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Abstract

The activation of dioxygen by FeII(Me3TACN)(S2SiMe2) (1) is reported. Reaction of 1 with O2 at 

−135 °C in 2-MeTHF generates a thiolate-ligated (peroxo)diiron complex FeIII
2(O2)

(Me3TACN)2(S2SiMe2)2 (2) that was characterized by UV–vis (λmax = 300, 390, 530, 723 nm), 

Mössbauer (δ = 0.53, |ΔEQ| = 0.76 mm s−1), resonance Raman (RR) (ν(O–O) = 849 cm−1), and X-

ray absorption (XAS) spectroscopies. Complex 2 is distinct from the outer-sphere oxidation 

product 1ox (UV–vis (λmax = 435, 520, 600 nm), Mössbauer (δ = 0.45, ΔEQ = 3.6 mm s−1), and 

EPR (S = 5/2, g = [6.38, 5.53, 1.99])), obtained by one-electron oxidation of 1. Cleavage of the 

peroxo O–O bond can be initiated either photochemically or thermally to produce a new species 

assigned as an FeIV(O) complex, FeIV(O)(Me3TACN)(S2SiMe2) (3), which was identified by UV–

vis (λmax = 385, 460, 890 nm), Mössbauer (δ = 0.21, |ΔEQ| = 1.57 mm s−1), RR (ν(FeIV=O) = 735 

cm−1), and X-ray absorption spectroscopies, as well as reactivity patterns. Reaction of 3 at low 

temperature with H atom donors gives a new species, FeIII(OH)(Me3TACN)(S2SiMe2) (4). 

Complex 4 was independently synthesized from 1 by the stoichiometric addition of a one-electron 

oxidant and a hydroxide source. This work provides a rare example of dioxygen activation at a 

mononuclear nonheme iron(II) complex that produces both FeIII–O–O–FeIII and FeIV(O) species 

in the same reaction with O2. It also demonstrates the feasibility of forming Fe/O2 intermediates 

with strongly donating sulfur ligands while avoiding immediate sulfur oxidation.
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INTRODUCTION

The binding and activation of dioxygen by nonheme metal complexes has been the focus of 

major research efforts. Criteria for the design of complexes for O2 activation include 

lowering the metal redox potential to a range suitable for reduction of O2, and maintaining 

an open or labile site on the metal center for O2 coordination.1,2 A major motivation for 

designing such complexes comes from their potential to serve as catalysts for the selective 

oxidation of substrates,3–6 as well as their ability to model key aspects of nonheme 

metalloenzyme structure and function.1,7 Activation of O2 by nonheme iron enzymes is 

proposed in many cases to involve three basic steps: binding of O2 to a ferrous center to give 

a formal FeIII(O2
•−), bridging of the putative superoxide to another redox-active cofactor 

(e.g., α-ketoglutarate, sulfur, a second FeII), and homolytic O–O cleavage to give high-

valent ferryl (FeIV(O)) species. Similar O2 activation schemes have been proposed for 

synthetic transition metal complexes, and, in the case of iron, this type of O2 activation 

pathway has been observed with porphyrins.8–12 However, similar reactivity toward O2, in 

which a mononuclear nonheme iron complex reacts with O2 to give well-defined peroxo-

bridged and high-valent oxo intermediates, to our knowledge, is still unknown.

A subset of O2-activating nonheme iron enzymes relies on thiolate-ligated iron centers, 

including isopenicillin N synthase (IPNS),13,14 the thiol dioxygenases,15,16 such as cysteine 

dioxygenase (CDO), and the sulfoxide synthases,17,18 EgtB and OvoA (Figure 1). The 

presence of sulfur in the first coordination sphere adds a level of complexity to the 

mechanism of O2 activation, because sulfur is readily oxidized to produce a range of 

products (e.g., disulfide, S-oxygenates). The selective, controlled oxidation of the sulfur 

centers is often an essential step for these enzymes.

Developing a fundamental understanding of how Fe activates O2, particularly in the presence 

of thiolate donors, and spectroscopically identifying the succeeding Fe/O2 intermediates is 

central to determining how nonheme thiolate-ligated iron metalloenzymes function. Despite 

these enzymes having thiolate donors cis to the proposed O2 binding sites, the modes of O2 

activation and subsequent substrate oxidation by these oxidase and oxygenase enzymes 

differ dramatically. IPNS performs hydrogen atom abstractions from substrate C–H bonds,19 

whereas the thiol dioxygenases perform S-oxygenation,20 and sulfoxide synthases perform 

both S-oxygenation and C–S bond coupling.17,21,22 A central mechanistic question is how 

these enzymes catalyze their divergent reactivity with similar sulfur ligation. It is clear that 
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all of these enzymes must bind and activate O2, and must cleave the O–O bond to perform 

their respective reactions. Difficulties trapping and identifying catalytically relevant O2 

intermediates in these enzymes have hampered the ability to delineate these mechanisms, 

and, as a result, determining the origin of the discriminate reactivity is challenging.

Our laboratory23–27 and others28–34 have made considerable efforts to construct sulfur-

ligated iron complexes that can activate O2, to examine aspects of structure and function. A 

major emphasis has been to trap and characterize the Fe/oxygen intermediates following 

reaction of FeII with O2, to determine their chemical reactivity and spectroscopic properties, 

and compare these properties with proposed enzymatic intermediates. Well-defined, iron–

oxygen adducts derived from synthetic nonheme FeII complexes and O2 are uncommon. The 

anticipated initial intermediate, an FeIII(superoxo) species, was not characterized in a 

mononuclear nonheme Fe complex until 2014–2015,35,36 and the first thiolate-ligated 

FeIII(superoxo) species were reported in 2018–2019.29,33 There are several examples of 

well-defined diferric, peroxo-bridged complexes obtained from nonheme FeII/O2, but none 

that involve sulfur ligation.37 Only one example of a nonheme, sulfur-ligated FeIV(O) 

complex has been reported, and was prepared from the O atom donor meta-chloroperbenzoic 

acid, not O2.38

Our lab previously reported a combined enzyme/model study that utilized triazacyclononane 

(TACN) to synthesize iron analogues of the thiol dioxygenases.27 In a separate study, we 

demonstrated that the Co(TACN) complex CoII(Me3TACN)(S2SiMe2) was capable of 

binding and activating O2 to generate a Co(superoxo) species (Scheme 1).39 The analogous 

FeII complex, FeII(Me3TACN)(S2SiMe2) (1), was previously reported and noted to be air-

sensitive; however, the reactivity of 1 with O2 was not examined in any detail.40 Given our 

ability to stabilize a Co/O2 intermediate using the same ligand set, we sought to examine the 

reactivity of 1 with O2.

Here, we report the activation of dioxygen by FeII(Me3TACN)(S2SiMe2) to generate a 

thiolate-ligated diiron peroxo complex that can be stabilized at low temperature. This 

complex undergoes either thermolytic or photolytic O–O bond cleavage to generate a rare 

example of a thiolate-ligated FeIV(O) species. This FeIV(O) complex exhibits H atom 

abstraction reactivity, producing an FeIII(OH) species. The generation, stability, and 

spectroscopic properties of these O2-derived species are presented.

