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Abstract: Over the last few years more and more organ and
idiosyncratic toxicities were linked to mitochondrial toxicity.
Despite well-established assays, such as the seahorse and
Glucose/Galactose assay, an in silico approach to mitochon-
drial toxicity is still feasible, particularly when it comes to
the assessment of large compound libraries. Therefore, in
silico approaches could be very beneficial to indicate
hazards early in the drug development pipeline. By

combining multiple endpoints, we derived the largest so far
published dataset on mitochondrial toxicity. A thorough
data analysis shows that molecules causing mitochondrial
toxicity can be distinguished by physicochemical properties.
Finally, the combination of machine learning and structural
alerts highlights the suitability for in silico risk assessment of
mitochondrial toxicity.
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1 Introduction

Safety and risk assessment is gaining increasing importance
in drug discovery and development. Many drugs which are
withdrawn from the market cause idiosyncratic toxicities
such as drug induced liver injury, or cardiotoxicity or
nephrotoxicity, amongst many others. Two prominent
examples are the antidiabetic drug troglitazone and the
cholesterol lowering compound cerivastatin. Troglitazone
has been withdrawn from the market due to severe liver
injury and cerivastatin due to rhabdomyolysis. Later on, the
severe adverse effects were linked to mitochondrial
toxicity[1,2] In 2007 Dykens and Will raised the awareness of
the commonality of drug induced mitochondrial toxicities.[3]

Since then, the interest in mitochondrial toxicity has
increased, as it could not only be linked to acute
(idiosyncratic) toxicities (e.g.[4–6]) but also to long-term
toxicity such as the induction of Parkinson’s disease.[7,8]

Therefore, mitochondrial toxicity is an important endpoint
for drug safety. However, the assessment of this toxicity
endpoint is not trivial. In vivo studies might not show the
effects due to poor response of the lab animals or the rare
occurrence of idiosyncratic effects. Reasons suggested by
Will and Dykes are (i) the animals being young, with strong
mitochondrial reserves, and (ii) the genetic diversity within
the lab animals is not given.[3] In addition, in vivo mitochon-
drial toxicity manifests as organ toxicity and the cause
thereof cannot be easily determined. In vitro studies are
therefore more suitable but are either not feasible for high
throughput screening, or might not extrapolate very well to
the in vivo situation[9] Thus, in silico approaches might help
in estimating the emanating hazard from such substances.
The advantage is that they can be easily conducted and do
not need any compound availability. A disadvantage,
however, is the lack of suitable, large datasets which might

serve as basis for predictive machine learning models. The
two biggest published data sets for mitochondrial toxicity
are the Zhang data set[10] (246 compounds) and the Tox21
dataset[11] (5403 compounds). The Tox21 dataset originates
from the Tox21 challenge where the mitochondrial mem-
brane potential was assessed in a high throughput screen-
ing assay.[11] First efforts to characterize mitochondrial
toxicity and to derive modes of action for certain structural
alerts, were done by Nelms and co-workers (based on the
Zhang dataset) and by Naven and co-workers (based on an
unpublished dataset).[12,13] In this paper we present the – to
our knowledge – biggest dataset for mitochondrial toxicity.
After an exhaustive analysis of physicochemical properties
of its compounds we show that our dataset can be used to
train machine learning models. Furthermore, structural
alerts were derived from this data. A retrospective analysis
of DrugBank highlights that the combination of machine
learning and structural alerts is able to identify mitotoxic
drugs. Using structural alerts, we could further derive a
mode of action based on the alert.
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2 Material and Methods

2.1 Data Collection

The data was collected by accessing several public plat-
forms. A manual assay search with the keywords “mitochon-
dria”, “mitochondria potential” and “mitochondria complex”
in the ChEMBL release 22 database[14] was performed for
binding assays. The aim was to retrieve compounds tested
in connection to mitochondrial function, binding and
inhibition. The retrieved compounds were separated into
“positives” and “negatives”. For the positive compounds the
cut-off was set at an activity value of pChEMBL�5. The
pChEMBL value is available in the ChEMBL database and
allows the comparison between different activity types. It is
defined as: -log (molar IC50, XC50, EC50, AC50, Ki, Kd or
Potency). This assay search yielded 21 compounds.

The main source of information was a confirmatory
assay from the Tox21 dataset for mitochondrial membrane
potential disruption (AID=720637). The assay was retrieved
from PubChem and yielded 5403 compounds. Like ChEMBL,
PubChem was mined for additional data. This resulted in
additional 1181 compounds. For the Tox21 data, as well as
for the additional PubChem data, the activity labels as
assigned by PubChem were used.

