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Abstract

Neuronal dendrites are highly branched and specialized compartments with distinct structures and 

secretory organelles (e.g., spines, Golgi outposts), and a unique cytoskeletal organization that 

includes microtubules of mixed polarity. Dendritic membranes are enriched with proteins, which 

specialize in the formation and function of the post-synaptic membrane of the neuronal synapse. 

How these proteins partition preferentially in dendrites, and how they traffic in a manner that is 

spatiotemporally accurate and regulated by synaptic activity are long-standing questions of 

neuronal cell biology. Recent studies have shed new insights into the spatial control of dendritic 

membrane traffic, revealing new classes of proteins (e.g., septins) and cytoskeleton-based 

mechanisms with dendrite-specific functions. Here, we review these advances by revisiting the 

fundamental mechanisms that control membrane traffic at the levels of protein sorting and motor-

driven transport on microtubules and actin filaments. Overall, dendrites possess unique 

mechanisms for the spatial control of membrane traffic, which might have specialized and co-

evolved with their highly arborized morphology.
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1. Introduction

Named after “dendron”, the Greek word for “tree”, dendrites are highly branched processes 

that neurons develop for connecting and communicating with axons. Most neurons generate 

only a single axon, but form multiple dendrites with complex geometries and morphologies, 

which differ depending on their three-dimensional position (i.e., apical, basal) and neuronal 

cell type (Benavides-Piccione et al., 2006; DeFelipe and Jones, 1988; Fiala and Harris, 

1999; Koester and O’Leary, 1992; McAllister, 2000; Spruston, 2008). Dendrites are 

compartments with distinct membrane organelle and protein content, and develop the highly 

specialized dendritic spines, which form synapses and regulate synaptic strength (Hanus and 

Ehlers, 2008; Hering and Sheng, 2001; Horton and Ehlers, 2004; Nusser, 2012; Rochefort 
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and Konnerth, 2012). In contrast to axons, whose morphogenesis has been extensively 

studied, it is less understood how dendrites acquire their structural and biochemical identity. 

As axonal morphogenesis precedes dendritic outgrowth, dendrites have been often viewed as 

structures made by default, so to speak. Recent advances, however, amend this view, 

showing that dendrite-specific mechanisms account for the structural and biochemical 

identity of dendrites. Here, we review the molecular players and mechanisms that spatially 

control membrane traffic in dendrites focusing on protein sorting in secretory and endocytic 

organelles, and transport on the microtubule and actin cytoskeleton (Figure 1).

2. Dendrite morphogenesis: cytoskeletal and membrane organization

Dendrite outgrowth and arborization have been well documented dating back to the historic 

observations of Camillo Golgi and Santiago Ramon y Cajal, which were made in 

histological preparations, and the seminal studies of Gary Banker in living cultured neurons 

(Banker, 2018; Bentivoglio et al., 2019; Garcia-Lopez et al., 2010). Observations of neurons 

in vivo and in vitro show that dendrites often form and grow after the development of an 

axon (Barnes and Polleux, 2009; Dotti et al., 1988; Funahashi et al., 2014; Tahirovic and 

Bradke, 2009). Dendritic outgrowth is characterized by an inherent asymmetry as the apical 

dendrite extends longer and terminates into a branched pattern (apical tuft), while basal 

dendrites undergo continuous branching forming trees of diverse lengths and terminal 

branches (Fiala and Harris, 1999; Lefebvre et al., 2015; McAllister, 2000; Spruston, 2008). 

In pyramidal neurons that migrate radially to the cortical plate, the apical dendrite is 

generated from the leading process with cues from the extracellular matrix (Funahashi et al., 

2014; Kon et al., 2017; Sakakibara and Hatanaka, 2015). However, in a subset of migrating 

neurons of the developing hippocampus that lack a leading process, and in cultured neurons 

in vitro, the apical dendrite appears to arise stochastically from one of the undifferentiated 

neurites of the cell body (Funahashi et al., 2014; Kon et al., 2017; Sakakibara and Hatanaka, 

2015). During growth, both apical and basal dendrites taper off as their shaft becomes 

thinner with increasing distance from the cell body (Fiala and Harris, 1999; Lefebvre et al., 

2015; McAllister, 2000). This is a salient characteristic of dendrites as axons do not taper 

off. Dendrites also exhibit a self-avoidance phenomenon termed tiling, which is the ability to 

grow and branch into areas without overlapping due to repulsive dendrite-to-dendrite cues 

(Grueber and Sagasti, 2010; Lefebvre et al., 2015). Dendrite outgrowth and branching are 

highly dynamic as growing dendrites elongate, shrink, cease to grow and remodel their 

branched arbors, all of which are influenced by extracellular factors and synaptic activity 

(Lohmann and Wong, 2005; Maletic-Savatic et al., 1999; McAllister, 2000; Spruston, 2008). 

Knowledge of how dendrite dynamics are extrinsically and intrinsically controlled has been 

steadily advancing. Studies in genetically tractable organisms such as D. melanogaster and 

C. elegans have yielded important insights and were reviewed previously (Dong et al., 2015; 

Jan and Jan, 2010; Puram and Bonni, 2013; Sundararajan et al., 2019; Yogev and Shen, 

2017).

At a rudimentary intrinsic level, dendrite development is mechanistically dependent on the 

microtubule and actin cytoskeleton, which drives neurite formation, and exocytosis, which 

supplies membrane for dendritic growth (Conde and Caceres, 2009; Kennedy and Ehlers, 

2011; Konietzny et al., 2017; Penazzi et al., 2016). The spatial organization of microtubules 
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and actin, which are structurally polarized polymers, is critical for dendrite morphogenesis, 

influencing neurite formation and the directionality of membrane traffic. Early observations 

using electron microscopy techniques showed that undifferentiated neurites and the distal 

regions of mature dendrites contain uniformly oriented microtubules with their plus-ends 

facing away (plus-endout) from the cell body (Baas et al., 1989; Baas et al., 1988; Baas and 

Lin, 2011). In contrast, proximal and mid regions of the dendritic shaft contained 

microtubules with mixed orientation, suggesting that minus-end-out microtubules are added 

during the development of dendrites (Baas et al., 1989; Baas et al., 1988; Wang et al., 1996). 

Recent studies have confirmed the presence of a microtubule network of mixed orientation 

in dendritic shafts, but microtubules with minus-end-out orientation were also found in 

immature neurites and distal dendrites (Kollins et al., 2009; Yau et al., 2016). Moreover, 

dendritic microtubules appear to organize in bundles of opposite unidirectional orientation 

that stretch along the dendritic shaft, resembling the microtubules of the ciliary axoneme that 

function like double-track railways for intraflagellar transport (Stepanek and Pigino, 2016; 

Tas et al., 2017). In contrast to mammalian dendrites, microtubules in Drosophila and C. 
elegans dendrites are predominately orientated with their minus-ends-out (Rolls, 2011).

In coordination with microtubules, the actin cytoskeleton promotes the growth and shape of 

dendrites (Konietzny et al., 2017; Lei et al., 2016). Prior to dendrite differentiation, waves of 

actin polymerization propagate from the cell body to the tip of neurites, widening the shafts 

of neurites and thereby enabling more microtubule growth and membrane traffic (Flynn et 

al., 2009; Ruthel and Banker, 1999; Winans et al., 2016). Actin polymerization drives 

chiefly the formation of lamellipodia and filopodia, which are membrane protrusions that 

give rise to neurites, dendritic branches and spines, and shape the growth cones at the tips of 

growing dendrites (Flynn, 2013; Gallo, 2013; Miller and Suter, 2018; Omotade et al., 2017). 

Lamellipodial protrusions are generated from branched actin filaments and filopodia from 

bundles of linear actin filaments, which are in part made by remodeling of branched actin 

(Pollard et al., 2000; Svitkina, 2018). Polymerization of branched and linear actin filaments 

provide a physical force for neurite membrane outgrowth, which is also aided by 

microtubules pushing against the plasma membrane by sliding against neighboring 

microtubules and/or linear actin bundles (Del Castillo et al., 2019; Flynn, 2013; Miller and 

Suter, 2018). These cytoskeletal interactions are critical not only for the formation of nascent 

neurites, but also the branching of dendrites and the advance of their growth cones.

In contrast to axonal morphogenesis, which early on is characterized by the formation of 

periodic circumferential actin rings that connect to the membrane via spectrin, dendrites do 

not develop this membrane-associated periodic skeleton (MPS) until they are fully matured 

(Han et al., 2017; Unsain et al., 2018; Zhong et al., 2014). However, only a subset of 

dendrites contains MPS with circumferential actin rings (Bar et al., 2016; Han et al., 2017; 

He et al., 2016; Sidenstein et al., 2016; Zhong et al., 2014). Somatodendritic membranes 

have a polygonal lattice-like actin-spectrin array, which resembles the membrane skeleton of 

erythrocytes (Han et al., 2017; He et al., 2016; Zhong et al., 2014).