RESULTS AND DISCUSSION

Complex 1 was synthesized as previously reported and isolated as a colorless, crystalline 

solid.40 In the original report, there was no description of UV–vis or Mössbauer 

spectroscopy for 1. As expected, the UV–vis spectrum for colorless 1 in 2-MeTHF is 

featureless in the visible region (Figure S1), and exhibits a major peak in the UV region at 

269 nm. The Mössbauer spectrum of solid 1 dispersed in boron nitride at 5 K exhibits an 

isomer shift (δ) of 0.92 mm s−1 and a quadrupole splitting (|ΔEQ|) of 2.27 mm s−1, 

consistent with a high-spin FeII center (Figure S2). Electrochemical measurements by cyclic 

voltammetry (CV) reveal that 1 undergoes an initial, reversible oxidation at E1/2 = −0.60 V 

(versus Fc+/Fc), and a second oxidation event at E1/2 = 0.82 V. These redox events can be 
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assigned to the formal FeIII/II and FeIV/III couples, respectively. However, we have 

previously found that the analogous cobalt complex exhibits significant metal–ligand 

covalency with the silanedithiolate ligand, and redox transformations were assigned to the 

[CoS2]+/[CoS2]0 unit, as opposed to purely metal-based oxidation state changes.39 The 

observation of two oxidations for 1 in Figure 2 contrasts the single redox event observed for 

CoII(Me3TACN)(S2SiMe2), and is consistent with the ability of iron to access the formal +4 

oxidation state. We and others have shown that a lower redox potential (E1/2(FeIII/II)) favors 

facile reactivity with O2,2,24,41 and thus the first oxidation (E1/2 = −0.60 V) for 1 suggested 

that it should react readily with O2.

To examine if the first oxidation for 1 is chemically accessible, we reacted 1 with one-

electron oxidants of appropriate strength. Addition of 1 equiv of the tetrakis-

(pentafluorophenyl)borate salts of ferrocenium (FcBArF
4) or dimethylferrocenium 

(Me2FcBArF
4) oxidants to 1 in 2-MeTHF at −80 °C results in the formation of new bands at 

300, 435, 520, and 600 nm (Figure 3), corresponding to 1ox. This species is thermally 

unstable and upon warming decays completely by −35 °C. Spectral titration of Me2FcBArF
4 

at −80 °C shows the expected 1:1 stoichiometry (Figure S5), and the reversibility of this 

oxidation was demonstrated by reverse titration with the one-electron reductant cobaltocene 

regenerating 1, followed again by reoxidation back to 1ox with further addition of 
Me2FcBArF

4 (Figure S7).

Because of the thermal instability of 1ox, we have been unsuccessful at growing single 

crystals for X-ray diffraction (XRD). However, spectroscopic analyses together with DFT 

calculations were employed for further characterization of 1ox in situ. The EPR spectrum of 

1ox at 20 K is shown in Figure 3, and is consistent with a high-spin ferric (S = 5/2) center, 

with g = [6.38, 5.53, 1.99], and an E/D = 0.016 from a simple rhombogram analysis.42 

Mössbauer spectroscopy of 1ox enriched in 57Fe (95.5%) in 2-MeTHF at 80 K reveals a 

quadrupole doublet with δ = 0.45 mm s−1 and |ΔEQ| = 3.6 mm s−1 (Figure S8). The isomer 

shift is typical of FeIII (S = 5/2) complexes.

Geometry optimizations by DFT of the one-electron oxidized, 5-coordinate [Fe(Me3TACN)

(S2SiMe2)]+ and the THF-bound analogue, [Fe(THF)(Me3TACN)(S2SiMe2)]+, in the sextet 

state were carried out with the BP86/6–311g*/6–31g*(C,H) functional/basis set 

combination. The same level of theory was used to obtain an optimized structure for the 

starting material 1 in the quintet state, and this structure matched well with the structure 

from XRD,40 helping to validate the theoretical methods. The optimized geometry for the 

oxidized species remained intact and gave metal–ligand distances that were slightly 

contracted, as expected for the oxidized complex. Calculation of the Mössbauer 

parameters43 for 1 gave δ = 0.86 mm s−1 and |ΔEQ| of 2.70 mm s−1, which is a good match 

with experiment. The calculated parameters for [Fe(Me3TACN)(S2SiMe2)]+ are δ = 0.38 

mm s−1; |ΔEQ| = 1.62 mm s−1, and for [Fe(THF)(Me3TACN)(S2SiMe2)]+ are δ = 0.53 mm s
−1; |ΔEQ| = 0.89 mm s−1. In both cases, the quadrupole splitting is small as compared to the 

experimental value. However, the error in the calculation of the quadrupole splittings can be 

large, particularly for large values of |ΔEQ|.44 The isomer shifts of the 5-coordinate and 

THF-bound structures are both close to the experimental isomer shift; therefore, at this time, 

we cannot conclusively rule out either structure.
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Reactivity with O2.

Addition of excess O2 to a solution of 1 in THF at 23 °C leads to rapid color change from 

colorless to orange, followed by precipitation of dark brown solids and bleaching of the 

solution. These observations suggested oxidation to ferric ion followed by decomposition. 

However, the same reaction run in THF at −80 °C leads to a new color change to dark green, 

which converts to a pale orange color within seconds. Further cooling of the reaction to 

temperatures just above the freezing point of THF (−108 °C) led to a minor increase in the 

lifetime of the green intermediate, but rapid decay still occurred (Figure S9). Switching the 

solvent to 2-MeTHF allowed for further cooling to −135 °C, and we were pleased to find 

that the new green species (2) was thermally stabilized at this temperature, exhibiting bands 

at 300 (ε ≈ 9900 M−1 cm−1 per Fe), 390 (ε ≈ 5000 M−1 cm−1 per Fe), 530 (ε ≈ 2050 M−1 

cm−1 per Fe), and 723 (ε ≈ 3600 M−1 cm−1 per Fe) nm (Figure 4). The reversibility of 

formation of 2 was tested by sparging the solution with Ar for 1 h or multiple vacuum/purge 

cycles, but no reversible oxygenation was observed. No evidence of significant decay of 2 is 

seen until the solution is warmed to −120 °C, which then results in further spectral changes 

(vide infra). These observations provided us with a temperature range for further 

spectroscopic analysis.

Reaction of 1 with excess O2 for EPR spectroscopy was carried out directly in quartz EPR 

tubes cooled to −130 °C (pentane/N2(l) bath). Upon formation of the green species 2, the 

reaction mixture was frozen at 77 K, and it was noted that the dark green color quickly 

bleached to a light orange upon exposure to ambient light. This observation indicated 2 is 

highly photosensitive, even in frozen solution at 77 K, and thus all subsequent experiments 

were carried out in the dark. The EPR spectrum of 2 was silent, suggestive of an integer-spin 

species. Isotopically enriched 2(57Fe) was prepared in 2-MeTHF, and analysis by Mössbauer 

spectroscopy at 80 K revealed a single, sharp quadrupole doublet with δ of 0.53 mm s−1 and 

|ΔEQ| of 0.76 mm s−1 (Figure 5). These parameters are typical of high-spin (S = 5/2) 

iron(III).45 The same quadrupole doublet is observed at 5 K, even in the presence of a 50 mT 

magnetic field (Figures S10 and S11), indicating the absence of magnetic hyperfine splitting, 

and consistent with an integer-spin species.