Finally 246 tested drugs and drug like molecules from
the publication by Zhang et al. were added to the collected
data.[10] The labels “active” and “inactive” were adapted
from the publication. In the publication compounds which
have been reported to induce mitochondrial toxicity were
collected from different literature resources and labelled as
“actives”. The “inactives” from the publication are FDA-
approved, common and safe oral drugs with known mode
of action which mechanisms are not associated with the
mechanisms of mitochondrial toxicity. For an overview of
the overlap of the retrieved data see Figure 1. For our

dataset we changed the label “active” to “positive” and the
label “inactive” to “negative.

2.2 Data Standardisation

Via the KNIME 3.6.2 graphical analytics platform a data
miner workflow was created[15] in order to standardise the
retrieved compounds and to combine the datasets. The
downloaded files were read into the platform. In the case of
the PubChem Assays, the PubChem Compounds node was
used to map the identifiers to molecular structures in sdf
format. The drugs from the Zhang et al. publication, as well
as the downloaded compounds from ChEMBL were added
to the workflow via two separate Excel reader nodes. Name
and ChEMBL identifier mapping were performed via the
Chemical Identifier Resolver node, for duplicate filtering
again the standardisation procedure described above was
applied. Furthermore, all compounds from all datasets were
standardised with our in-house standardiser version 0.1.6.
Standardisation consisted of: (i) breaking bonds to group I
and group II metals, (ii) neutralizing charges, (iii) application
of rules to standardise the representation of functional
groups, (iv) neutralize, (v) discard salts and compounds
without any carbons, (vi) removing stereochemistry. For
standardisation the RDKit python library was used and
implemented within a python scripting node in KNIME.[16]

After standardisation InChIKeys were generated to identify
duplicate compounds. The workflow can be downloaded
from our GitHub page at https://github.com/Pharminfo-
Vienna/Chemical-Structure-Standardisation). Compounds
with ambiguous labels were removed from the dataset.
After duplicate removal we obtained a final dataset of 5761
compounds with 824 “positives” (i. e. Mitochondrial toxic
compounds) and 4937 “negatives” (i. e. Non-mitochondrial
toxic compounds).

2.3 Analysis of Structural Properties

To analyse differences in the physicochemical properties
between positive and negative compounds, selected chem-
ical properties were calculated. Calculation of the chemical
properties was performed using the RDKit Descriptor
Calculation node in KNIME 3.6.2. For analysis 25 interpret-
able 2D descriptors were chosen (see supplement A Table
A). To gain a better understanding of the physicochemical
properties percentage bar charts as well as boxplots were
created. The plots were then analysed for differences in the
trends of positive and negative compounds. The analysis
was conducted using R (version 3.4.4). For all plots the
packages ggplot2 (version 2.2.1) and gridExtra (version 2.3)
were used. Further, a principal component analysis (PCA)
was performed in R using the function prcomp from base R
and visualized using the packages factoextra (version 1.0.5),
FactoMineR (version 1.39), ggplot2 (version 2.2.1) and
gridExtra (version 2.3).

Figure 1. Venn Diagram of the overlap of the merged datasets.
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2.4 Substructure Analysis

A substructure analysis of the composed dataset was
performed applying fragment-based methods such as
SARpy (version 1.0)[17] and the RDKit fragmentation node
(version 3.3.1) and MOE fragmentation node (Molecular
operating environment, CCG, KNIME nodes version 2.4.0) in
KNIME. SARpy uses a recursive algorithm for fragmentation
and we applied two different settings. First, positives and
negatives were selected as target activity class, second, only
the positive labelled compounds were used. The target
activity class sets the class of compounds which will be
used for the extraction of structural alerts e.g. if it is set to
positives, only positive compounds will be fragmented to
generate substructures. For both runs the fragment size
was set to a minimum of two and a maximum of 18 atoms,
and their occurrence was set to a minimum of five. The
precision was set to minimize the false negatives. Using the
MOE node four different fragmentation algorithms were
applied: RECAP, Ringblock, ScaffoldTree, and Ringatoms.
RECAP is a method to obtain large fragments which can
easily be used in chemical synthesis and therefore cleaves
only specific bond types.[18] Ringblock splits the molecules
between non-ring bonds, and the Ringatoms algorithm
cleaves bonds which contain at least one ring atom.
However, both spare double bonds and bonds involved in
charge separation. The ScaffoldTree algorithm generates
fragments at the basis of a hierarchical clustering of
chemical scaffolds.[19] The RDKit molecule fragmenter node
creates all possible fragments within the set length. Here
the fragment size was set to a minimum path length of two
bonds and a maximum of ten.

Further analysis of the obtained fragments was per-
formed in KNIME. First, the occurrence of fragments in the
whole dataset was counted applying the RDKit substructure
counter node. Second, the threshold regarding the overall
occurrence of the obtained fragments was set to nine.
Finally, the positive predictive value (PPV) for each fragment
was calculated (see section 2.6). The fragments were ranked
regarding their PPV, and fragments with a PPV of smaller
than 0.6 were disregarded for further analysis due to their
low specificity. The remaining fragments were examined
manually. Criteria for selecting a fragment as structural alert
were (i) chemical integrity and (ii) completeness. For
example, fragments which contained only parts of rings,
small fragments with less than 4 atoms, ubiquitously
occurring substructures (such as benzene) or unspecific

carbon chains were not considered useful. After the
selection 17 structural alerts were identified.