Dendritic growth is dependent on the secretory pathway. Studies in Drosophila and 

mammalian neurons have demonstrated that defects in ER-to-Golgi traffic diminish 

membrane supply to dendrites without affecting axon growth (Horton et al., 2005; Ye et al., 
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2007). Consistent with these findings, dendrites possess ribosome-bound ER (rough ER), 

smooth ER, ER exit sites, ER-to-Golgi intermediate compartment (ERGIC) and Golgi 

membranes (Hanus and Ehlers, 2016; Kennedy and Ehlers, 2006; Ramirez and Couve, 2011; 

Wu et al., 2017). In contrast, axons contain predominately smooth ER with a tubular 

appearance and are largely devoid of rough ER and Golgi, although the latter have been 

observed in the axons of sensory neurons (Luarte et al., 2018; Merianda et al., 2009; 

Terasaki, 2018). ER-derived vesicles traffic locally or undergo long-range transport, which is 

directed to the ER-to-Golgi intermediate compartment (ERGIC) and Golgi membranes, or 

alternatively traffic to recycling endosomes and the plasma membrane bypassing the Golgi 

(Bowen et al., 2017; Hanus and Ehlers, 2008; Hanus et al., 2014; Krijnse-Locker et al., 

1995).

Golgi membranes are found in dendrites and localize preferentially at branch points. These 

Golgi outposts have been shown to promote the nucleation of acentrosomal microtubules 

(Horton et al., 2005; Ori-McKenney et al., 2012). Dendritic branch growth and retraction 

correlate with the presence and absence of Golgi outposts, respectively (Ye et al., 2007). 

Notably, the Golgi apparatus of the cell body localizes at the base of the long apical 

dendrite, which further underscores the role of Golgi-derived vesicle traffic in dendritic 

growth (Wu et al., 2015). Recent evidence indicates that dendrites contain a more extensive 

Golgi satellite membrane system, which glycosylates dendritic proteins en route to 

endosomes (Mikhaylova et al., 2016).

Recycling endosomes and endolysosomes are distributed along the dendritic shafts and 

spines, regulating the traffic, localization and turnover of post-synaptic proteins (Lazo et al., 

2013; Park et al., 2006; Satoh et al., 2008; van der Sluijs and Hoogenraad, 2011; Winckler et 

al., 2018). Lysosomes localize to and fuse with dendritic spines in response to synaptic 

activity, which promotes synaptic plasticity through the turnover of synaptic membrane 

proteins and remodeling of the extracellular matrix by metalloproteinases (Goo et al., 2017; 

Padamsey et al., 2017; van Bommel et al., 2019). Interestingly, lysosomes of highly acidic 

pH localize predominately in proximal dendrites and the cell body, where the bulk 

degradation occurs, and degradation of dendritic cargo involves trafficking of endosomes 

from distal to proximal dendrites (Kulkarni and Maday, 2018; Yap et al., 2018). Taken 

together with the distinct features of the dendritic cytoskeleton, this higher-order 

organization of secretory and endocytic organelles is indicative of dendrite-specific 

mechanisms for the spatial control of the cytoskeleton and membrane traffic.

3. Sorting of dendritic membrane proteins in secretory and endocytic 

organelles

Segregation of membrane proteins into distinct organelle domains and vesicular carriers is 

the first step in establishing specific intracellular routes and destinations. Sorting of 

membrane proteins during exit from the trans-Golgi network was first discovered for 

proteins targeted to the apical and basolateral domains of polarized epithelia, and 

subsequently found to be conserved in hippocampal neurons, where epithelial basolateral 

proteins largely sort into dendrites (Dotti et al., 1991; Dotti and Simons, 1990; Jareb and 
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Banker, 1998; Simons and Wandinger-Ness, 1990). Sorting of apical proteins into axons has 

been controversial, but several axonal proteins traffic to the apical membrane of epithelial 

cells (Anderson et al., 2005; Dotti et al., 1991; Jareb and Banker, 1998; Yeaman et al., 

1997). Conservation between the basolateral and somatodendritic, and potentially apical and 

axonal trafficking pathways pointed to specific sorting determinants (e.g., amino acid motifs, 

glycan residues) and mechanisms (Maeder et al., 2014; Mellman and Nelson, 2008; Mostov 

et al., 2003; Rodriguez-Boulan and Powell, 1992). Over the years, a diversity of membrane 

adaptor proteins has been identified to selectively interact with membrane proteins, 

mediating their clustering and packaging into distinct vesicles during exit from the Golgi 

complex and endolysosomal organelles (Bonifacino, 2014; Guardia et al., 2018; Nakatsu and 

Ohno, 2003).

During exit from the Golgi complex, dendritic membrane proteins are sorted from their 

axonal counterparts by clathrin adaptor proteins (Figures 1 and 2). From the existing five 

heterotetrameric clathrin adaptor proteins (APs), AP-1, AP-3 and AP-4 function at the trans-

Golgi network (Bonifacino, 2014). Axonal and dendritic membrane proteins contain 

dileucine (D/E-x-x-x-L-L/I; x, any amino acid) and tyrosine-based (Y-x-x-Φ; Φ, bulky 

hydrophobic residue) motifs in their cytoplasmic tails, which are recognized by APs that 

compete for binding to these motifs with differential affinities (Dwyer et al., 2001; Farias et 

al., 2012; Jain et al., 2015; Li et al., 2016; Margeta et al., 2009; Nakatsu et al., 2004; Salazar 

et al., 2005; Zhou et al., 2016). Presence of a proline residue upstream of dileucine motifs 

has been shown to increase the affinity of AP-3 over AP-1 (Rodionov et al., 2002). Dendritic 

membrane proteins are primarily sorted by AP-1, which is required for the dendritic polarity 

of the N-methyl-D-aspartate (NMDA) receptor subunits NR2A/NR2B, the metabotropic 

glutamate receptor 1 mGluR1, the potassium voltage-gated channel Kv2.1 and copper 

transporter ATP7B (Farias et al., 2012; Jain et al., 2015; Zhou et al., 2016). Interestingly, the 

dendritic localization of post-synaptic AMPA (α-amino-3-hydroxy5-methyl-4-

isoxazolepropionic acid) receptors is not mediated by AP-1. Instead, it requires AP-4 which 

associates with the GluR1-GluR4 subunits indirectly by interacting with transmembrane 

AMPA receptor regulatory proteins (TARPs) through an unconventional phenylalanine- and 

tyrosine-rich motif (YRYRF) (Matsuda et al., 2008; Yap et al., 2003). Additionally, AP-4 

recognizes motifs with FR and FTF residues, which are present in the cytoplasmic tails of 

olfactory receptors (Yap et al 2003). In C. elegans, which does not express AP-4, these 

receptors are sorted by AP-1 (Dwyer et al., 2001). AP1-binding motifs are also critical for 

the dendritic polarity of the Coxsackie and adenovirus receptor (CAR; YNQV), the 

transferrin receptor (TfR; YTRF) and the low-density lipoprotein receptor (LDLR; 

FxNPxY), which is not expressed in neurons and interacts with AP-1 indirectly (Brown et 

al., 1997; Chen et al., 1990; Collawn et al., 1990; Farias et al., 2012; Silverman et al., 2001; 

West et al., 1997).

Dendritic membrane polarity relies on protein sorting not only in the trans-Golgi network en 

route to the plasma membrane, but also in endosomes. In the endocytic pathway, dendritic 

proteins are retained by recycling back to the plasma membrane and axonal membrane 

proteins are selectively sorted for return to the axon, a trafficking pathway known as 

transcytosis (Lasiecka and Winckler, 2011; van der Sluijs and Hoogenraad, 2011). 

Endosomes, which are broadly distributed along the dendritic shaft, every two microns and 
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within 300 nm of the plasma membrane, recycle the bulk of dendritic membrane proteins 

(e.g., AMPA, NMDA and G-proteincoupled receptors) (Choy et al., 2014). These endosomes 

associate with the retromer (Vps26/29/35), a membrane coat complex that recognizes and 

sorts proteins into tubular membrane domains for trafficking to plasma membrane or the 

Golgi complex, averting movement to degradative lysosomes (Choy et al., 2014; Gallon and 

Cullen, 2015). Recognition of specific proteins by the retromer complex is mediated by the 

sorting nexins (SNXs), which contain phospoinositide- and protein-binding domains and 

interact directly with the retromer (Gallon and Cullen, 2015).

The sorting nexin SNX27 is enriched in dendrites and functions as retromer adaptor for 

dendritic membrane proteins. SNX27 has an N-terminal PDZ (PSD95, Dlg, Zo1) domain, 

which recognizes the C-terminal PDZ-binding motifs of a number of post-synaptic receptors 

and channels including the β2-adrenegic and AMPA receptors that recycle to the dendritic 

shaft membrane via retromer-associated endosomes (Halff et al., 2019; Hussain et al., 2014; 

Lauffer et al., 2010; Loo et al., 2014; Lunn et al., 2007). Phosphorylation of serine and 

threonine residues at the C-terminal end of the PDZ-binding motifs of NMDA receptors 

enhances binding to SNX27 (Clairfeuille et al., 2016). SNX27 also contains a FERM 

(band4.1-ezrin-radixinmoesin)-like domain that recognizes the N-P-x-Y motif of activated 

tropomyosin-related kinase A (TrkA) receptors with a phosphorylated tyrosine at the Y0 

position (Ghai et al 2013). In addition to SNX27, the sorting nexin SNX1 has been shown to 

regulate the recycling of the metabotropic glutamate receptor mGluR1, and SNX16 is 

implicated in the tubulation of neuronal late endosomes (Sharma et al., 2018; Wang et al., 

2019).