Green 2 was examined further with resonance Raman (RR) spectroscopy. The extreme 

photosensitivity of 2 led to difficulties in this vibrational characterization because laser 

irradiation at 647, 514.5, or 407 nm invariably led to rapid and irreversible photobleaching, 

even at low laser power and with rapid sample spinning. However, short data acquisition 

with the 407 nm laser excitation could be averaged over multiple sets of samples to 

successfully identify RR signals attributable to 2 (Figure 6). Specifically, comparing 

averages of the first 30 s data accumulation and of the subsequent 30 s data isolates a RR 

signal at 849 cm−1 from the rich Raman spectrum of the solvent 2-MeTHF. Using the same 

procedure with samples prepared with 18O2 allows isolation of a RR band at 802 cm−1, 

which corresponds to a −47 cm−1 downshift that matches expectation from Hooke’s law for 

an O–O harmonic oscillator (calculated Δ18O = −49 cm−1). This 849 cm−1 value is typical of 

an iron(III)-(hydro)peroxo complex.46–49 Although the initial reaction between 1 and O2 can 

be expected to yield an FeIII(superoxo) species with ν(O–O) around 1200 cm−1,50 there is 

no evidence for such species in the RR spectra. Instead, the ν(O–O) at 849 cm−1 is 
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consistent with the formation of a (peroxo)diiron complex, which likely forms immediately 

upon O2 binding. Symmetric ν(Fe–O) vibrations are resonance enhanced in most bridging 

diferric-peroxo complexes, but no such mode is observed in the RR spectra of 2, as seen in a 

few other diiron peroxo species.51–55 The RR difference spectra reveal an additional 

photosensitive vibration at 314 cm−1, but it does not display any significant sensitivity to 
18O-labeling and is thus tentatively assigned to a ν(FeIII–S) stretch on the basis of prior 

assignment of Fe–S stretching vibrations in stable synthetic complexes and metalloproteins.
56–58 This overall analysis of the RR data in terms of a bridging diferric-peroxo structure is 

consistent with the EPR-silent character of 2 and magnetic coupling of the high-spin Fe(III) 

through the peroxo bridge.37,59

XAS Studies.

Further insight into the structure of 2 was obtained by X-ray absorption (XAS) spectroscopy. 

The Fe K-edge XAS spectra of 1 and 2 are shown in Figure 7. The position of the rising 

edge for 1 (7122.3 eV) is slightly red-shifted by 0.2 eV upon conversion to 2 (7122.1 eV). A 

broad pre-edge feature is also present in both species accompanied by a slight change in 

energy from 7114.8 eV (1) to 7114.6 eV (2).

Fitting of the EXAFS region for 1 (Figure S13 and Table S1) was accomplished with 3 N 

scatterers with Fe–Nave = 2.28 Å, and 2 S scatterers with Fe–Save = 2.50 Å. The N distance 

is in good agreement with Fe–Nave = 2.253(9) Å observed by single-crystal XRD. However, 

the average sulfur distance is elongated in comparison to the data from XRD (Fe–S = 

2.371(2)–2.410(2) Å).40 The EXAFS of 2 (Figure 8 and Table 1) is best fit with a six-

coordinate Fe center, including three Fe–N scatterers at 2.17 Å, two Fe–Save = 2.68 Å, and 

one short Fe–O scatterer at 1.93 Å. The scatterer with the smallest R is assigned as the Fe–

O(peroxo) bond and is a typical length for other end-on Fe(peroxo) complexes.37 The Fe–S 

distance is elongated (relative to the calculated model, vide infra), although this appears to 

be attributed to a high degree of correlation between R for the Fe–S scatter and the global 

shift to E0. This same correlation is observed in the fits to 1. Likewise, the Fe–Nave distance 

is also shorter than predicted by DFT, but R for this path is correlated to that for the Fe–O. 

Exclusion of any of the inner-sphere scattering paths (N, O, S) gave unphysical fitting 

Debye–Waller parameters for the remaining included paths.

The Fourier transform of the k = 2–12 Å−1 EXAFS data reveals appreciable amplitude near 

4 Å. This is far greater in magnitude than that seen in the EXAFS of 1 (Figure S13) and thus 

cannot merely be attributed to distal Fe–Si–S and Fe–S–N multiple scattering (MS). 

Adequate fits require inclusion of Fe–Fe and Fe–O–Fe MS paths. The value of R for the Fe–

Fe path is moderately correlated to the Debye–Waller factor for the Fe–O–Fe MS path. 

Moreover, other MS paths are expected to contribute to this shell. Consequently, we elect to 

use these paths as a bracket on the Fe–Fe distance, affording a range of 4.4–4.75 Å.

Together, the vibrational, Mössbauer, EPR, and EXAFS data support formulation of 2 as a 

diiron peroxo species (Scheme 2). An Fe–Fe distance within the range 4.4–4.75 Å is longer 

than seen for other diiron peroxo complexes,37 although in most of these other cases the 

diiron unit is bridged by one or more supporting ligands (e.g., OH−, RCO2
−). The Fe–Fe 
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distance range for 2 is comparable to the Co–Co distances in dicobalt, unsupported peroxo-

bridged structures.60–63

Geometry optimization of 2 was accomplished using a BP86/6–311G*/6–31G*(C,H) 

functional/basis set combination using broken symmetry (BS) assuming coupling between 

the two S = 5/2 iron centers. Several models of the diiron peroxo complex were tested; 

however, the model that provided the best match with experiment was that with the thiolate 

donors in a gauche orientation with respect to the peroxo core. Broken symmetry models 

involving two S = 3/2 Fe centers were also tested and gave results similar to the S = 5/2 

calculations. However, the intermediate spin state S = 3/2 is unusual for FeIII, and we favor 

the S = 5/2 description for 2.37 The geometry optimization of 2 provided metrical 

parameters that matched reasonably well with those seen by EXAFS, with the exception of 

the Fe–S bonds, which optimize at shorter distances. However, the Fe–S distances from 

EXAFS are likely overestimated (vide supra). The calculations also predict an Fe–Fe 

distance of 4.61 Å, which is close to that obtained from the fit of the EXAFS data. A 

magnetic coupling constant J of −5.5 cm−1 is calculated, indicating antiferromagnetic 

coupling between the two Fe centers (Ĥ = −2JABŜA·ŜB, see Experimental Section). The 

weak antiferromagnetic coupling is consistent with an unsupported peroxo(diiron) complex. 

Similar coupling constants have been obtained for other diiron peroxo complexes.49,65,66 

Vibrational frequency calculations predict ν(O–O) = 893 cm−1, with a calculated downshift 

of −50 cm−1 for the 18O isotopologue of 2, which are both reasonably close to the 

experimental values. Mössbauer calculations give δ = 0.52 mm s−1 and |ΔEQ| = 0.83 mm s
−1, which is a close match with the experimental values.

Complex 2 appears unreactive toward either H atom donors (e.g., phenols, TEMPOH, 1,1-

diphenylhydrazine (DPH)), or O atom acceptors (e.g., PMe3, PPh3, PhSMe). However, 

addition of lutidinium tetrafluoroborate ([LutH]BF4), a weak proton donor (pKa 7.2 in 

THF),67 to 2 at −135 °C results in the formation of 1ox as seen by both EPR and UV–vis 

spectroscopies (Figure S14). Use of the weaker acid [Et3NH]-BF4 (pKa 12.5 in THF),67 

however, results in only very minor decay over 1.5 h. These results are consistent with 

protonation and release of H2O2 from 2. Attempts to measure the released H2O2 by standard 

analytical methods68–71 were unsuccessful. However, these methods require warm up of the 

reaction mixture to ambient temperature, which likely results in consumption of H2O2 by 

reaction with the easily oxidized silanedithiolate ligand. Addition of H2O2 to 1ox at −135 °C 

results in no reaction; however, H2O2 could no longer be detected upon warmup of this 

reaction to 23 °C, supporting the hypothesis that H2O2 is consumed upon warmup.