2.5 Machine Learning Models

The machine learning models were trained using three
different approaches (for an overview see Table 1).

One model was trained using an extensive model
selection workflow available in the KNIME 3.6.2 analytics
platform on the examples server under 04_Analytics/11_
Optimization/08_Model_Optimization_and_Selection. The
workflow trains a gradient boosting model, a random forest,
a naive Bayes and a logistic regression using five different
types of fingerprints: ECFC6, ECFP6, ECFP4, AtomPair, RDKit.
For the model training, the dataset is split into test and
training set (20% and 80% of the data). To find the optimal
hyperparameters, a hyperparameter search is conducted
splitting the training dataset further into a training and
validation set. In addition to the model specific hyper-
parameters, the hyperparameter search included the choice
of the fingerprint used. From all trained models in the
hyperparameter search the best model is kept. The final
models for each algorithm are then compared and the best
performing model is selected. Subsequently, this model is
re-trained with the original training data and validated on
the left-out test dataset.

The second approach used deep learning. The training
procedure was similar to the KNIME workflow but splits the
data according to a clustering. The clustering is done with
affinity propagation[20,21] and was done using the implemen-
tation from the python library scikit-learn. After the clusters
are determined, the clusters are distributed to the folds
randomly. This ensures that molecules in the same cluster
will be distributed to the same fold. This reduces the model
bias, and increases the generalization of the model.[20,21] For
the hyperparameter selection three out of five folds are
used and the fourth fold is used for the inner validation.
The best hyperparameter set is chosen based on a cross-
validation of the inner four folds and then the final model is
tested on the fifth fold. Therefore, an ensemble of five
models is created. The deep learning models were trained
using RDKit descriptors as available in KNIME.

The third approach is using a RandomForest as
implemented in the scikit-learn library (version 0.19.0) in
python with default parameters. For this model we used a
smaller, randomly selected, dataset of 1412 compounds. For

Table 1. Model overview. Overview of the descriptors and parameters used for the development of the machine learning models.

Model Descriptor Split Training Hyper-parameter search Balancing technique

Random Forest 10 RDKit 80/20 CV+ External test no no
Gradient Boosting Atom Pair

FP
80/20 Nested CV+ External test Across model algorithms

and inputs
no

Deep learning RDKit all 80/20 Nested CV+ External test Network architecture no
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this approach the descriptors were chosen based on the
data analysis and the PCA. The goal was to include as little
correlated descriptors as possible (see supplement A Figure
A), with a maximum information gain. This resulted in the
following descriptors: “SlogP”, “TPSA”, “NumLipinskiHBA”,
“NumLipinskiHBD”, “NumRotatableBonds”, “NumHeavyA-
toms”, “NumAromaticRings”, ”NumAliphaticRings“, ”NumSa-
turatedHeterocycles“, ”NumAliphaticHeterocycles“. This new
dataset was split into 5 folds and then subjected to a 5-fold
cross-validation. In addition, the left-out samples served as
an external test set.

Although all models had their own external test set, the
comparison is more straightforward and meaningful with a
common external test set. For that reason, we used the
combined validation and test set from the Tox21 Challenge
with the endpoint “SR-MMP” (stress response – mitochon-
drial membrane potential), which allowed us to compare
the model performance directly. The datasets were down-
loaded from the challenge homepage (https://tripod.nih.
gov/tox21/challenge/data.jsp) and standardized with the
workflow described in section 2.1. Duplicate filtering and
joining of the two datasets were also done using InChIKeys.

2.6 Model Performance

The model performance was evaluated based on the
confusion matrix. Since the dataset was imbalanced, we did
not take the accuracy of the models into account. Instead,
we used the sensitivity, specificity, their harmonic mean
(namely the balanced accuracy), and the positive predictive
value (PPV) for evaluation. Those metrics can best assess
the predictivity of the models in terms of recognition of the
positive and negative class separately. In addition, we
always considered the confusion matrix to identify bias
towards a class. For the deep learning models, which have a
continuous output between 0 and 1, we used a threshold
of 0.5 for classification. Hence, all molecules which were
predicted as 0.5 or below were classified as negatives, all
molecules above were classified as positives.

The metrics were calculated as follows:

Sensitivity ¼
True positives

True positivesþ False negatives

Specificity ¼
True negatives

True negativesþ False positives

Balanced accuracy ¼
Sensitivity þ Specificity

2

PPV ¼
True positives

True positivesþ False positives

where the sensitivity reflects the recognition of positives
and the specificity the recognition of negatives. In addition,

the balanced accuracy evaluates the average performance
of the model. The PPV gives notion of the percentage of
correctly classified positives. For the evaluation of the
structural alerts a false positive denotes a negative com-
pound which was flagged by a structural alert.