Removal of axonal membrane proteins from the somatodendritic compartment through 

transcytosis is critical for maintaining dendritic membrane identity and regulating the axon-

dendrite balance of neuronal proteins in a developmental and physiological context. In 

dendritic endosomes, selective sorting of axon-destined proteins has been reported for 

neuronal proteins including the pre-synaptic cell adhesion molecules L1/NgCAM and 

neurexin, the cannabinoid receptor type 1 (CB1R) and neurotrophin receptors (Ascano et al., 

2009; Bel et al., 2009; Leterrier et al., 2006; Wisco et al., 2003). In the secretory pathway, 

L1/NgCAM is first targeted to dendrites through the AP-binding cytoplasmic motif YRSLE, 

which also functions as a motif for endocytosis from the plasma membrane by AP-2 (Yap et 

al., 2008a). Transcytosis of L1/NgCAM to the axon depends on a glycine and serine rich 

sequence of its cytoplasmic tail and a second signal in its extracellular domain (Sampo et al., 

2003; Yap et al., 2008a). It is unclear how these crosstalk with the YRSLE motif for 

sequential targeting to dendrites and then the axon. However, phosphorylation of the 

tyrosine of YRSLE suggests a mechanism by which the dendritic signal might become 

weaker or rendered inactive in a spatiotemporally controlled manner (Schaefer et al., 2002; 

Wisco et al., 2003).

L1/NgCAM transcytosis begins with sorting in dendritic recycling endosomes, where 

NgCAM segregates into motile tubular-vesicular carriers of distinct lipid composition that 

divert away from traffic to the lysosome (Yap et al., 2008b). The precise mechanism of this 

sorting event is not known, but it requires NEEP21 (neuron-enriched endosomal protein of 

21 kD), which belongs to the NEEP21/Calcyon/P19 family of endosomal sorting proteins 
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that interact with APs and dynein (Lasiecka et al., 2014; Shi et al., 2018; Shi et al., 2017; 

Yap et al., 2008b). Interestingly, NEEP21 is also involved in the recycling of AMPA 

receptors to the dendritic plasma membrane (Alberi et al., 2005; Steiner et al., 2005; Steiner 

et al., 2002), raising the question of how NEEP21 distinguishes between cargo that recycles 

back to the dendritic membrane and transcytotic cargo destined for the axon.

Similar to the adaptor-like function of NEEP21, SorCS1 (sortillin-related CNS expressed 1) 

is involved in the endosomal sorting of neurexin for transcytosis to the axon (Ribeiro et al., 

2019). SorCS1 functions during the transition of neurexin from early endosomes to the 

recycling endosome, interacting with the Rab11-interacting protein Rip11/FIP5, which has 

been shown to recruit kinesin-2 motors to tubular endosomes in non-neuronal cells (Ribeiro 

et al., 2019). Axonal localization of Caspr2 (contactin-associated protein 2), another cell 

adhesion molecule of the neurexin family, is also dependent on endocytosis from the 

dendritic plasma membrane and regulated by phosphorylation by protein kinase C (PKC) 

(Bel et al., 2009). Endocytosis of the neurotrophin receptor TrkA and the cannabinoid 

receptor type 1 (CB1R) from the plasma membrane of the cell body is also required for 

anterograde transport into axons (Ascano et al., 2009; Leterrier et al., 2006). TrkA receptors 

move toward the axon in Rab11-positive carriers that egress from the recycling endosome 

(Ascano et al., 2009). Notably, the adaptor sortilin is involved in the anterograde axonal 

transport of neurotrophin receptors, and transcytosis of inactivated TrkA receptors is 

regulated by phosphorylation (Vaegter et al., 2011; Yamashita et al., 2017).

While transcytosis provides a mechanism for the exit and re-routing of axonal proteins from 

the somatodendritic compartment, clearance of axonal proteins can also be achieved by 

selective degradation in dendrites. For example, axonal localization of the Akt protein kinase 

depends on degradation by the dendritic ubiquitin proteasome system (Yan et al., 2006). 

This raises the possibility of axonal membrane proteins targeted to the lysosome for 

degradation through mechanisms that involve ubiquitination and sorting by the endosomal 

sorting complexes required for transport (ESCRT) machinery (Vietri et al., 2019). The 

ESCRT machinery is critical for dendritic morphology, but has yet to be implicated in the 

sorting of dendritic proteins (Sadoul et al., 2018). Interestingly, the axonal localization of the 

voltage gated sodium channel Nav2.1 involves elimination from the somatodendritic 

compartment by endocytosis (Fache et al., 2004). However, it is unknown whether this 

occurs through sorting into degradative endolysosomes and/or transcytosis, which take place 

in parallel with selective retention in the axon by anchoring to the AIS (Garrido et al., 2003). 

Taken together with sorting in the secretory pathway, endosomal and transcytotic sorting 

mechanisms contribute to the maintenance of a biochemically distinct somatodendritic 

compartment.

4. Selection and transport of somatodendritic cargo by cytoskeletal 

motors and adaptor scaffold proteins

Following protein sorting, membrane vesicles move to the destination of their cargo through 

selective interactions with molecular motors (kinesins, dynein, myosins; Figure 3) and 

spatial cues from cytoskeletal polymers, which contain proteins and post-translational 
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modifications that modulate motor-cargo motility (Atherton et al., 2013; Bodakuntla et al., 

2019; Burute and Kapitein, 2019; Janke and Kneussel, 2010; Venkatesh et al., 2020). Long-

distance movement from the cell body to dendrites or axons, takes place on microtubules 

and is driven by kinesins, a large family of motors that move generally toward the plus ends 

of microtubules, and dynein, a minus end-directed motor (Hirokawa et al., 2010; Reck-

Peterson et al., 2018; Verhey and Hammond, 2009). Thus, navigation of neuronal traffic 

occurs primarily on microtubules, while actin filaments and unconventional myosins provide 

a more localized control by intercepting and redirecting traffic at specific regions (e.g., base 

of dendritic spines, axon initial segment; AIS). Much work has been devoted to elucidating 

the itineraries and selective interactions of kinesins with neuronal cargo, and more recently, 

a new wave of research has been advancing our understanding of how microtubule-

associated proteins and posttranslational modifications provide a traffic code for the spatial 

guidance of kinesin/dynein-driven transport (Atherton et al., 2013; Bodakuntla et al., 2019; 

Burute and Kapitein, 2019; Hirokawa et al., 2010; Kelliher et al., 2019; Park and Roll-

Mecak, 2018).

Selective transport of membrane cargo from the cell body to axons and/or dendrites depends 

on the activity and inherent axonodendritic preference of microtubule motors, which is 

modulated by their interaction with cargo and microtubules, and regulated by post-

translational modifications (Hirokawa et al., 2010; Reck-Peterson et al., 2018; Verhey and 

Hammond, 2009). Inducible coupling of kinesin motor domains to peroxisomes of the cell 

body showed that only motors of the kinesin-3 (KIF1A, KIF1B, KIF1C) and kinesin-4 

(KIF21A, KIF21B) subfamilies move potently into dendrites in addition to axons (Lipka et 

al., 2016). Dynein is biased toward dendrites, which is primarily due to microtubules with 

minus ends pointing outward in dendrites (Kapitein et al., 2010). Despite an inherent 

selectivity of their motor domains for axons, kinesin-1 (KIF5A, KIF5C) and kinesin-2 

(KIF17) transport a variety of post-synaptic receptors in dendrites (Heisler et al., 2014; 

Setou et al., 2002; Wong-Riley and Besharse, 2012). This is achieved by interactions with 

cargo and microtubules, which alter the axonal preference of motor domains (see below).

Cargo-binding is a major determinant for the activation and directionality of microtubule 

motors, although the mechanistic basis of this phenomenon is poorly understood. Motor-

cargo binding is often mediated by adaptor and scaffold proteins, which couple cargo to 

more than one motor and can selectively regulate motors by promoting dimerization or 

relieving autoinhibition (Cross and Dodding, 2019; Fu and Holzbaur, 2014). Association of 

kinesin-1/KIF5 with the cargo adaptor and scaffolding protein GRIP1 (glutamate receptor-

interacting protein 1) bestows a dendritic directionality (Setou et al., 2002), overriding the 

preferential interaction of kinesin-1 with axonal microtubules, which has been attributed to 

microtubule organization, stability and MAPs (Balabanian et al., 2017; Farias et al., 2015; 

Hammond et al., 2010; Monroy et al., 2018; Nakata et al., 2011; Pan et al., 2019). GRIP1 

contains multiple PDZ (PSD95/SAP90/DLG/ZO-1) domains that interact simultaneously 

with the C-terminal tails of N-cadherin and GluR2, which sort together into the same 

vesicular carriers for transport to dendrites (Heisler et al., 2014). Thereby, GRIP1 functions 

as an adaptor that links GluR2 to N-cadherin, and altogether to kinesin-1. GRIP1 is also a 

kinesin-1 adaptor for the post-synaptic ephrin receptor tyrosine kinase EphB2; GRIP1 is 

required for proper EphB2 traffic to dendrites and dendritic growth (Hoogenraad et al., 
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2005). Through a similar mode of cargo-adaptor coupling, kinesin-1 transports glycine 

receptors, which are linked by gephyrin, a post-synaptic scaffolding protein of the inhibitory 

synapse, and GABAA receptors, which bind kinesin-1 through the huntingtin-associated 

protein-1 (HAP-1) (Maas et al., 2009; Rathgeber et al., 2015; Twelvetrees et al., 2010).