O–O Bond Cleavage.

The photosensitivity of 2 motivated us to further examine decay of 2 in the presence of light. 

Illumination of 2 in 2-MeTHF at −135 °C with a 619 nm LED light source was monitored 

by UV–visible spectroscopy, and showed isosbestic conversion to a new species with bands 

at 385 (ε ≈ 2600 M−1 cm−1), 460 (ε ≈ 1500 M−1 cm−1), and 890 (ε ≈ 390 M−1 cm−1) nm 

(Figure 9). This new species 3 is stable for at least 1 h in the absence of further illumination. 

Exposure of 3 to UV light (300 nm) leads to further change of the spectral features, 

indicating that 3 is also photosensitive (Figure S15). Illumination of a frozen glass of 2 at 77 
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K results in a color change from dark green to the pale orange of 3, and subsequent EPR 

spectroscopy reveals that 3 is EPR silent. Similarly, exposure of frozen solution Mössbauer 

samples of 2 to 619 nm light at 77 K results in a new quadrupole doublet with δ = 0.21 mm s
−1 and |ΔEQ| = 1.57 mm s−1 (80% total fit) as the major component, and a minor quadrupole 

doublet with δ = 0.49, |ΔEQ| = 1.17 mm s−1 (20% of the fit) (Figure 10). Further 

illumination with a UV lamp results in the disappearance of the major component over 30 

min, and full formation of the minor species as seen by Mössbauer spectroscopy (Figure 

S16).

The long wavelength, relatively weak band seen for 3 at 890 nm in the UV–vis spectrum is 

characteristic of nonheme intermediate spin (S = 1) FeIV(O) species (Scheme 3).72 The 

absence of an EPR signal at X-band for 3 is consistent with an integer-spin FeIV(O) 

complex. The relatively low isomer shift (δ = 0.21 mm s−1) seen for 3 in the Mössbauer 

spectrum is close to those observed for S = 1, alkylamine-ligated FeIV(O) species ([FeIV(O)

(TMC)(X)]2+ (X = CH3CN, OTf, NCO, NCS, N3, CN, OH); δ = 0.15–0.20 mm s−1),72,73 

including a thiolate-ligated example ([FeIV(O)(TMCS)]PF6; δ = 0.19 mm s−1).38 A plot of 

the wavelength of the low energy peak for a range of FeIV(O) (S = 1) complexes versus 

isomer shift reveals a linear correlation, and the isomer shift and UV–vis feature for 3 fit this 

observed trend (Figure S17).

Resonance Raman spectroscopy provided additional evidence for the formation of an 

FeIV(O) species. Specifically, RR spectra of 3 obtained with 351 nm excitation exhibit a 

strongly resonance enhanced band at 735 cm−1 that downshifts to 703 cm−1 when 3 is 

prepared with 18O2 gas (Figure 11). This 32 cm−1 18O-downshift matches the calculated 

value for an isolated Fe–O harmonic oscillator. The ν(Fe=O) signal is only mildly 

photosensitive relative to the peroxo complex, but without sample spinning the 735 cm−1 

band is bleached within minutes under the 351 nm laser illumination, as expected from the 

UV-induced absorption changes discussed above.

The ν(Fe=O) for 3 is, to our knowledge, the lowest reported thus far for an FeIV(O) 

complex,74,75 but alternative assignments of 3 (e.g., ν(FeIII–O) and ν(FeIV–OH))76,77 do not 

fit the experimental data. Rather, the low ν(Fe=O) in 3 may arise from the highly electron-

donating thiolate ligands, which can also behave as noninnocent, redox active ligands.39 

Thus, some FeIII(O)(thiyl radical) character for 3 cannot be ruled out. Many FeIV(O) 

complexes characterized by RR contain neutral/monoanionic ligand sets and are thus 

expected to be significantly less activated. Although no vibrational data for the thiolate-

ligated FeIV(O) complex [FeIV(O)(TMCS)]+ have been reported, EXAFS analysis on this 

species indicates an Fe=O bond length of 1.70 Å,38 which, according to a Badger’s rule 

analysis,78 would correspond to a ν(Fe=O) of 752 cm−1. Similarly weak FeIV=O bonds 

were also observed for an FeIV(O) complex with a tetraamido ligand set (d(Fe–O) = 1.690 

Å)79 as well as compound II of horseradish peroxidase (d(Fe–O) = 1.70 Å).80

The structure of 3 was further scrutinized by Fe K-edge XAS (Figures 12 and 13, and Table 

2). The spectrum exhibits an intense pre-edge feature at 7112.5 eV. Fe K-edge EXAFS were 

obtained to a k of 14.4 Å−1 and fitted to substantiate the presence of an oxo ligand. As 

encountered in fitting the EXAFS of 1 and 2, data resolution led to a high degree of fit 
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parameter correlation between the Fe–N and Fe–S scattering paths. The inclusion of a short 

Fe–O path with R of 1.687(6) Å significantly improved the fit. A high Debye–Waller factor 

is found for this path if the Mössbauer-derived proportion of 3 was factored in to produce a 

Fe–O CN of 0.8. Although we recognize that the Debye–Waller and CN parameters are 

moderately correlated, a better fit with a more reasonable Debye–Waller factor was obtained 

when this CN was permitted to float to 0.57(7), which is reasonable given the ca. 20–25% 

error endemic to CN in EXAFS fitting.64 Taken together, all of the spectroscopic data 

confirm the assignment of 3 as an FeIV(O) complex, which can be generated either in fluid 

solution or in frozen matrix by illumination with a relatively weak light source.

Warming a solution of 2 from −135 to −105 °C in the dark also leads to the formation of 3, 

as seen by UV–vis and Mössbauer spectroscopies. The quadrupole doublet of 3 under these 

conditions exhibits slightly different parameters from the photochemically generated 3, 

which can be attributed to slight differences in the local environment when 3 is generated in 

fluid solution versus frozen matrix. It can be concluded that cleavage of the O–O bond of 2 
occurs through either thermal or photochemical activation.

DFT calculations on 3 provided further insights. The experimental data could not distinguish 

the spin state of the ground state for 3; therefore, geometry optimizations of the triplet and 

quartet ferryl structures were performed using the methods detailed above as well as several 

alternative methods. Calculations of 3 in the quintet state did not provide a good match with 

the experimental data. In each case in the S = 1 state, the geometry optimization 

underestimated the Fe–O bond length (calcd d(Fe–O) = 1.63–1.66 Å) from the EXAFS data 

(d(Fe–O) = 1.687 Å), and, as a result, the calculated ν(Fe–O) was overestimated. 

Underestimation of a metal–Oxo bond length by DFT was also observed for a recently 

reported CoIV(O) complex.81 A geometry scan of the Fe–O bond length reveals a relatively 

flat surface potential, with the structure exhibiting d(Fe–O) = 1.7 Å being within 1 kcal mol
−1 in energy from the lowest energy structure (Figure S29). A constrained geometry 

optimization with an Fe–O distance fixed at 1.7 Å provided a suitable structure for 3 and a 

calculated ν(Fe–O) of 731 cm−1, which is a close match with the experimental data. 