2.7 Applicability Domain Calculation

The applicability domain was calculated using the local
outlier factor as described by Breuning and coworkers.[22] In
brief, the algorithm compares the local densities of the
nearest neighbors of a compound to its local density. If this
factor is below 1 (i. e. the local density of the compound is
greater or equal to its surroundings) a compound is
considered in domain otherwise a compound is out of
domain. To calculate these factors, we used the LOF
algorithm as implemented in the python library scikit-learn.
The parameters we used were 5 nearest neighbours,
novelty=True, a contamination of 0.1 and the Euclidean
metric. As the input we used minmax scaled descriptors
and the first two principal components.

2.8 Retrospective Analysis of DrugBank

For the analysis we downloaded DrugBank version 5.1.1
and standardised it according to the procedure described
above. The respective descriptors and fingerprints for the
models were generated and all compounds were predicted
using the machine learning models as well as the structural
alerts.

For the analysis a KNIME workflow was developed. The
drugs which were predicted as positives by all models, and
the compounds which were predicted as positives by the
alerts, were analysed and an automated literature search
was conducted with the terms: “DrugName+mitochondrial
+ toxicity”, “DrugName+mitochondria+ toxicity”, “Drug-
Name+mitochondria”, “DrugName+ toxicity” in PubMed.
The DrugName indicates the generic drug name as
assigned by DrugBank. The retrieved literature was then
manually examined for possible evidence of mitochondrial
toxicity.

3 Results

3.1 Dataset Analysis

The only dataset available for mitochondrial toxicity is the
dataset by Zhang and co-workers.[10] However, it is known
that many different endpoints, such as the inhibition of the
mitochondrial membrane potential, can lead to mitochon-
drial toxicity and ultimately to cell death. Especially a loss in
the membrane potential can lead to increased ROS (reactive
oxygen species) formation or perturbation of the energy
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homeostasis, thus resulting in mitochondrial toxicity and
cell death.[6,23] Therefore, we combined multiple datasets
using the endpoint mitochondrial membrane potential as
well as other assays related to mitochondrial toxicity to
generate a large dataset for subsequent analysis. The final
dataset was compiled from the Zhang dataset, the Tox21
Assay for mitochondrial membrane potential and a manual
assay and compound search in both, ChEMBL and Pub-
Chem (see section 2.1 and 2.2 and Figure 1). Finally, we
obtained a dataset consisting of 5761 compounds with 824
“positives” (i. e. mitochondrial toxic compounds) and 4937
“negatives” (i. e. non-mitochondrial toxic compounds).

To elucidate specific trends in our dataset we plotted
different descriptors in a percentage histogram (see Fig-
ure 2–Figure 4). The most prominent trend was seen for the
descriptor “SlogP”. First, only 1.2% (10/824) of the positive
compounds had a negative SlogP ranging, whereas 12.3%
(607/4931) of the negative compounds showed a negative
SlogP. Secondly, in the area of SlogP 4–9, a significant
enrichment of positives is observed (>25%). This indicates
that an increased membrane permeability is needed for a
compound in order to directly interact with the outer
mitochondrial membrane or even cross the outer and
interact with the inner mitochondrial membrane. In
addition, we observed that the activity seems to be related
to the number of aromatic rings (aromatic carbocycles, as
well as aromatic cycles in general). The positive compounds
follow a normal distribution with a mean of 4–5 for
aromatic carbocycles and 3–4 for aromatic rings. This is in
line with the findings for the SlogP, since carbocycles are
apolar and thus contribute to a high logP. For the molecular
weight, the fraction of sp3 hybridized carbons (Frac-

tionCSP3) and the surface area (LabuteASA), no strong
trends in the histograms are visible. The boxplots in
Figure 5 to Figure 7, however, also indicate a shift in the
medians between the positives and negatives. This high-
lights that certain molecular properties seem to be
favourable for mitotoxic compounds. In this case the
surface area as well as the molecular weight show that
most compounds below 250 Da seem to be too small to
induce substantial effects. Similarly, most compounds
above 600 Da seem to be too large to induce any effect.
Since the weight is correlated with the surface area of a
molecule the same holds true for compounds with a too
small, or too large, surface area. In addition, the fraction of
sp3 hybridized carbon is lower in the positive compounds.
This is in line with the finding that the activity depends on
the number of aromatic rings, indicating a lower number of
sp3 hybridized carbons.