The kinesin-2 motor KIF17 transports the NMDA receptor NR2B with the adaptor 

scaffolding proteins mLin10/Mint1 and CASK/SAP97 (Guillaud et al., 2003; Guillaud et al., 

2008; Jeyifous et al., 2009; Setou et al., 2000). The C-terminal tail of KIF17 binds the PDZ1 

domain of mLin10/Mint1 subunit, which in turn interacts with NR2B via the mLin7 subunit 

of the mLin10/mLin2/mLin7 scaffold complex (Guillaud et al., 2008; Setou et al., 2000). 

Association of KIF17 with mLin10/Mint1 is regulated by the Ca2+/calmodulin-dependent 

protein kinase II (CaMKII) and septin 9 (SEPT9), a member of the family of septin GTPases 

(Bai et al., 2016; Guillaud et al., 2008). Phosphorylation of the C-terminal tail of KIF17 by 

CaMKII results in dissociation of mLin10/Mint1, and SEPT9 competes with mLin10/Mint1 

for binding to the KIF17 tail (Guillaud et al., 2008). Interestingly, the CASK/SAP-97 

adaptor functions in a specialized mode of NR2B transport, which begins in the ER with 

NMDA receptor subunits sorting from their AMPA counterparts for transport to Golgi 

outposts, bypassing the Golgi complex of the cell body (Jeyifous et al., 2009). In addition to 

NR2B, kinesin-2/KIF17 is responsible for the dendritic transport of the potassium channel 

Kv4.2, the kainate receptor GluR5 and mRNAs, which bind KIF17 through the RNA export 

factor NXF2 and the RNA-binding protein FMRP (Fragile X mental retardation protein) 

(Chu et al., 2006; Kayadjanian et al., 2007; Takano et al., 2007). Notably, KIF17 mediates 

the transport of GluR5 only in distal dendrites and in complex with the kainate receptor 

KA2, indicating that kinesin motors are specialized not only for specific cargo but also 

regions of the somatodendritic compartment (Kayadjanian et al., 2007).

Spatial control of kinesin-2/KIF17 localization and function can be exerted by actin 

filaments and coupling to other motors such as dynein, which have been shown to restrict 

forward movement of KIF17 in the AIS (Franker et al., 2016). Alternatively, KIF17 may 

take over transport of cargo from dynein at specific regions (e.g., dendritic branch points) 

owing to changes in microtubule orientation. This may occur through cargo hand-off or 

selective activation by a cargo adaptor that is bound to both kinesin and dynein (Fu and 

Holzbaur, 2014).

While KIF17 has emerged as the predominate kinesin-2 motor that mediates transport of 

dendritic membrane proteins and mRNA, a recent study revealed that the cargo-binding tails 

of the heteromeric kinesin-2 motors KIF3A/B and KIF3A/C interact selectively with 

somatodendritic membrane cargo (Yang et al., 2019). The identity of this cargo remains 

unknown, but KIF3A has been reported to interact with N-cadherin in a manner that is 

upregulated by synaptic activity through phosphorylation of the C-terminal tail of KIF3A by 

protein kinase A (PKA) and CaMKII (Ichinose et al., 2015).

A number of kinesin-3 motor domains (KIF1A, KIF1B, KIF1C) and cargo-binding tails 

(KIF1A, KIF1Bβ) move into the somatodendritic compartment, albeit not exclusively 

(Jenkins et al., 2012; Lipka et al., 2016; Yang et al., 2019). Kinesin 3 motors are unique in 

their ability to move persistently over long distances upon cargo-induced dimerization 
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(Soppina et al., 2014), and thus may enable cargo to move in the highly branched dendrites 

faster and more efficiently. Consistent with this possibility, dendritic arborization but not 

outgrowth is impaired in Drosophila larvae by mutating a residue that abrogates the 

dimerization of Unc-104/KIF1A (Kern et al., 2013). KIF1A interacts with the scaffolding 

protein liprin-α and and co-traffics in dendrites with vesicles containing synaptotagmin-IV 

and the low-density lipoprotein receptor (LDL-R), which localizes to the somatodendritic 

compartment of hippocampal neurons (Jenkins et al., 2012; McVicker et al., 2016; Shin et 

al., 2003). In parallel, KIF1A mediates the axonal transport of synaptic vesicle precursors, 

which involves a direct interaction with the Rab3 guanine nucleotide exchange factor 

DENN/MADD (differentially expressed in normal and neoplastic cells/MAP kinase 

activating death domain) and release of Unc-104/KIF1A autoinhibition by the small GTPase 

Arl8 (Niwa et al., 2016; Niwa et al., 2008). KIF1Bα has been shown to interact with the 

post-synaptic scaffold proteins PSD-95, SAP-97 and S-SCAM (synaptic scaffolding 

molecule), all of which contain PDZ domains that interact with post-synaptic receptors and 

ion channels (Mok et al., 2002). Moreover, the KIF1Bβ isoform associates with 

ribonucleoprotein particles, mediating the transport of dendritically localized mRNAs that 

encode for calmodulin and Arc (activity-regulated cytoskeleton-associated protein) 

(Charalambous et al., 2013).

The kinesin-3 motors KIF13A and KIF13B associate preferentially with endosomes that 

contain the transferrin receptor (TfR), which is highly polarized in dendrites and co-traffics 

with AMPA receptors (Bentley and Banker, 2015). KIF13A interacts directly with β1-

adaptin of the AP-1 adaptor complex, which mediates the sorting of dendritic proteins 

(Nakagawa et al., 2000). Although KIF13A has a preference for somatodendritic cargo and 

transports the mannose-6phosphate receptor from the Golgi to the plasma membrane, it is 

unknown if KIF13A associates with dendritically destined proteins that are sorted in the 

trans-Golgi and/or endosomes by AP-1 (Nakagawa et al., 2000).

KIF16B, a kinesin-3 motor involved in the transcytosis of TfR in epithelial cells, contains a 

PX domain that binds strongly to phosphatidylinositol-3-phosphate, which is enriched in 

early endosomes (Perez Bay et al., 2013; Pyrpassopoulos et al., 2017). Notably, KIF16B 

localizes to early endosomes of the somatodendritic compartment and mediates the dendritic 

transport of endosomes carrying GluR1 and the neurotrophin receptor p75NTR (Farkhondeh 

et al., 2015). Interestingly, the somatodendritic localization and function of KIF16B is 

dependent on two coiled-coil domains of its stalk domain, which bind and inhibit the motor 

domain, suggesting that this autoinhibition is selectively relieved in the somatodendritic 

compartment (Farkhondeh et al., 2015).

Similar to kinesin-3, the kinesin-4 motor domains of KIF21A and KIF21B also move into 

dendrites (Lipka et al., 2016). The full-length KIF21B is a somatodendritic motor, which is 

more enriched in dendrites than the cell body, while KIF21A has no polarized distribution 

(Marszalek et al., 1999). In hippocampal neurons, KIF21B colocalizes with the γ2 subunit 

of GABAA receptors at non-synaptic sites and is required for GABAA receptor delivery to 

the cell surface (Labonte et al., 2014). KIF21B forms a complex with the GABAA receptor 

and the GABA receptor-associated protein (GABARAP), which interacts with gephyrin, the 

N-ethylmaleimidesensitive factor (NSF) and the E3 ubiquitin ligase tripartite-motif 
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containing 3 (TRIM3; Genau and Behrends, 2016; Kittler et al., 2001; Kneussel et al., 2000; 

Labonte et al 2014). KIF21B motility is modulated by TRIM3 through an unknown 

mechanism that may involve a conformational change in KIF21B upon mono-ubiquitination 

(Labonte et al., 2013). KIF21B, GABARAP and TRIM3 provide an alternative mode of 

GABAA transport to kinesin-1 and HAP-1 (Nakajima et al., 2012; Twelvetrees et al., 2010). 

Notably, TRIM3 is part of an endosomal complex termed cytoskeleton-associated recycling 

or transport complex (CART), which includes the endosomal adaptor hrs (hepatocyte growth 

factor-regulated kinase substrate), actinin-4 and myosin V (Yan et al., 2005). Hence, 

transport of GABAA receptors by KIF21B might be more compatible with a hand-off to 

myosin-V and a transition from the microtubules of the dendritic shaft to the actin filaments 

of dendritic spines (Yan et al., 2005). In addition to GABAA receptors, KIF21B transports 

signaling endosomes with BDNF-bound TrkB receptors, bestowing a retrograde bias toward 

the cell body which is further enhanced by synaptic activity (Ghiretti et al., 2016). The 

retrograde bias of KIF21B indicates a preference for dendritic microtubules oriented with 

their plus ends towards the cell body. It is unclear how KIF21B establishes such preference, 

but it might be due to its C-terminal WD40 domain which associates preferentially with the 

GTP-bound lattice of microtubules and regulates the organization and dynamics of dendritic 

microtubules (Muhia et al., 2016; van Riel et al., 2017).