Subsequent Mössbauer calculations on the constrained structure gave calculated parameters 

of δ = 0.15 and |ΔEQ| of 1.66 mm s−1, which are in good agreement with the experimental 

data. Single point calculations were performed using the B3LYP/ZORA-def2-TZVP(-f)/

CP(PPP) (on Fe) functional/basis set combination, and predicts that a significant amount of 

spin density (0.6 spins) should be located on the O atom. Taken together, these data support 

the conclusion that 3 is a mononuclear, FeIV(O) species obtained via cleavage of the O–O 

bond in 2.

Reactivity of 3.

In contrast to 2, complex 3 reacts with H atom donors. Addition of 4-methoxy-2,2,6,6-

tetramethylpiperidin-1-ol (4-OMe-TEMPOH) results in the rapid decay of 3 and formation 

of a new species, 4, with bands at 410 and 485 nm in the UV–vis spectrum. Similarly, 

addition of 2,6-di-tert-butyl-4-methoxyphenol (4-OMe-dtbp) or 2,4,6-tri-tert-butyl-phenol 

(ttbp) results in the disappearance of 3 and formation of the band at 485 nm, while the band 

at 410 nm is masked by a new, sharp peak at 409 nm, which corresponds to the phenoxyl 
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radical (Figure 14). The EPR spectrum of the reaction of 3 with 4-OMe-dtbp reveals a peak 

at g = 4.3 and a sharp, intense peak at g = 2.004, which is assigned to the anticipated FeIII 

product and phenoxyl radical, respectively (Figure 14). Spin quantitation of the EPR signals 

reveals a >95% yield for the high-spin FeIII species 4 and a 75% yield for the phenoxyl 

radical (average of three runs; see Supporting Information).

Mössbauer spectroscopy on the reaction of excess 4-OMedtbp and 3(57Fe) leads to complete 

disappearance of the quadrupole doublet for 3 and formation of a new, major species with δ 
= 0.49 mm s−1, |ΔEQ| = 1.08 mm s−1 (Figure 15). This new quadrupole doublet for 4 is 

typical of hs-FeIII, consistent with the EPR data. Thus it is reasonable to conclude that 4 is 

the expected FeIII(OH) product formed immediately after a single H-atom abstraction by 3 
(Scheme 4).

Further support for the assignment of 4 as a mononuclear FeIII(OH) complex comes from 

XAS. The spectrum obtained for 4 exhibits a pre-edge feature at 7113.6 eV with diminished 

intensity relative to the pre-edge feature encountered in the spectrum of 3 (Figure 12). The 

effectively invariant rising edge and pre-edge energies are reminiscent of a recent 

observation by Que and co-workers that Fe K-edge energies cannot be used to 

unambiguously assign Fe oxidation states.82 This diminished intensity is consistent with 

elongation of the Fe–O bond that would occur following hydrogen atom transfer (HAT). 

This result is supported by the EXAFS of 4 (Figure 16 and Table 3), which is best fit with a 

six-coordinate Fe center with three Fe–N scatterers at 2.25 Å, two Fe–Save = 2.39 Å, and one 

Fe–O scatterer at 1.91 Å. The Fe–O scatterer is assigned to the Fe–OH bond, and has a bond 

length similar to that of other mononuclear ferric hydroxide species.82–84

DFT studies were performed to corroborate the experimental data. Geometry optimization of 

4 gives bond metrics that are in good agreement with the EXAFS-derived bond distances. 

Calculation of the Mössbauer parameters gives δ = 0.44, |ΔEQ| = 0.77 mm s−1, which are 

also a good match with the experimental data. Additional evidence for assignment of 4 
comes from mixing Bu4NOH or LiOH (1 equiv) with the oxidized 1ox, which leads to the 

formation of 4 as seen by both UV–vis and Mössbauer spectroscopy (Figures S26–S28). The 

Mössbauer spectrum in Figure 15 for the HAT product is slightly broader than the spectrum 

seen for the LiOH product. This broadness may be due to the presence of the ~20% 

photodecay product from the ferryl species seen in Figure 10, which has Mössbauer 

parameters nearly identical to those of 4. These data are consistent with complex 3 being 

able to perform a single H-atom abstraction with phenols to generate a mononuclear ferric 

hydroxide species.

Complex 3, however, is unreactive toward weak C–H bond substrates such as xanthene, 

acridine, and N-benzyldihydronicotinamide. The differences in reactivity between O–H and 

C–H bonds with comparable bond strengths are well-established and have been discussed 

previously.85 In addition, 3 is unreactive toward OAT reactions, as no reaction is observed 

with thioanisole, PPh3, or PMe3. A similar lack of OAT reactivity has been observed with 

the only other thiolate-ligated nonheme FeIV(O) complex.38
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CONCLUSIONS

The thiolate-ligated nonheme iron complex FeII(Me3TACN)-(S2SiMe2) (1) reacts with O2 to 

generate a peroxo(diiron) species 2. Complex 2 represents a rare example of a thiolate-

ligated Fe/O2 adduct, an unsupported nonheme diiron peroxo species, which was 

characterized by UV–vis, Mössbauer, RR, and X-ray absorption spectroscopies. The O–O 

bond of 2 can be cleaved to produce an FeIV(O) species either photochemically or thermally. 

The resulting FeIV(O) is capable of performing H atom abstraction with O–H bonds to 

produce an FeIII(OH) species, which could be independently synthesized via outer-sphere 

oxidation and addition of hydroxide (Scheme 5). Complex 3 is a thiolate-ligated FeIV(O) 

species that is inert toward OAT to either the internal sulfur ligands or the exogenous O atom 

acceptors, yet readily abstracts H atoms from phenol substrates.

FeII(Me3TACN)(S2SiMe2) can also be compared to the Co analogue, CoII(Me3TACN)

(S2SiMe2),39 which reacts with O2 irreversibly to generate a mononuclear Co(superoxo) 

species. The differences in reactivity between the Co and Fe analogues may arise from 

reversibility of the formed M–O bond. A pair of Fe/Co superoxo complexes, M(O2)(BDPP) 

(M = Fe, Co), was shown to exhibit marked differences in the reversibility of binding O2, 

with Fe being able to release O2 at −80 °C upon N2 purging, whereas the analogous Co 

complex does not release O2 below −90 °C.35,86 We hypothesize that complex 2 is formed 

via the intermediacy of an Fe–superoxo intermediate that is in equilibrium with 1 and can 

readily release O2 to capture another equivalent of Fe–superoxo, ultimately forming the 

Fe2O2 species 2.