Subsequently, we analysed the dataset using a PCA to
depict the chemical space of the dataset and to see
whether the transformation can reveal patterns (see also
Figure 8A–C). Although in the PCA no clear separation of
the positives and negatives can be seen, it confirmed the
observed patterns from the chemical property analysis. The
first three principal components explain 71.9% of the
variance. Whereas the first component consists mostly of
descriptors related to the size and weight of a molecule,
such as “molecular weight”, “LabuteASA” and “number of
heavy atoms”, the second component consists of descrip-
tors related to the number of rings, such as the number of
aromatic rings or the number of aromatic carbocycles. The
third principal component mostly consists of the descriptor
“SlogP” with a contribution of over 25% (see supplement A

Figure 2. Distribution of the descriptor SlogP (logP) between positives and negatives (A) Box or Violin plots of the distribution of the
positives (red) and negatives (grey) compounds in our dataset (without the external test set) (B) Percentage histograms of the dataset. Each
bar indicates the percentage of the positives compounds (red) and the percentage of the negatives compounds (grey) for the respective
bin. (C) Number of positives (red) and negatives (grey) compounds per bin in the percentage histogram.
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Figure 1B). This denotes that in the PCA the descriptors
which had some distinct characteristics for positive and
negative compounds are also highly contributing to
components of the PCA and therefore they seem to be
important characteristics of the dataset. Analysing the plots
of the first and second, first and third and second and third

principal components it becomes evident that there are
areas in the chemical space that consist only of inactive
molecules. Especially for the plot of the first and third and
second and third principal component we can see an area
which consists mostly of negative compounds (see Fig-
ure 1). With the high importance of the SlogP for the third

Figure 3. Distribution of the descriptor NumAromaticRings (number of aromatic rings) between positives and negatives. (A) Box or Violin
plots of the distribution of the positives (red) and negatives (grey) compounds in our dataset (without the external test set) (B) Percentage
histograms of the dataset. Each bar indicates the percentage of the positives compounds (red) and the percentage of the negatives
compounds (grey) for the respective bin. (C) Number of positives (red) and negatives (grey) compounds per bin in the percentage
histogram.

Figure 4. Distribution of the descriptor NumAromaticCarbocycles (number of aromatic carbocycles) between positives and negatives (A) Box
or Violin plots of the distribution of the positives (red) and negatives (grey) compounds in our dataset (without the external test set) (B)
Percentage histograms of the dataset. Each bar indicates the percentage of the positives compounds (red) and the percentage of the
negatives compounds (grey) for the respective bin. (C) Number of positives (red) and negatives (grey) compounds per bin in the percentage
histogram
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principal component this again highlights the importance
of the SlogP. Overall, these results show that, although we
did not observe a clear separation, there are areas in the
chemical space which only contain negatives and can be
distinguished from other areas with positive and negative
compounds.

3.2 Performance of the Machine Learning Models

For the machine learning models three distinct modelling
strategies were used. The first model was a random forest
which was built with a smaller subset, containing 1412
compounds of the original dataset, and standard settings
for the random forest. This approach was supposed to give

Figure 5. Distribution of the descriptor LabuteASA (surface area) between positives and negatives. (A) Box or Violin plots of the distribution
of the positives (red) and negatives (grey) compounds in our dataset (without the external test set) (B) Percentage histograms of the dataset.
Each bar indicates the percentage of the positives compounds (red) and the percentage of the negatives compounds (grey) for the
respective bin. (C) Number of positives (red) and negatives (grey) compounds per bin in the percentage histogram

Figure 6. Distribution of the descriptor FractionCSP3 (fraction of sp3 hybridized carbons) between positives and negatives. (A) Box or Violin
plots of the distribution of the positives (red) and negatives (grey) compounds in our dataset (without the external test set) (B) Percentage
histograms of the dataset. Each bar indicates the percentage of the positives compounds (red) and the percentage of the negatives
compounds (grey) for the respective bin. (C) Number of positives (red) and negatives (grey) compounds per bin in the percentage
histogram
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a baseline predictivity with a sophisticated descriptor
selection but no further model tuning. The second and
third model constituted of a traditional machine learning
and a deep learning approach. Both approaches used a
nested cross validation to choose the model and directly
validate the final model on an external validation fold. For
the traditional machine learning model, the choice was
between four traditional algorithms with different represen-
tations and hyperparameters (see section 2.5). For the deep
learning model, the representation and algorithm were
fixed, but we conducted a hyperparameter search to find
the most suitable architecture. Therefore, the two ap-
proaches using a nested cross validation were used to
investigate (i) if hyperparameter tuning can improve the
predictivity of the models, and (ii) whether deep learning is
superior to traditional modelling approaches.