Dynein directs cargo from the cell body to dendrites (Kapitein et al., 2010), but recognition 

of somatodendritic cargo by dynein is much less understood than kinesins. The microtubule 

minus-directed kinesin KIFC2 is implicated in the dendritic transport of multivesicular 

body-like organelles, but does not appear to target cargo into dendrites (Lipka et al., 2016; 

Saito et al., 1997). In dynein-mediated transport, cargo specificity is achieved through 

adaptor proteins, which activate dynein by promoting dynein-dynactin interaction, recruiting 

two dynein dimers per dynactin complex and/or relieving the autoinhibitory conformation of 

dynein (Reck-Peterson et al., 2018). Discovery of dynein-activating adaptors is fairly recent 

and limited to a small number of proteins, which have in common a coiled coil domain and 

binding sites for the dynein intermediate light chain and factors that further promote or 

regulate dynein association with cargo (Reck-Peterson et al., 2018). From the known dynein 

adaptors, TRAK2 (trafficking protein, kinesin binding 2/Milton) is a dendrite-specific 

adaptor for mitochondria (van Spronsen et al., 2013). TRAK2 steers mitochondria to 

dendrites and is required for dendritic outgrowth, while TRAK1 mediates mitochondrial 

transport in axons (van Spronsen et al., 2013). Bicaudal-D2 (BicD2) is required for local 

synthesis of BDNF in dendrites and thus, may transport untranslated BDNF mRNA in 

dendrites (Oe et al., 2016). Furthermore, gephyrin appears to mediate the dynein-driven 

transport of post-synaptic glycine and GABAA receptors by interacting with the dynein light 

chains 1 and 2 (Fuhrmann et al., 2002; Maas et al., 2006).

In addition to their functions in dendritic trafficking, dynein adaptors are critical for the 

retrieval of somatodendritic proteins from the axon. The adaptors HOOK1 and HOOK3 are 

required for the dynein-driven retrieval of TfR from axons, which sustains the 

somatodendritic polarity of TfR (Guo et al., 2016). Notably, HOOK1/3 are effectors of 

Rab5, which has been shown to regulate the somatodendritic distribution of TfR and 

glutamate receptors (Guo et al., 2016). Reversal of somatodendritic cargo during axonal 

entry is also dependent on the dynein regulator NDEL1 and its binding partner Lis1, which 
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are anchored to the AIS by ankyrin G (Kuijpers et al., 2016). NudE, the Drosophila homolog 

of NDEL1, is required for the transport and localization of Golgi outposts in dendrites, 

which is critical for proper branching (Arthur et al., 2015). In agreement, dynein mutants 

shift the branching patterns of dendrites from distal tips to regions proximal to the cell body 

(Aguirre-Chen et al., 2011; Satoh et al., 2008; Zheng et al., 2008). Dynein-driven targeting 

of Golgi outposts to dendrites is complemented by an autoinhibition of kinesin-1, which 

prevents movement of Golgi outposts into the axons of Drosophila neurons (Kelliher et al., 

2018).

Microtubule motor adaptors not only scaffold and specify the interactions of motors with 

their respective cargo, but also provide a mechanism for a particular cargo to switch between 

kinesin- and dynein-driven motility (Cross and Dodding, 2019; Fu and Holzbaur, 2014; 

Olenick and Holzbaur, 2019; Reck-Peterson et al., 2018). A growing number of adaptor and 

scaffold proteins have been discovered to associate with both dynein and kinesin motors, 

coordinating movements of opposing directionality (Cross and Dodding, 2019). 

Phosphorylation of cargo adaptors/scaffolds by upstream signaling pathways has been 

shown to activate a cargo-bound motor over another (Cross and Dodding, 2019; Olenick and 

Holzbaur, 2019). For example, phosphorylation of the JNK-interacting protein (JIP) scaffold 

switches axonal transport of the amyloid precursor protein (APP) from retrograde dynein-

driven to anterograde kinesin-driven movement (Fu and Holzbaur, 2013). In addition to 

phosphorylation, cargo adaptors can also trigger motor switching upon sumoylation or 

ubiquitination and interaction with small GTPases (Cross and Dodding, 2019; Olenick and 

Holzbaur, 2019). This type of coordination might be particularly necessary in the spatial 

guidance of membrane traffic in dendrites, where cargo is likely to transition frequently 

between microtubules of opposite polarity (Liot et al., 2013). However, we have little 

knowledge of how somatodendritic cargo coordinate their movement on dendritic 

microtubules. Studies of the huntingtin scaffold protein, which appears to mediate the 

dendritic transport of β-actin mRNA and TrkB receptors, indicate that somatodendritic cargo 

may indeed switch directionality through cargo adaptor and scaffold proteins (Caviston and 

Holzbaur, 2009; Liot et al., 2013; Ma et al., 2011). Huntingtin interacts with the adaptor 

HAP1, which associates with both kinesin-1 and dynactin (Engelender et al., 1997; McGuire 

et al., 2006). Notably, phosphorylation of huntingtin is posited to function as a molecular 

switch for anterograde transport (Colin et al., 2008). More work is required to determine 

how somatodendritic cargo employ cargo adaptor and scaffold proteins for directional 

movement in the geometrically complex dendrites.

5. Spatial guidance of membrane traffic by the neuronal cytoskeleton

Directional specificity in intracellular transport relies on selective motor-cargo interactions, 

but ultimately requires regulation of motor-cargo motility by cytoskeletal determinants such 

as microtubule post-translational modifications (PTMs) and microtubule-associated proteins 

(MAPs) which provide critical spatial cues (Figure 4). Microtubules comprise a 

heterogeneous network of polymers with a diversity of α-/β-tubulin isotypes and PTMs that 

include: i) removal/presence of the terminal tyrosine residue of α-tubulin (detyrosination/

tyrosination), ii) addition/removal of an acetyl moiety at the Lysine40 amino acid of α-

tubulin (acetylation/deacetylation), iii) addition/removal of side chains comprising of one or 

Radler et al. Page 12

Mol Cell Neurosci. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



multiple glutamates to glutamic residues of the C-terminal tails of α-/β-tubulin (mono- or 

polyglutamylation/deglutamylation), and iv) removal/presence of the penultimate (Δ2) or 

last two glutamates (Δ3) of tubulin’s C-terminal tail (Magiera et al., 2018; Park and Roll-

Mecak, 2018). Because the C-terminal tails of tubulin, which project away from the 

microtubule lattice, provide a binding interface for many motors and MAPs, PTMs have a 

direct impact on motor-cargo motility (Atherton et al., 2013; Janke and Kneussel, 2010; 

Magiera et al., 2018). Taken together with a mosaic landscape of MAPs, which is 

characterized by differential MAP distribution and enrichment on distinct subsets of 

microtubules, PTMs and MAPs comprise a regulatory code - the tubulin and MAP code - for 

membrane traffic (Atherton et al., 2013; Bodakuntla et al., 2019; Janke and Kneussel, 2010; 

Park and Roll-Mecak, 2018; Verhey and Gaertig, 2007).

Dendritic microtubules are predominately tyrosinated, acetylated and polyglutamylated 

(Hammond et al., 2010; Ikegami et al., 2006; Konishi and Setou, 2009; Tas et al., 2017). 

Additionally, dendritic microtubules are uniquely enriched with the microtubule-binding 

proteins MAP1A, MAP2, doublecortin, doublecortin-like kinase 1 (DCLK1) and SEPT9 

(Bernhardt and Matus, 1984; Karasmanis et al., 2018; Lipka et al., 2016; Monroy et al., 

2019; Schoenfeld et al., 1989; Shiomura and Hirokawa, 1987). Acetylation, a PTM that 

marks long-lived “stable” microtubules, is found in both axons and dendrites, but dendrites 

appear to be particularly enriched with tyrosinated microtubules (Hammond et al., 2010; 

Konishi and Setou, 2009; Szyk et al., 2014). The somatodendritic polarity of the tubulin 

tyrosine ligase-like 7 (TTLL7) enzyme indicates that short chain polyglutamylation is 

dominant in dendrites (Ikegami et al., 2006; Mukai et al., 2009; van Dijk et al., 2007). 

Notably, formation of MAP2-positive neurites occurs concomitantly with accumulation of 

TTLL7 and polyglutamylated β-tubulin, whose presence is critical for the outgrowth of 

MAP2-positive neurites (Ikegami et al., 2006). Recent work revealed that acetylated 

microtubules are predominately oriented with their plus ends toward the cell body, while 

tyrosinated microtubule plus ends point away from the cell body (Tas et al., 2017).

On the surface of dendritic microtubules, PTMs co-exist with MAPs such as MAP1A and 

MAP2 (Shiomura and Hirokawa, 1987). Interestingly, microtubule binding of these MAPs is 

differentially modulated by PTMs. For example, long polyglutamyl chains reduce the 

affinity of MAP2 without affecting MAP1A (Bonnet et al., 2001). Hence, PTM gradients 

across the length of a dendrite may result in local enrichments of MAPs. SEPT9 and 

DCLK1 are more enriched in proximal and distal regions of dendrites, respectively, but is 

unknown whether this is due to a gradient of a PTM (Karasmanis et al., 2018; Lipka et al., 

2016; Shin et al., 2013). In the axons of sensory neurons, however, there is a distal-to-

proximal gradient of microtubule tyrosination, which biases and promotes microtubule-

dynein binding at axonal terminals (Nirschl et al., 2016). Furthermore, MAPs have been 

observed to compete with one another for microtubule binding (Monroy et al., 2018; 

Spiliotis et al., 2008). Hence, mutualistic and competitive interactions between PTMs and 

MAPs are likely to result in spatial patterns of unique PTM and MAP combinations, which 

in turn locally control membrane traffic.