FeII(Me3TACN)(S2SiMe2) serves as a platform to activate O2 to generate a series of Fe/

oxygen intermediates (Fe(peroxo), Fe(oxo), and Fe(hydroxo) species), which could be 

trapped at low temperature and spectroscopically characterized (Scheme 5 and Table 4). This 

sequence of reactive species has been proposed in the activation of O2 by iron and 

manganese complexes.1,30,87–90 A crystallographically characterized thiolate-ligated MnIII–

O–O–MnIII complex has been demonstrated to decay to an oxo-bridged MnIII–O–MnIII; 

however, no MnIV(O) species was identified.70 In addition, a similar thiolate-ligated Fe 

complex was shown to react with O2 to form an FeIII
2(μ-O) complex. No intermediates were 

reported in the latter reaction, but a mechanism implicating formation of a peroxo-bridged 

dimer and O–O bond cleavage was suggested.30 The silanedithiolato iron complex described 

here contains a ligand environment that allows for the generation and comparison of three 

O2-derived species and provides direct evidence for O–O bond cleavage in a (peroxo)diiron 

complex to produce an FeIV(O) complex. A major finding of this study is that mechanisms 

invoking O–O bond homolysis to generate high-valent metal–oxo complexes are feasible for 

O2 activation by nonheme iron centers. This work also shows that metal-bound, reactive 

oxygen species can be supported by thiolate ligation, and establishes the viability of forming 

these Fe/O2 intermediates in the presence of sulfur ligands without leading to immediate 

sulfur oxidation. These findings help to support similar proposed O2 activation pathways in 

thiolate-ligated nonheme iron enzymes, demonstrating that the multistep binding and 

activation of O2 at nonheme iron can take place prior to sulfur oxidation.
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EXPERIMENTAL SECTION

Materials.

All syntheses and manipulations were conducted in an N2-filled drybox (Vacuum 

Atmospheres, O2 < 0.2 ppm, H2O < 0.5 ppm) or using standard Schlenk techniques under an 

atmosphere of Ar unless otherwise noted. Me3TACN was purchased from Matrix Scientific, 

degassed by three freeze–pump–thaw cycles, and stored over 3 Å molecular sieves. 

Hexamethylcyclotrisilathiane ((Me2SiS)3) was prepared according to a published procedure.
40 Fe(OAc)2 was synthesized according to a published procedure.91 FcBArF

4 and 
Me2FcBArF

4 were prepared according to modified reported procedures92 using KBArF
4 

purchased from Boulder Scientific Co. (Mead, CO). Isotopically enriched 57Fe metal 

(95.5%) was purchased from Cambridge Isotope Laboratories (Andover, MA). Isotopically 

enriched 57Fe(OAc)2 was synthesized according to a published procedure using 57Fe 

powder.93 18O2 (98 atom %) was purchased from ICON Isotopes (Summit, NJ). 4-OMe-

TEMPOH was synthesized according to a published procedure.94 4-OMe-dtbp was purified 

by crystallization from hot ethanol and dried over P2O5 prior to use. All other reagents were 

purchased from commercial vendors and used without further purification. Methanol was 

distilled from CaH2. Tetrahydrofuran, pentane, hexane, and 2-MeTHF were dried over Na/

benzophenone and subsequently distilled. Diethyl ether was obtained from a PureSolv 

solvent purification system (SPS). All solvents were degassed by a minimum of three 

freeze–pump–thaw cycles and stored over freshly activated 3 Å molecular sieves in the 

drybox following distillation.

Instrumentation.

The 1H spectra were measured on a Bruker 300 MHz or a Bruker 400 MHz spectrometer. 

Chemical shifts were referenced to reported solvent resonances.95 UV–vis experiments were 

carried out on a Cary bio-50 or Cary 60 UV–vis spectrophotometer equipped with a Unisoku 

USP-203A cryostat using a 1 cm modified Schlenk cuvette. EPR measurements were 

performed on a Bruker X-band EPR in 5 mm quartz EPR tubes (Willmad). EPR spectral 

simulations were performed using Easy-Spin.96 Cyclic voltammetry experiments were 

performed in a N2 atmosphere drybox using a Princeton Applied Research Versastat II 

potentiostat and a three-electrode setup (1 mm platinum working electrode, Pt wire counter 

electrode, and a silverwire pseudoreference electrode) with electrodes purchased from BASi, 

Inc., and/or CH Instruments, Inc.

Computational Methods.

All geometry optimizations were performed in the ORCA-4.0.1.2 program package.97 Initial 

geometries were obtained from the X-ray crystallographic model of 1 and altered as needed. 

Optimized geometries were calculated using the BP86 functional98,99 or with B3LYP100 for 

3, in combination with the D3 dispersion correction,101 which gave satisfactory results in 

reproducing the experimentally derived bond metrics and vibrational frequencies. The basis 

set 6–311g* was used for all Fe, S, N, O, and Si atoms, and the 6–31g* basis set was used 

for all C and H atoms.102–106 Solvent effects in these calculations were accounted for by 

using the conductor-like polarizable continuum model (CPCM), specifying the dielectric 

constant (ε) for THF in all cases except for 2.107 To reduce computational costs, the 
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Resolution of Identity (RI) approximations108 in tandem with the def2/J auxiliary basis 

set109 were employed. Because of SCF convergence difficulties in some cases, damping 

parameters were altered using the slowconv function in ORCA. Broken symmetry 

calculations were carried out,110–112 and coupling contant J was calculated on the basis of 

the spin Hamiltonian Ĥ = −2JABŜA·ŜB, where J = (EHS – EBS)/Smax
2. EHS and EBS refer to 

the energies of the high and broken symmetry spin states.110,111 Frequency calculations at 

the same level of theory confirmed that all optimizations had converged to true minima on 

the potential energy surface (i.e., no imaginary frequencies). The optimized structures were 

used for Mössbauer calculations. Mössbauer parameters were computed using the B3LYP100 

functional and a combination of CP(PPP)113 for Fe and def2-TZVP114,115 for all other 

atoms. The angular integration grid was set to Grid4 (NoFinalGrid), with increased radial 

accuracy for the Fe atom (IntAcc 7). To simulate solid state effects, a continuum solvation 

model was included (COSMO) with methanol designated as solvent, which has been shown 

to lead to accurate predictions of Mössbauer parameters.43 The isomer shift was obtained 

from the electron density at the Fe nucleus, using a previously reported linear fit function, 

δcalc = α(ρ(0) − C) + β where α = −0.424 mm s−1 au,3 β = 7.55 mm s−1, and C = 11 800 au,
3 which was derived by plotting ρ(0) versus the experimental isomer shift of a series of Fe 

complexes.43 Single point calculations were carried out using the B3LYP116 hybrid density 

functional. These calculations employed zeroth-order regular approximation (ZORA)117–119 

for relativistic effects. Single point calculations used the CP(PPP)120,121 basis set on Fe and 

the ZORA-def2-TZVP(-f)114,115,122 basis set on all other atoms.

Preparation of 2(57Fe): Mössbauer Spectroscopy.

A solution of 57Fe-enriched 1(57Fe) in 2-MeTHF was cooled to −135 °C. Excess O2 was 

bubbled through the solution of 1(57Fe) in the dark, resulting in the formation of a dark 

green solution. The green solution was then poured into liquid nitrogen to form a frozen, 

dark green powder. The powder was pulverized with a spatula while being maintained under 

liquid nitrogen and then transferred into a Delrin Mössbauer cup fitted with a Delrin cap. 

The sample was stored under liquid nitrogen until it was loaded into the Mössbauer 

spectrometer.

Preparation of 2 and 3 for Resonance Raman Spectroscopy.