Finally, we obtained three models with a very similar
balanced accuracy: a random forest with a balanced
accuracy of 0.866, a gradient boosting model with a
balanced accuracy of 0.894, and a deep learning model
with a balanced accuracy of 0.895 (see Table 3). However,
the positive predictive performance (PPV) indicates a
considerable difference in the models. Whereas the gra-
dient boosting, as well as the deep learning model, have a
good PPV of 0.876 and 0.820, respectively, the random
forest has a low PPV of 0.295. A low PPV indicates that the
model predicts a very high number of false positives. Since
all models had differently sized validation datasets, we
compiled a test dataset to be used on all models. This
allowed us to directly compare the predictivities and further
evaluate whether the high PPV of the gradient boosting
and deep learning model comes at the expense of a high

number of false negatives. Overall, for all models the
balanced accuracy dropped more than 12% when using
the external test set. Nevertheless, all models showed a
good balanced accuracy of higher than 0.7. The PPV
dropped only slightly for the gradient boosting, for the
random forest the PPV increased to 0.400, and for the deep
learning model it essentially did not change. Nevertheless,
validation on the external test set shows that, whereas the
gradient boosting and deep learning models predict 50 and
39 compounds as false negatives, the random forest only
predicts 20 compounds as false negatives. However, the
random forest has a considerable higher number of 189
false positive predictions as compared to 32 and 33 false
positives for the gradient boosting and deep learning
models respectively. Overall, we observed that hyperpara-
meter tuning can improve the model performance as
compared to a baseline model, especially when looking at
the false negative and false positive predictions.

3.3 Structural Alerts

Since structural alerts are often used to indicate hazards,
but also specially to provide a possible mode of action,
combining predictive models with structural alerts might
lead to a possible starting point for a mechanistic
interpretation of a prediction. Therefore, we derived
structural alerts by fragmentation of the dataset and
implementation of alerts proposed by Nelms et al. and
Navel et al.[12,13] The fragmentation and subsequent selec-
tion of the alerts yielded 16 new alerts. The criteria for
selection of the alerts was a PPV above 0.6, an occurrence

Figure 7. Distribution of the descriptor ExactMW (molecular weight) between positives and negatives. (A) Box or Violin plots of the
distribution of the positives (red) and negatives (grey) compounds in our dataset (without the external test set) (B) Percentage histograms of
the dataset. Each bar indicates the percentage of the positives compounds (red) and the percentage of the negatives compounds (grey) for
the respective bin. (C) Number of positives (red) and negatives (grey) compounds per bin in the percentage histogram.
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of 9 times or more (which denotes that the alerts are
approximately occurring in 1% of the compounds), and a
reasonably specific scaffold. Using the alerts introduced by
Navel et al. and Nelms et al. yielded 3 alerts with a PPV
above 0.6. Namely, those were the alerts 2-anilinobenzoic
acids (PPV of 0.667), antracene-9,10-diones (PPV of 0.844)

from Nelms et al. and the alerts aromatic azos (PPV of
0.667) from the paper from Naven et al. However, only the
alert antracene-9,10-diones was added to the 16 new alerts
since, along with the high PPV of 0.884, it was also present
more than nine times in the dataset. Overall, we developed
17 highly specific alerts (see Table 2 and supplement C).

Figure 8. Principal components 1–3. Principal component analysis of the dataset with indication of the positives (red) and negatives (grey).
(A) Plot of the first and second principal component (B) Plot of the first and third principal component (C) Plot of the second and third
principal component
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Table 2. Summarized table of identified structural alerts. The occurrence signifies how many molecules were identified in the training
dataset using the structural alert. The PPV is the percentage of positive molecules within all molecules which were flagged by the structural
alert.

Structure SMARTS Name Occurrence PPV

1 c1cc2 C(=O)c3c(C(=O)c2c(O)c1)c(O)ccc3 Danthron, dihydroanthracene 14 1.000

2 CNc1ccc(C(F))cc1 4-(fluoromethyl)-N-methylaniline 9 0.889

3 C(=O)(c1cc(O)ccc1)c1ccc(cc1) P-hydroxybenzophenone 30 0.867

4 O=C1c2ccccc2 C(=O)c2ccccc21 antracene-9,10-diones 32 0.844

5 c1(Cl)cccc(c1O)Cl 2,6-dichlorophenol 12 0.833

6 C1=CNC=CC1 dihydropyridine 11 0.818

7 [N+](=O)([O� ])c1ccc(c(c1)C)O 2-methyl-4-nitrophenol 11 0.818
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Table 2. continued

Structure SMARTS Name Occurrence PPV

8 c1(Cl)c(Cl)ccc(c1)O 3,4-dichlorophenol 10 0.800

9 c1(N)ccc(cc1)N=N 4-diazenylaniline 10 0.800

10 O=C1 C=CCO1 2,5-dihydrofuran-2-one 15 0.733

11 c1ccc2cc3ccccc3cc2c1 anthracene 15 0.733

12 O=C(Nc1ccccc1)c1ccccc1 N-phenylbenzamide 33 0.697

13 CCOC(=O)c1ccc(O)cc1 ethyl 4-hydroxybenzoate 23 0.696

14 C1=CCOC1 2,5-dihydrofuran 16 0.688
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Since all alerts are very specific, this results in a poor
predictivity of the alerts itself (see Table 3). Nevertheless,
each alert can be used to indicate hazards with a high
specificity. Therefore, if used after the prediction of the
models, they can generate insights into the possible mode
of action related to the prediction.[24] In addition, they serve
as starting points for read-across searches, which can
complement a similarity search. For this we used our
models and the alerts and predicted the mitotoxicity risk
for compounds in DrugBank. We then investigated the
positive predictions and tried to derive a mode of action.