The discovery of the AIS as a vesicular sieve provided a dominant paradigm for local 

cytoskeleton-based control of membrane traffic and its broader impact on neuronal polarity 
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(Huang and Rasband, 2018; Leterrier, 2018; Song et al., 2009). Together with the pre-axonal 

exclusion zone (PAEZ), the AIS excludes and reverses the traffic of somatodendritic vesicles 

and organelles. The PAEZ comprises a segment of the microtubule cytoskeleton in the 

interface of the neuronal cell body with the AIS, which is devoid of rough ER and Golgi 

membranes, and vesicles with somatodendritic proteins such as AMPA receptors and TfR 

(Farias et al., 2015). Microtubules of the PAEZ are highly acetylated and preferentially 

bound by kinesin-1/KIF5, whose motor domain moves selectively into axons (Farias et al., 

2015). Coupling of somatodendritic proteins to kinesin-1/KIF5 induced transport on PAEZ 

microtubules and entry into axons, both of which were dependent on microtubule acetylation 

(Farias et al., 2015). Consistent with observations from a number of studies, acetylation is a 

microtubule PTM that favors kinesin-1-driven transport (Reed et al., 2006). Although the 

underlying mechanism is unknown, acetylated microtubules are preferentially bundled and 

have protofilaments with weaker lateral contacts, both of which may favor the binding and 

mechanochemistry of kinesin-1 (Balabanian et al., 2017; Eshun-Wilson et al., 2019). 

Alternatively, acetylated microtubules could favor the accumulation of specific MAPs such 

members of the MAP7 family, which promote the recruitment and activation of kinesin-1, 

and the axonal entry of kinesin-1 cargo (Chaudhary et al., 2019; Hooikaas et al., 2019; 

Monroy et al., 2018; Pan et al., 2019; Tymanskyj et al., 2018).

While PAEZ microtubules select against somatodendritically destined vesicles, the AIS 

cytoskeleton reverses sometodendritc cargo out of the axon. This reversal involves synergy 

between microtubules and actin filaments (Arnold, 2009). The AIS cytoskeleton consists of 

a patchy network of short actin filament, which are predominately oriented with their barbed 

ends toward the cell body, and bundles of parallel microtubules, which are organized by the 

microtubule-binding protein TRIM46 (tripartite motif containing protein 46) with their 

minus ends facing the cell body (Harterink et al., 2019; Jones et al., 2014; van Beuningen et 

al., 2015; Watanabe et al., 2012). Upon entering the AIS, vesicles with somatodendritic 

proteins are halted on actin filaments by myosin-Vα, which orients them toward the cell 

body and enables engagement with dynein (Al-Bassam et al., 2012; Kapitein et al., 2013; 

Watanabe et al., 2012). Powered by NDEL, which is anchored to the AIS membrane 

skeleton by ankyrin-G, dynein moves somatodendritic cargo back into the cell body 

(Kuijpers et al., 2016). It is not well understood how somatodendritic cargo is handed off 

between kinesin, myosin-Vαand dynein, but cargo adaptors/scaffolds that bind to multiple 

motors may mediate these switches with input from signaling kinases. Interestingly, the 

adaptor and scaffold protein GRIP1 that directs kinesin-1 into dendrites has been shown to 

interact with myosin-VI in a phospho-regulated manner, and dynein reversal requires 

NDEL1 phoshorylation by the cyclin-dependent kinase 5 (CDK5) (Klinman et al., 2017; Lv 

et al., 2015).

The polarity of somatodendritic proteins was long thought to depend on their exclusion and 

reversal by the AIS cytoskeleton, but recent work indicates that vesicle trafficking is also 

sorted during entry into dendrites. Similar to the sorting of somatodenditic vesicles at axonal 

entry, axonal cargo of kinesin-1 stall and reverse directionality during entry into dendrites 

(Karasmanis et al., 2018). By contrast, dendritic cargo of kinesin-3 moves with an 

anterograde bias (Karasmanis et al., 2018). In parallel and consistent with these findings, 

rigor mutants of kinesin-1/KIF5 and kinesin-3/KIF1A were independently discovered to 
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associate preferentially with the acetylated plus-end-in and tyrosinated plus-end-out 

microtubules of dendrites, respectively (Tas et al., 2017). Moreover, the directional biases of 

kinesin-1/KIF5 and kinesin3/KIF1A, and their cargos, arise from modulation of their 

motility by SEPT9 and DCLK1, which are specifically enriched in dendrites, and possibly 

other MAPs such as doublecortin and MAP9 (Karasmanis et al., 2018; Lipka et al., 2016; 

Monroy et al., 2020).

SEPT9 belongs to the septin family of GTPases, which associate with subsets of 

microtubules and actin filaments, and membrane domains of micron-scale curvature 

(Bridges et al., 2016; Cannon et al., 2019; Spiliotis, 2018). SEPT9 bundles microtubules 

through the repeat motifs of a structurally disordered domain and suppresses microtubule 

catastrophe (Bai et al., 2013; Nakos et al., 2019a; Nakos et al., 2019b). In dendrites SEPT9 

localizes to microtubule bundles proximal to the cell body and maintains the polarity of 

neuronal traffic by impeding the motility of axonal cargo of kinesin-1/KIF5 and enhancing 

the anterograde movement of dendritic cargo of kinesin-3/KIF1A (Karasmanis et al., 2018). 

In vitro (cell-free) motility assays showed that SEPT9 reduces the binding and motility of 

the kinesin-1/KIF5 motor domain on microtubules, while it has the opposite effect on 

kinesin-3/KIF1A (Karasmanis et al., 2020). In agreement, SEPT9 depletion resulted in loss 

of the intrinsic axonal polarity of the kinesin-1/KIF5 motor domain, which entered dendrites 

(Karasmanis et al., 2018). Interestingly, SEPT9 does not affect the microtubule motility of 

kinesin-2/KIF17, but impacts its association with cargo (Bai et al., 2016). By modulating 

cargo-motor binding in proximal dendrites, SEPT9 may provide a spatial bias in the cargo 

selection of kinesin-2/KIF17, which mediates the transport of kainate receptors that localize 

specifically in distal dendrites (Kayadjanian et al., 2007). It is unknown how SEPT9 

becomes enriched in microtubules of proximal dendrites, but post-translational 

modifications such as polyglutamylation could play a role. Notably, septins associate with 

polyglutamylated microtubules and have been implicated in the generation and maintenance 

of short polyglutamylated side-chains (Froidevaux-Klipfel et al., 2015; Spiliotis et al., 2008).

Sorting of vesicle traffic on dendritic microtubules involves additional MAPs. DCLK1 is a 

dendritic MAP that associates preferentially with dendritic microtubules and interacts with 

the motor domain of kinesin-3/KIF1 (Lipka et al., 2016). Although DCLK1 does not impact 

kinesin-1/KIF5, it is required for the transport of kinesin-3/KIF1 cargo (Lipka et al., 2016). 

Dendritic entry of the dense core vesicle marker neuropeptide Y (NPY), which is mediated 

by KIF1A and KIF1C, is markedly reduced in DCLK1-depleted neurons (Lipka et al., 

2016). Similarly, knockdown of DCLK1 and MAP1A, but not MAP1B or MAP2, diminish 

the somatodendritic polarity of peroxisomes mobilized by chemically inducible coupling to 

KIF1C (Lipka et al., 2016). Doublecortin has also been shown to impact the dendritic traffic 

of KIF1A and its cargo VAMP2 (Liu et al., 2012). In vitro cell-free motility assays indicate 

that MAP9 also promotes the motility of kinesin-3, while doublecortin and MAP2 were 

found to interfere with the microtubule binding of kinesin-1/KIF5 (Monroy et al., 2020). 

However, it is unknown whether doublecortin and MAP2 function like SEPT9 in impeding 

the entry of axonal cargo of kinesin-1/KIF5 into dendrites. Overall, MAPs appear to 

function combinatorially for the spatial control of membrane traffic in dendrites.
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In parallel with their direct effects on the motility of motor-cargo, MAPs are also likely to 

impact membrane traffic through regulation of microtubule organization and dynamics. 

Recent work has revealed that the motility of kinesin-1/KIF5 and kinesin-3/KIF1A are 

influenced by the spacing and plus end dynamics of microtubules, respectively (Conway et 

al., 2014; Guedes-Dias et al., 2019). Kinesin-1/KIF5 motors run slower and shorter distances 

on microtubules that are closely packed (Conway et al., 2014). Conversely, microtubules that 

are spaced apart facilitate motility and relieve the inhibitory effects of MAPs by enhancing 

access to the microtubule surface (Conway et al., 2014). As the length of the projection 

domains of MAPs have been implicated in microtubule spacing (Chen et al., 1992), MAPs 

may differentially impact motor-cargo motility depending on how closely they bundle 

microtubules. In addition to spacing, the nucleotide-bound status and dynamicity of 

microtubules can impact motor affinity and movement. Kinesin and dynein motors have 

differential affinities for the growing GTP-bound plus-ends. Dynein is recruited to 

microtubule plus ends through dynactin, which interacts with the plus-end binding and 

tracking protein EB1 (Duellberg et al., 2014; Jha et al., 2017; Ligon et al., 2006; 

Moughamian and Holzbaur, 2012). Kinesin-2/KIF17 has similarly reported to interact with 

EB1 and kinesin-1/KIF5 with GTP-bound tubulin, while kinesin-3/KIF1A has a weak 

affinity for GTP-bound microtubules and detaches from distal microtubule ends (Guedes-

Dias et al., 2019; Jaulin and Kreitzer, 2010; Nakata et al., 2011). Hence, MAPs that 

modulate microtubule dynamics are likely to impact the attachment and dissociation of 

motor-cargo complexes, and thereby, the directionality of movement in dendrites. Similarly, 

modulation of the physical and dynamic properties of microtubules by PTMs is also likely to 

impact motor-driven transport.

