 was
expressed in the cytoplasm of RCC but not in the normal
tissue near the tumor, and the overexpression of CyclinA2
was related to the survival time of patients with RCC,
suggesting that it may be a prognostic indicator of RCC
[35]. The increase of the CyclinA2 expression is related to
the uncontrolled and accelerated cell cycle, which leads to
gene amplification and chromosome ectopia. Gopinathan
et al. found that knockout CyclinA2 in mice can inhibit
tumorigenesis [36]. Liang et al. found that the increased
expression of sclerostin domain-containing protein1
(SOSTDC1) can inhibit CyclinA2, while SOSTDC1 can
inhibit tumor growth [37]. CyclinA2 can not only be used
as a predictor of prognosis and survival in patients with
RCC but also has great potential in cancer treatment.

TPX2 microtubule nucleation factor (TPX2) encodes a
microtubule-associated protein that activates cell cycle kinase
called Aurora A and regulates mitotic spindles. The overex-
pression of TPX2 is related to the genesis of different can-
cers and is closely related to chromosome instability. The
uncontrolled expression of TPX2 may eventually become
the driving force of cancer development by inducing aneu-
ploidy [38]. Zhang et al. found that compared with human
bronchial epithelial cells (16HBE), TPX is overexpressed in
malignant transformed 16HBE cells(16HBE-C) through
anti-benzo[a]pyrene-trans-7,8-dihydrodiol-9,10-epoxide, in
which TPX2 RNA interference (RNAi) can lead to S-phase
arrest, inhibit cell proliferation, and induce cell apoptosis.

TPX2 is tyrosine phosphorylated in malignant transformed
16HBE-C, and this phosphorylation may be involved in the
malignant proliferation of cancer cells [39]. Ma et al. found
that the level of the TPX2 protein in normal bronchial epithe-
lium and alveoli was very low, while the level of TPX2 protein
increased gradually in squamous metaplasia, dysplasia, and
carcinoma in situ and invasive tumor. The immunohisto-
chemical labeling index of TPX2 was related to the degree
of differentiation, stage, and lymph node metastasis of lung
squamous cell carcinoma, and the overexpression of TPX2
was significantly correlated with the decrease of 5-year sur-
vival rate [40]. Similar results were found in a variety of
cancers, such as colorectal cancer [41], cervical cancer
[42], and prostate cancer [43]. The expression of TPX2 in
RCC was significantly higher than that in normal renal tis-
sue, and it was related to tumor size, histological grade,
tumor stage, and poor prognosis [44–47]. This may be
due to the significant upregulation of TPX2 in RCC tissues,
thus increasing the proliferation and invasive ability of
renal cancer cells. From this point of view, TPX2 can not
only become a target for RCC treatment but also play a role
as an independent prognostic factor of RCC.

Non-SMC condensin I complex subunit G (NCAPG)
coding a condensed protein complex subunit is responsible
for chromosome condensation and stabilization during
mitosis and meiosis [48]. In recent years, there are more
and more studies on the abnormal expression of NCAPG in
prostate cancer [49], lung cancer [50], breast cancer [51],
and other cancers. In the study of Liu et al., NCAPG was
found to be overexpressed in hepatocellular carcinoma com-
pared with the adjacent normal tissue, and high levels of
NCAPG expression were found to significantly correlate with
recurrence, the time of recurrence, metastasis, differentiation,
and TNM stage. The knockdown of NCAPG expression also
inhibited tumor cell migration and the cell invasive capacity
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in vitro [52]. Through genome-wide functional knockout
screen, Wang et al. believe that NCAPG is a necessary
clinical-related target for the growth of hepatocellular
carcinoma cells [53]. Ai et al. found that microRNA-181c
(miR-181c) inhibits cancer by downregulating the expression
of NCAPG, affecting the infiltration, migration, proliferation,
and apoptosis of hepatoma cells [54]. In the study of Arai
et al., microRNA-99a-3p downregulated the expression of
NCAPG, thereby inhibiting cancer cell invasion in
castration-resistant prostate cancer [49]. In conclusion,
NCAPG represents a promising novel target and a prognos-
tic biomarker for clinical management.

However, this study also has some shortcomings.
Although the core genes screened in this study may play an
important role in the occurrence of ccRCC, more clinical
samples and patient prognosis information are still needed
for verification.

5. Conclusion

To sum up, 251 differentially expressed genes and 10 hub
genes (especially AURKB, CCNA2, TPX2, and NCAPG)
were screened from ccRCC and normal renal tissues by
microarray technology, which could be used as diagnostic
and therapeutic biomarkers for ccRCC. AURKB, CCNA2,
TPX2, and NCAPG which might be related to the occurrence
and malignant progression of ccRCC.
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