3.4 Retrospective Analysis of DrugBank

To demonstrate that structural alerts can help in the
understanding of machine learning predictions we used
DrugBank for a retrospective analysis. As a first step we
predicted all marketed or withdrawn drugs with our models
and searched for structural alerts. Subsequently, we inves-
tigated all drugs which were predicted as positive by our
models. Overall, we had 2278 approved or withdrawn
drugs. Out of these 47 were flagged by all models as
positive and 52 were flagged by structural alerts. 13
compounds had positive predictions and a structural alert
(see Figure 9).

Table 2. continued

Structure SMARTS Name Occurrence PPV

15 C(=O)(Nc1ccc(N)cc1) N-(4-aminophenyl)formamide 12 0.667

16 ClC(Cl)Cc1ccccc1 (2,2-dichloroethyl)benzene 10 0.600

17 c1c(cccc1)C(=C)c1ccccc1 (1-phenylethenyl)benzene 32 0.594

Table 3. Predictivities of the three trained models and the structural alerts on the training and external Tox21 test dataset. Bold numbers
indicate the best performing model according to the metric. The deviations of the deep learning models are due to the generated ensemble
of five models.

Model Random Forest Gradient Boosting Deep learning Structural alerts

Dataset Train Test Train Test Train Test Train Test
Balanced accuracy 0.866 0.743 0.894 0.708 0.895�0.033 0.760�0.008 0.598 0.514
Sensitivity 0.942 0.793 0.806 0.467 0.820�0.059 0.574�0.018 0.209 0.044
Specificity 0.789 0.692 0.981 0.948 0.970�0.007 0.946�0.005 0.987 0.984
PPV 0.295 0.279 0.877 0.573 0.820�0.045 0.614�0.019 0.730 0.286
True positives 114 73 533 43 543�51 52�2 173 4
False positives 272 189 75 32 118�27 33�3 64 10
True negatives 1019 425 3926 582 3826�27 580�3 4871 606
False negatives 7 19 128 49 119�39 39�2 654 86
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All 47 flagged compounds had a positive SlogP and only
acetyldigitoxin, sirolimus and moxidectin had no aromatic
cycles. Similarly, out of the 52 molecules with a structural
alert all had a positive SlogP and only acetyldigitoxin had
no aromatic rings. However, in this case, the aromaticity of
compounds is expected, since only the alert 2,5-dihydrofur-
an-2-one and the alert 2,5-dihydrofuran do not contain
aromatic rings. Subsequently, we examined the available
information on the drugs predicted positive by all models.
For 9 out of 47 drugs we found evidence for mitochondrial
toxicity in the literature (e.g. amrubicin, tolvaptan,
atovaquone)[25–29] (supplement B). An additional 5 drugs had
evidence of mitochondrial toxicity, but the literature was

not conclusive. For the 52 molecules flagged by structural
alerts we found evidence for 6 molecules, for 2 additional
molecules the literature was not conclusive. In a case study
we tried to explain positive predictions by our models using
the structural alert. For this we used the alert anthracenes,
which is the alert number 4 and was also reported by Nelms
and co-workers,[13] therefore we have strong evidence that
this substructure is prone to cause mitochondrial toxicity. In
our dataset the alert occurred 32 times with a high
predictivity of 0.88. Nelms and co-workers showed a
mechanistic explanation which is based on the finding that
anthracycline chemotherapeutics cause mitochondrial tox-
icity through disruption of the ETC and subsequent ROS

Figure 9. DrugBank positive compounds. All 13 compounds were positive predicted by all three machine learning models and had at least
one structural alert.
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formation. In DrugBank we found two anthracene deriva-
tives, which were not present in our training dataset. The
two anthracyclines were amrubicin and epirubicine, which
were flagged by all our trained models and the structural
alert. Due to the structural similarity to anthracycline
chemotherapeutics we can assume that the mode of action
might be similar. In fact, reviewing the available literature
we found weak evidence for both compounds to induce
mitochondrial toxicity through inhibition of the membrane
potential.[30,31]