6. Spatiotemporal and synaptic control of membrane traffic into dendritic 

spines

Dendritic spines, the bulbous protrusions that synapse with axons, constitute a specialized 

compartment of paramount physiological significance for the central nervous system 

(Hering and Sheng, 2001; Martinez-Cerdeno, 2017; Rochefort and Konnerth, 2012). 

Spatiotemporal control of membrane trafficking from the dendritic shaft to spines and back, 

and within the spine compartment itself, is essential for the development and plasticity of 

synapses, and their modulation by neuronal activity (Choquet and Triller, 2013; Hotulainen 

and Hoogenraad, 2010; Kennedy and Ehlers, 2011; Lei et al., 2016; Nakahata and Yasuda, 

2018). Dendritic spines are pleomorphic in shape and size, but they are invariably connected 

to the dendritic shaft by a narrow ~100 nm-wide neck (Hering and Sheng, 2001; Rochefort 

and Konnerth, 2012). Dendritic spines contain mainly smooth ER, endosomes and actin 

filaments, and are supplied with lysosomes, microtubules and mRNA from the dendritic 

shaft (Dent, 2017; Konietzny et al., 2017; Lei et al., 2016). On the spine membrane, 

glutamate receptors and post-synaptic scaffold proteins are organized in microdomains, 

clustering at synaptic contacts (post-synaptic density) and diffusing laterally in the 

perisynaptic membrane (Adrian et al., 2014; Choquet and Triller, 2013; Hruska et al., 2018; 

Kim and Sheng, 2009). Spine membrane proteins traffic to and recycle from endosomes, 

which requires regulation of membrane traffic locally within the spine (Kennedy and Ehlers, 

2011; van der Sluijs and Hoogenraad, 2011) (Figure 5A). However, post-synaptic proteins 
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are also delivered through exocytosis of vesicles and organelles that enter spines from the 

dendritic shaft (Dent, 2017; Hanus and Ehlers, 2008; Padamsey et al., 2017; Wagner et al., 

2011). The latter events rely on mechanisms that position and/or target membrane organelles 

in close proximity to spines, and microtubule entry into spines (Figure 5B).

In dendritic spines, endosomal membrane traffic occurs along branched and linear actin 

filaments, whose dynamics underlie spine formation and plasticity (Hotulainen and 

Hoogenraad, 2010; Konietzny et al., 2017; Lei et al., 2016). The processive unconventional 

myosins V and VI, which move to the barbed fast-growing and pointed slow-growing ends 

of actin filaments, respectively, mediate the transport of endocytic vesicles in dendritic 

spines (Hammer and Sellers, 2011; Wells et al., 1999). In hippocampal neurons, myosin Vb 

is recruited by Rab11 and Rab11-FIP2 to recycling endosomes that contain GluR2 receptors, 

mobilizing them into the dendritic spine in response to activation of NMDA receptors (Wang 

et al., 2008). Mechanistically, Ca2+ ions trigger a conformational change in myosin Vb, 

which promotes interaction with Rab11-FIP2, leading to the release of GluR2 receptors into 

the spine membrane for the long-term potentiation (LTP) of synapses (Wang et al., 2008). In 

Purkinje neurons, myosin Va mediates the movement of smooth ER tubules into dendritic 

spines, which occurs in response to metabotropic glutamate receptor (mGluR) activation and 

results in the release of calcium from the ER, promoting mGluR-dependent long-term 

depression (LTD) (Wagner et al., 2011). ER tubules are not present in most of the dendritic 

spines of pyramidal neurons, but a subset of spines contains a specialized ER structure 

termed the spine apparatus (SA) (Spacek, 1985; Spacek and Harris, 1997). The SA consists 

of laminar stacks of ER membranes, which localize to the neck and base of spines, and 

marked by the protein synaptopodin, which in turn is essential for SA formation (Deller et 

al., 2003; Deller et al., 2000). Synaptopodin interacts with myosin V and is markedly 

diminished from dendritic spines upon expression of a dominant negative myosin V 

(Konietzny et al., 2019). Translocation of mRNA into dendritic spines is also mediated by 

myosin Va, which associates with messenger ribonuclear protein (mRNP) complexes in a 

Ca2+-dependent manner; myosin Va interacts with translocated in liposarcoma (TLS), an 

mRNA-binding protein that colocalizes with RNA-transporting granules and actin filaments 

(Yoshimura et al., 2006). Hence, myosin V appears to specialize in the transport of 

endosomal and ER membranes as well as mRNAs from the dendritic shaft into spines, 

which involves transitioning of cargo transport from the microtubules of the dendritic shaft 

to the actin filaments of spines. As myosin V interacts with microtubules (Ali et al., 2007; 

Zimmermann et al., 2011), switching between microtubules and actin filaments, it is 

uniquely suited for transitioning cargo movement from microtubules to actin filaments at the 

interface of the dendritic shaft with spines.

In contrast to myosin V, which mediates entry into spines, myosin VI functions mainly in the 

opposite direction, driving the internalization of post-synaptic membrane proteins and exit of 

endosomes from dendritic spines. Immunoprecipitations from dendritic membrane extracts 

revealed that myosin VI interacts with the clathrin adaptor AP-2, the GluR1 and GluR2 

subunits of AMPA receptors and the scaffold protein SAP97 (synapse-associated 

protein-97), which controls the post-synaptic density of glutamate receptors (Buss et al., 

2001; Osterweil et al., 2005; Wu et al., 2002). Importantly, myosin VI is required for 

AMPA-induced internalization of GluR1, which is critical for LTD (Osterweil et al., 2005). 
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Consistent with a role in egress from spine membranes, chemically induced coupling of 

myosin VI to Rab11 results in expulsion of recycling endosomes into dendritic shafts, 

diminishing PSD95 and GluR localization in dendritic spines (Esteves da Silva et al., 2015). 

In addition to glutamate receptors, myosin VI facilitates the internalization of the brain 

derived neurotropic factor (BDNF) receptor TrkB (tropomyosinrelated kinase B) (Yano et 

al., 2006). Myosin VI forms a complex with TrkB and glypican-1 (Gpc1), which functions 

as an adaptor between myosin VI and the cytoplasmic tail of TrkB (Yano et al., 2006).

In dendritic shafts, transport of membrane organelles, vesicles and mRNAs takes place on 

microtubules and has been likened to conveyor belts or sushi-belts, as referred to in the case 

of mRNA transport, which can supply spines with material in transit (Doyle and Kiebler, 

2011; Hanus et al., 2014; Hoerndli et al., 2015a). Long-range movement along microtubules 

enables transient interactions with the base of dendritic spines, but growing evidence 

suggests that these are not entirely stochastic. Dendrites appear to possess structures and 

mechanisms that spatially control and bias membrane traffic into spines.

Recent work showed that actin meshworks provide an obstacle in microtubule-dependent 

transport, entrapping membrane organelles at the base of dendritic spines and shaft synapses 

– synapses that form by axon terminals making contact with dendritic shafts instead of 

spines (Bucher et al., 2020). Dendritic actin patches are stationary and stable, consisting of 

branched and linear actin, and unlike axonal actin patches, do not appear to originate from 

endosomal membranes (van Bommel et al., 2019). Endolysosomal organelles, however, are 

embedded in actin patches, which slow down and pause the microtubule-dependent 

movement of lysosomes and peroxisomes (van Bommel et al., 2019). Notably, lysosome 

stalling at actin patches depends on myosin V, while myosin VI is not involved (van 

Bommel et al., 2019). Anchoring of lysosomes to actin patches by myosin V can provide a 

mechanism for lysosome stalling and fusion with dendritic membrane in response to 

synaptic stimulation. Myosin V and its calmodulin light chains are conformationally 

sensitive to Ca2+ concentrations (Krementsov et al., 2004). Thus, upon synaptic activation, 

accumulation of myosin V at dendritic actin patches and its mobility into dendritic spines 

are regulated by the flux of Ca2+ ions, which occurs through NMDA receptors and 

lysosomes themselves; Ca2+ ions are released from lysosomes upon synaptic stimulation 

(Goo et al., 2017). Synaptic activity induces trafficking of lysosomes into dendritic spines 

and their fusion with dendritic membranes (Goo et al., 2017; Padamsey et al., 2017). Upon 

lysosome exocytosis, release of the proteolytic enzyme cathepsin B enhances the activity of 

the matrix metalloproteinase 9 (MMP9), which in turn impacts synaptic strength by 

remodeling the extracellular matrix (Padamsey et al., 2017). Thus, actin patches may 

provide a mechanism for directing lysosomes into dendritic spines in response to synaptic 

activity.