A stock solution of FeII(Me3TACN)(S2SiMe2) (1) was prepared in 2-MeTHF (4.5 mM). An 

aliquot of the stock solution of 1 was transferred to a 5 mm NMR tube and sealed with a 

septum in a drybox. The sealed NMR tube was removed from the drybox and cooled to 

−135 °C in a pentane/N2(l) bath. Either 16O2 (natural abundance, 2 mL) or 18O2 (98%, 2 

mL) was added to the solution of 1 in the dark, yielding a color change from colorless to 

dark green. The reaction was allowed to proceed with frequent manual mixing for 5 min, 

and then the reaction mixture containing 2 was slowly annealed in liquid nitrogen and stored 

at 77 K until needed. Samples of 3 were prepared by generating frozen samples of 2 and 

then exposing these samples to 619 nm LED light for 25 min, resulting in a color change 

from dark green to pale orange. Samples were stored at 77 K until needed. Resonance 

Raman (RR) spectra were obtained using a custom McPherson 2061/207 spectrograph (set 

at 0.67 m with variable gratings) equipped with a liquid nitrogen-cooled CCD detector 

(LN-1100PB, Princeton Instruments). After attempts with different laser excitations, the 407 
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and 351 nm lines from a Kr laser (Innova 300, Coherent) were selected for the RR 

characterizations of complexes 2 and 3, respectively. Long-pass filters (RazorEdge, 

Semrock) were placed in front of the spectrograph entrance slit to attenuate the Rayleigh 

scattering. RR spectra were recorded using a 180° scattering geometry on samples 

maintained at 110 K inside a copper coldfinger and with continuous spinning. Frequencies 

were calibrated relative to aspirin and are accurate to ±1 cm−1.

Preparation of 2: X-ray Absorption Spectroscopy.

A solution of 57Fe-enriched 1(57Fe) (2 mL, 10.8 mM) in 2-MeTHF was cooled to −135 °C. 

Excess O2 was bubbled through the solution of 1(57Fe) in the dark, resulting in the 

formation of a dark green solution. The green solution was then poured into liquid nitrogen 

to form a frozen, dark green powder. The powder was pulverized with a spatula while being 

maintained under liquid nitrogen and then transferred into a Delrin XAS cup with slits (1 × 4 

mm). The slits were covered with Kapton tape (38 μm) to make X-ray transparent windows. 

All samples were 57Fe-enriched for measurement by Mössbauer spectroscopy prior to XAS. 

Fe K-edge XAS data including extended X-ray absorption fine structure (EXAFS) data were 

obtained at the Stanford Synchrotron Lightsource Radiation (SSRL) at the 16-pole, 2 T 

wiggler beamline 9–3 under ring conditions of 3 GeV and 500 mA. A Si(220) double-crystal 

monochromator was used for energy selection. A Rh-coated mirror (set to an energy cutoff 

of 9 keV) was used for harmonic rejection, and the internal energy calibration was 

performed by assigning the first inflection point of an Fe foil spectrum to 7111.2 eV 

downstream of the sample. Data were collected in fluorescence mode (windowed onto Fe 

Kα1) using a Canberra 30-element Ge moonlight solid-state detector perpendicular to the 

incident beam. Elastic scatter into the detector was attenuated using a Soller slit with an 

upstream Mn filter. During collection, samples were maintained at 10 K in an Oxford liquid 

He flow cryrostat, and 9 scans were obtained for each sample. Multiple spots were collected 

per sample, although there was no evidence of photodamage. The scans were averaged and 

processed using the SIXPACK software package.123 A smooth pre-edge background was 

removed from each averaged spectrum by fitting a second-order polynomial to the pre-edge 

region and subtracting this polynomial from the entire spectrum. The postedge region was fit 

to a three-region cubic spline, flattened below 7130 eV, and then subtracted from the entire 

spectrum. Data were then normalized to a value of 1.0 at 7130 eV. EXAFS data were fit 

using the OPT module of the EXAFSPAK software package124 with input scattering paths 

generated using FEFF7.125,126

Preparation of 3(57Fe) for Mössbauer Spectroscopy.

Photolysis.—A solution of 57Fe-enriched 1(57Fe) (1.5 mL, 6 mM) in 2-MeTHF was 

cooled to −135 °C. Excess O2 was bubbled through the solution of 1(57Fe) in the dark, 

resulting in the formation of a dark green solution. The green solution was then poured into 

liquid nitrogen to form a dark green frozen powder. The powder was pulverized with a 

spatula while being maintained under liquid nitrogen. The pulverized powder was then 

covered with a glass Petri dish to filter out UV light and exposed to a 619 nm LED lamp for 

30 min under liquid nitrogen, resulting in a color change from dark green to pale orange. 

The frozen powder was then transferred into a Delrin Mössbauer cup fitted with a Delrin 

Gordon et al. Page 14

J Am Chem Soc. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cap. The sample was stored under liquid nitrogen until it was loaded into the Mössbauer 

spectrometer.

Thermolysis.—A solution of 57Fe-enriched 1(57Fe) (1.5 mL, 4.8 mM) in 2-MeTHF was 

cooled in a sealed vial at −105 °C. Excess O2 was bubbled through the solution of 1(57Fe) in 

the dark, resulting in the formation of a dark green solution, which gradually turned pale 

orange over 15 min. The orange solution was then poured into liquid nitrogen to form a 

frozen, light orange powder. The powder was pulverized with a spatula while being 

maintained under liquid nitrogen and transferred into a Delrin Mössbauer cup fitted with a 

Delrin cap. The sample was stored under liquid nitrogen until it was loaded into the 

Mössbauer spectrometer.

Quantitation of 4 and Phenoxyl Radical by EPR Spectroscopy.

A stock solution of 1 was prepared in 2-MeTHF (1.1 mM). An aliquot of the stock solution 

(450 μL) of 1 was transferred into a 5 mm EPR tube and sealed with a septum in a drybox. 

The tube was removed from the drybox and cooled to −135 °C. Excess O2 was then bubbled 

directly through the solution of 1 resulting in a color change from colorless to dark green. 

The sample was then frozen at 77 K and irradiated with a 619 nm LED bulb for 10 min 

resulting in a color change from dark green to pale orange. The solution was then warmed to 

−130 °C, and an aliquot of 4-OMe-dtbp (50 μL, 28 equiv in 2-MeTHF) was added. Manual 

mixing of the sample for 1 min resulted in a color change to dark orange red, and the sample 

was then slowly annealed in liquid nitrogen and stored at 77 K until needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Reactions of CDO, EgtB, and IPNS.

Gordon et al. Page 23

J Am Chem Soc. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Cyclic voltammogram of 1 (5 mM) in CH3CN at 23 °C, with nBu4NPF6 (0.3 M) as 

supporting electrolyte. Working electrode, glassy carbon; reference electrode, Ag wire; 

counter electrode, Pt wire. Scan rate: 50 mV s−1. Black line corresponds to full scan window 

from 1.4 to −1.6 V. Red line corresponds to isolated [FeS2]+/[FeS2]0 event from −0.1 to −1.2 

V.
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Figure 3. 
UV–vis spectral changes for the titration of 1 (0.2 mM) with Me2FcBArF

4 (0–1 equiv) in 2-

MeTHF at −80 °C. Inset: EPR spectrum of the oxidized species (1ox) in 2-MeTHF at 20 K. 