3.5 Discussion

Data mining is an important part for the modelling of
toxicities. While small datasets can be analyzed manually,
automated and statistical analysis requires larger datasets.
These analyses can point towards important structural
properties. Our analysis, which revealed the importance of
the SlogP for mitochondrial toxicity, is in line with findings
from Naven et al., who experimentally found a correlation
between the logP and uncoupling of oxidative
phosphorylation.[12] In addition, we found a link between
the size of the molecules and their mitochondrial toxicity.
Along with the SlogP this could be an indicator that the
drugs interact with specific proteins or transporters which
require certain properties like a specific size or hydro-
phobicity. For example, it was shown that rotenone and
several azoles induce mitochondrial toxicity through inhib-
ition of the electron transport chain.[32,33] Recently, it was
shown that amoxicillin/clanvulanate and ciprofloxacin in-
duce mitochondrial toxicity via the opening of the
mitochondrial membrane permeability transition pore lo-
cated in the outer membrane.[34] Both findings highlight the
association of the inhibition of certain mitochondrial
proteins with mitochondrial toxicity. In addition, to eluci-
date these mechanisms the compounds have to cross the
cell membrane and might even have to cross the outer
mitochondrial membrane, underlining the hypothesis that
mitotoxic compounds require certain properties which
allow them to bind to specific (off-)targets. Therefore, large
datasets can help to elucidate molecular properties related
to toxicities and thus also indirectly related to the binding
of their target.

Further, large datasets can be used to train machine
learning models to predict hazards in very early stages of
the drug discovery process. We showed that the deep
learning model as well as the gradient boosting model had
a good performance on the training and test set. In
addition, we observed that the random forest had a worse
performance with respect to the identification of positives.
Whereas the other two models could identify the positives
with a PPV >0.8, the random forest had a PPV of 0.3 and
thus predicted many false positives. This highlights that the
modelling process is important and that a grid search over
different algorithms or architectures can increase the

predictivity. However, an external test set should always be
used after the final model is trained for a thorough
evaluation. It was unexpected to see a drop in the
sensitivity by 0.33 and 0.24 for the gradient boosting and
deep learning model, respectively, since both are validated
externally during the nested cross validation. Therefore, this
should prevent large differences in the predictivity between
training and test dataset. The large differences in the
predictivity between training and test dataset could be due
to an internal bias of the dataset, which would imply that
the dataset contains very similar molecules. Therefore, the
validation data of the inner cross-validation is very similar
to the training data, whereas the test dataset differs
substantially from the training and validation data. How-
ever, using the local outlier factor algorithm[22] for applic-
ability domain estimation, the predictivity of the models did
not increase when the outliers were removed. It has to be
noted that the external test set was a dataset obtained for
the inhibition of mitochondrial membrane potential. There-
fore, the endpoint from the high throughput screening
could also be responsible for the decrease in performance,
since data from such screenings can be very noisy. Finally,
the deep learning model yielded no advantage over tradi-
tional machine learning approaches, however, we only
trained simple feed forward networks, thus more sophisti-
cated architectures could yield a better performance.

Although modelling is a very important part of in silico
toxicology, to be acceptable, also for regulatory purposes,
models have to have “a mechanistic interpretation, if
possible” (according to OECD Guideline on Validation of (Q)
SAR Models).[35] Therefore, in recent years, criticism on
machine learning as a black box became more pronounced.

Nevertheless, to overcome potential hazards or evaluate
a compound, predictive models are a fast and cheap means
to decide on an appropriate strategy to proceed with e.g.
further development of such a compound. Therefore,
structural alerts could be used to indicate potential
mechanisms of positive predicted compounds, thus helping
to explain predictions of black box models. In these cases,
structural alerts can be beneficial to gain insight into
potential mode of actions. While machine learning models
can be good estimators to predict new data, structural
alerts, as seen in our results, are not predictive by
themselves. In addition, not all alerts are predictive for
other datasets. For our dataset only two of the alerts
reported by Nelms et al. showed a clear predictivity for
activity, while others were more likely to flag inactive
molecules. This could be due to their small dataset size,
which might hinder the generalization. Yet it could also be
due to noise in our dataset containing high throughput
screening data, which is known to be of lower quality than
curated and experimentally tested data. Hence, alerts
should not be used as a predictive model, but rather as an
indicator for potential further investigations in a read across
approach as also suggested by Alves et al.[36] Importantly,
they do not provide a similarity based starting point as is
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commonly used in read-across, but the alert can lead to a
more diverse set of mechanistically related compounds.
Conclusively, combining data analysis with machine learn-
ing and structural alerts can lead to novel insights into
toxicological endpoints. This approach can help in the drug
development pipeline to identify hazards early on, gain a
better mechanistic understanding of the underlying mode
of action and propose valuable structural modifications.

4 Conclusions

With our approach we compiled the biggest reported
dataset on mitochondrial toxicity so far. By data analysis we
could observe trends for important properties, with the
most promising being SlogP. In addition, we could show
that the dataset is suitable for training of machine learning
models. We showed that structural alerts by themselves do
not exhibit good predictivity when used for the prediction
of a dataset. Nevertheless, we could show that the
combination of machine learning with structural alerts can
be a powerful tool to predict hazards and derive mecha-
nistic insight.

Data and Code Availability

The dataset and the corresponding models can be found in
our GitHub repository at https://github.com/PharminfoVien-
na/Mitochondrial-Toxicity.
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