Black line, experimental data; red line, simulation.
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Figure 4. 
UV–visible spectra showing conversion of 1 (blue line) (0.2 mM) to 2 (red line) over 5 min 

of exposure to excess O2 in 2-MeTHF at −135 °C.
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Figure 5. 
Zero-field 57Fe Mössbauer spectrum of 2 at 80 K in 2-MeTHF. Fit shown in red.
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Figure 6. 
RR spectra of 2 in 2-MeTHF at 110 K (λexc = 407 nm). Black and red spectra show first and 

second 30 s data acquisition, respectively; gray spectrum is that of 2-MeTHF; green spectra 

are the difference spectra between the first and second 30 s data acquisition sets for samples 

prepared with 16O2 and 18O2.
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Figure 7. 
Fe K-edge XANES data obtained for 1 and 2 at 10 K.
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Figure 8. 
Fe K-edge EXAFS data obtained for 2 at 10 K. Experimental data are plotted in red, while 

the dashed line corresponds to the fit obtained using parameters included in Table 1 (entry 

11 in Table S2). The Fourier transform includes data from k = 2–12 Å−1.
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Figure 9. 
UV–visible spectra showing conversion of 2 (blue line) to 3 (red line) upon exposure to 619 

nm light in 2-MeTHF at −135 °C for 10 min.
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Figure 10. 
Zero-field 57Fe Mössbauer spectrum of 3 at 80 K in 2-MeTHF. Overall fit shown as a red 

line. Fits for subspectra shown as blue and gray lines.
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Figure 11. 
RR spectra of 3 in 2-MeTHF at 110 K (λexc = 351 nm). Black spectrum for 3 with 16O2 

(natural abundance); red spectrum for 3 with 18O2 (98%); green spectrum is the difference 

spectrum (16O2 − 18O2).
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Figure 12. 
Fe K-edge XANES data obtained for 3 and 4 at 10 K.
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Figure 13. 
Fe K-edge EXAFS data obtained for 3 at 10 K. Experimental data are plotted in red, while 

the dashed line corresponds to the fit obtained using parameters included in Table 2 (entry 8 

in Table S3). The Fourier transform includes data from k = 2–14.4 Å−1.
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Figure 14. 
UV–visible spectra showing reaction of 3 (blue line) (0.2 mM) with 4-OMe-dtbp (9 equiv) 

2-MeTHF at −135 °C over 30 min. Inset: X-band EPR spectrum (20 K) of the reaction of 3 
(1 mM) with 4-OMe-dtbp in 2-MeTHF. Conditions: Microwave freq = 9.4139 GHz; 

microwave power = 0.20 mW; mod amp = 10 G; rec gain = 5 × 103.
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Figure 15. 
Zero-field 57Fe Mössbauer spectrum of 4 at 80 K in 2-MeTHF. Fit shown in red.
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Figure 16. 
Fe K-edge EXAFS data obtained for 4 at 10 K. Experimental data are plotted in red, while 

the dashed line corresponds to the fit obtained using parameters included in Table 3 (entry 5 

in Table S4). The Fourier transform includes data from k = 2–12 Å−1.
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Scheme 1. 
Formation of Co(O2)(Me3TACN)(S2SiMe2)
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Scheme 2. 
Activation of O2 by Complex 1
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Scheme 3. 
O–O Bond Cleavage of Complex 2
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Scheme 4. 
Reaction of 3 with an H-Atom Donor
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Scheme 5. 
Summary of Reactivity of FeII(Me3TACN)(S2SiMe2)
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Table 1.

Best Fit to Fe K-Edge EXAFS of Complex 2 (F = 29.81%)
a,b,c

path CN R (Å) ± σ2 ±

Fe-N 3 2.173 0.007 0.0055 0.0007

Fe-S 2 2.684 0.006 0.0020 0.0004

Fe-O 1 1.931 0.009 0.0029 0.0007

Fe-Fe 1 4.38 0.04 0.010 0.006

Fe-O-Fe (MS) 4 4.740 0.009 0.0047 0.0005

Fe-Si 1 2.91 0.02 0.001 0.001

Fe-N-C (MS) 18 3.37 0.01 0.002 0.002

Fe-C 5 4.09 0.01 0.001 0.001

a
See Table S2 for a list of sequentially improved fits.

b
EXAFS data were fit with EXAFSPAK using paths calculated by FEFF7. Coordination numbers (CN) were held constant, whereas distances (R) 

and Debye–Waller factors (σ2) were allowed to vary. Goodness of fit was measured with F, which was defined as 

∑i
n ki

3 EXAFSobs − EXAFScalc i
2/n

1/2
. E0 for the best fit was +5.15 eV.

c
Tabulated errors (±) correspond to fitting errors. Expected errors for R are ±0.02 Å; expected errors in CN are ca. 20–25%.64

J Am Chem Soc. Author manuscript; available in PMC 2020 November 06.
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Table 2.

Best Fit to Fe K-Edge EXAFS of Complex 3 (F = 30.25%)
a,b,c

path CN R (Å) ± σ2 ±

Fe-N 3 2.220 0.003 0.0054 0.0003

Fe-S 2 2.321 0.007 0.022 0.002

Fe-O 0.57(7) 1.687 0.006 0.008 0.001

Fe-N-C 24 3.613 0.004 0.0019 0.0004

Fe-C 2 2.95 0.01 0.007 0.001

Fe-C 4 3.185 0.008 0.0076 0.0009

a
See Table S3 for a list of sequentially improved fits.

b
EXAFS data were fit with EXAFSPAK using paths calculated by FEFF7. Coordination numbers (CN) were held constant, whereas distances (R) 

and Debye–Waller factors (σ2) were allowed to vary. Goodness of fit was measured with F, which was defined as 

∑i
n ki

3 EXAFSobs − EXAFScalc i
2/n

1/2
. E0 for the best fit was +5.15 eV.

c
Tabulated errors (±) correspond to fitting errors. Expected errors for R are ±0.02 Å; expected errors in CN are ca. 20–25%.64
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Table 3.

Best Fit to Fe K-Edge EXAFS of Complex 4 (F = 28.75%)
a,b,c

path CN R (Å) ± σ2 ±

Fe-N 3 2.246 0.018 0.0100 0.0042

Fe-S 2 2.391 0.005 0.0060 0.0011

Fe-OH 1 1.907 0.012 0.0056 0.0010

Fe-N-C 24 3.293 0.011 0.0029 0.0006

a
See Table S4 for a list of sequentially improved fits.

b
EXAFS data were fit with EXAFSPAK using paths calculated by FEFF7. Coordination numbers (CN) were held constant, whereas distances (R) 

and Debye–Waller factors (σ2) were allowed to vary. Goodness of fit was measured with F, which was defined as 

∑i
n ki

3 EXAFSobs − EXAFScalc i
2/n

1/2
. E0 for the best fit was +5.15 eV.

c
Tabulated errors (±) correspond to fitting errors. Expected errors for R are ±0.02 Å; expected errors in CN are ca. 20–25%.64
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Table 4.

Summary of Reactivity of FeII(Me3TACN)(S2SiMe2)
a

complex UV–vis λmax (nm) Mössbauer
b
 δ; |ΔEq| (mm s−1) EPR g RR freq (cm−1) XAS pre-edge; rising edge (eV)

1 269 0.92, 2.27 silent 7114.8; 7122.3

1ox 300, 435, 520, 600 0.45; 3.6 6.38, 5.53, 1.99

2 300, 390, 530, 723 0.53; 0.76 silent
849 (−47)

c 7114.7; 7122.1

3 300, 385, 460, 890 0.21; 1.57 silent
735 (−32)

d 7112.5; 7121.6

4 410, 485 0.49; 1.08 9.3, 4.3 7113.6; 7121.8

a
All data collected in 2-MeTHF.

b
Complex 1 collected at 5 K; all other data collected at 80 K.

c
Frequency refers to ν(O–O), and value in parentheses represents downshift for 18O-labeled complex.

d
Frequency refers to ν(Fe–O), and value in parentheses represents downshift for 18O-labeled complex.
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