Interestingly, synaptic activity has been shown to restrict the long-range movement of post-

ER secretory carriers, which was attributed to the phosphorylation of kinesin-2/KIF17 by the 

Ca2+/calmodulin-dependent protein kinase II (CaMKII) (Hanus et al., 2014). Because 

peroxisomes that are artificially coupled to kinesin-2/KIF17 stall at dendritic actin patches 

(van Bommel et al., 2019), it is possible that dendritic actin patches restrict post-ER 

membrane traffic in response to synaptic activity.
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Currently, it is unknown how dendritic actin patches are strategically positioned to entrap 

endolysosomes at the base of dendritic spines and shaft synapses. A combination of physical 

and signaling cues from the dendritic membrane may spatiotemporally instruct the formation 

of actin patches. At the base of dendritic spines, the saddle-like membrane curvature 

between the shaft and spine neck membranes, is enriched with septins that recognize and 

assemble preferentially on micron-scale membrane curvatures (Bridges et al., 2016; Ewers 

et al., 2014; Tada et al., 2007; Xie et al., 2007). Interestingly, this septin localization is 

regulated by phosphorylation, which shifts septins from the base to the head of the spine, 

where SEPT7 interacts with PSD95 (Yadav et al., 2017). Septins impede the diffusion of 

AMPA receptors (Ewers et al., 2014), but can also play a role in the assembly of actin 

patches and their interaction with microtubules (Hu et al., 2012). New studies indicate that 

WAVE, an actin nucleation promoting factor, recognizes saddle curvatures of the membrane 

in complex with IRS53p, a membrane curvature-sensing protein (Pipathsouk et al., 2019). 

Therefore, assembly of actin patches at the base of dendritic spines could be spatially 

controlled by curvature-sensing actin-binding proteins and further reinforced by actin-

microtubule crosslinking factors. Synaptic activity is likely to exert a temporal control over 

the assembly of actin patches through signaling kinase pathways (e.g., calmodulin- and 

cAMP-dependent protein kinases), which regulate actin assembly and potentially the 

localization and functions of septins and WAVE (Bucher et al., 2020; Hotulainen and 

Hoogenraad, 2010; Lei et al., 2016; Schatzle et al., 2018).

Actin patches provide a “hand-off” mechanism for directing membrane traffic from the 

microtubules of the dendritic shaft to the actin filaments of spines, however recent evidence 

points to a “direct-deposit” mode of vesicle delivery to spine membranes, which results from 

microtubule entry into spines (Dent, 2017). This mode of membrane traffic relies on the 

capture of dynamic microtubule plus ends that grow from the dendritic shaft to the neck 

and/or head of spines (Figure 5B).

EM observations of microtubules in dendritic spines were initially met with skepticism, but 

microtubule entry into dendritic spines has been extensively and reproducibly reported in 

living neurons (Hu et al., 2011; Hu et al., 2008; Jaworski et al., 2009; Kapitein et al., 2011; 

Merriam et al., 2011; Merriam et al., 2013; Schatzle et al., 2018). Microtubule plus ends 

invade a subset of dendritic spines at steady state, and the number and duration of these 

events increase with synaptic activity, chemically induced long-term potentiation and 

activation of TrkB receptors by BDNF (Hu et al., 2011; Hu et al., 2008; Merriam et al., 

2011; Merriam et al., 2013). Conversely, induction of NMDA-dependent long-term 

depression diminishes MT entry into spines and results in the dissociation of the microtubule 

plus end-binding protein 3 (EB3), which accumulates on microtubule bundles of the 

dendritic shaft through a direct interaction with MAP2 (Kapitein et al., 2011). Microtubule 

invasions correlate with enhanced delivery of post-synaptic proteins (e.g., PSD95) and 

enlargement of the spine (Hu et al., 2011; Merriam et al., 2011). Notably, the kinesin 3 

motor KIF1A and synaptotagmin-IV-containing vesicles traffic synchronously with growing 

microtubules into dendritic spines, and delivered directly by microtubules to the spine 

membrane (McVicker et al., 2016). Consistent with these observations in murine pyramidal 

neurons, kinesin-mediated delivery of AMPA receptors has been reported in C elegans 
neurons (Hoerndli et al., 2013; Hoerndli et al., 2015b). Moreover, microtubule plus ends 
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were recently found to deliver synaptic vesicle precursors driven by kinesin-3/KIF1A to 

axonal pre-synaptic sites (Guedes-Dias et al., 2019).

How are microtubule plus ends targeted and captured by dendritic spines? Microtubule 

invasions into spines are dependent on actin filaments and correlate with enhanced actin 

polymerization in response to synaptic calcium flux (Merriam et al., 2013; Schatzle et al., 

2018). Guidance of microtubule plus end entry into spines correlates with the presence of 

dynamic actin filaments at the base of spines (Figure 6), which involves a cortactin-

dependent remodeling of actin in response to synaptic activity (Schatzle et al., 2018). 

Mechanistically, microtubule-actin crosslinking proteins such as drebrin could mediate the 

physical capture of microtubules by actin (Merriam et al., 2013). Interestingly, a positive 

feedback loop appears to exist between the actin filaments of dendritic spines and entry of 

microtubule plus ends as the latter can stimulate actin assembly (Rodriguez et al., 2003). For 

example, the microtubule plus end-binding protein EB3 associates with p140Cap/SNIP, 

which in turn interacts with cortactin that promotes actin assembly in dendritic spines 

(Jaworski et al., 2009) (Figure 6). As new mechanisms of actin polymerization from 

microtubule plus ends have emerged (Henty-Ridilla et al., 2016), microtubule-dependent 

remodeling of actin in dendritic spines warrants further investigation. Overall, microtubule-

actin crosstalk appears to be critical for the spatial control of membrane traffic to dendritic 

spines by either a hand-off or direct-deposit mechanism.

7. Looking into the future: open questions and perspectives

Despite significant advances in understanding the intrinsic and extrinsic mechanisms 

underlying dendritic morphogenesis and plasticity, dendrites remain less studied and 

understood than axons. New advances have begun to shed light on the organization and 

navigation of membrane traffic in dendrites, but questions abound on nearly every aspect of 

dendritic development and homeostasis. Looking into the future, we conclude by 

considering a number of critical questions in the following areas of dendritic membrane 

traffic:

1. Dendrite Morphogenesis. As axonal morphogenesis precedes the outgrowth of 

dendrites, dendritic polarity has been presumed to commence as a consequence 

of the sorting functions of the AIS. Dendrite-selective cargo, however, traffic 

preferentially to minor neurites prior to the formation of AIS in the major longest 

neurite - the presumptive axon (Petersen et al., 2014). While the PAEZ is posited 

to mediate this early sorting (Farias et al., 2015), hitherto unknown effectors and 

mechanisms are likely to function in parallel with the PAEZ and AIS. 

Discovering a septin-based mechanism of vesicle sorting in proximal dendrites, 

which excludes axonal motor-cargo, underscores the existence of dendrite-based 

mechanisms of neuronal polarity (Karasmanis et al., 2018). We nevertheless have 

little understanding of the early stages of dendrite morphogenesis. The intrinsic 

machineries underlying dendrite-specific features such as extensive branching, 

dendritic spine formation and a unique organization of ER and Golgi membranes 

are poorly understood. Similarly, the apical-basal differentiation of dendrites has 

been little studied. Apical dendrites form in cultured neurons in vitro and 
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therefore, asymmetry among dendrites is driven by intrinsic mechanisms that are 

yet to be discovered (Horton et al., 2006).

2. Protein Sorting. Transcytosis and the existence of non-canonical organelles (e.g., 

ER spine apparatus, Golgi satellites and outposts) and trafficking pathways (e.g., 

ER to recycling endosome and plasma membrane) involve mechanisms of 

protein sorting that elude our current understanding. For proteins that undergo 

transcytosis, it is unclear how their axonal and somatodendritic sorting motifs are 

selectively inhibited or activated in a region-specific manner, and recognized by 

competing adaptors. The sorting mechanisms that divert transcytotic axonally-

destined cargo or signaling receptors/complexes from degradative 

endolysosomes are poorly understood. Given the presence of an extensive ER 

network in dendrites, continuous synthesis of axonal proteins poses the question 

of whether transcytosis is the main mechanism of clearance or targeting for 

degradation in lysosomes occurs by sorting in the ER, Golgi outposts, 

endosomes and/or multivesicular bodies. Alternatively, are there sorting 

mechanisms that exclude axonal membrane proteins from dendritic ER exit sites 

or package them into vesicles, which are destined to the Golgi complex of the 

cell body instead of the local Golgi outposts? Lastly, how dendritic proteins are 

sorted for trafficking directly from the ER/ERGIC to recycling endosomes or the 

plasma membrane remains unexplored.

3. Cytoskeleton-dependent transport. Over the last 30 years, much effort has been 

expended on elucidating motor-cargo specificity, and how cytoskeletal motors 

function and are regulated. Although substantial progress has been made in these 

areas, how cargo and adaptor scaffold proteins alter the motile properties of 

motors is little understood. For example, it is unknown how the GRIP1 cargo 

adaptor/scaffold alters the axonal selectivity of kinesin-1/KIF5, enabling entry of 

kinesin-1/KIF5-GRIP1-cargo into dendrites. Is this effect due to conformational 

changes in the kinesin motor or the result of a new set of interactions between 

the GRIP1-bound motor and axonal or dendritic MAPs? The discovery of 

dynein-activating adaptors, several of which also interact with kinesins, has 

elevated the importance of cargo adaptors/scaffolds in dictating the directionality 

and run lengths of cargo, and coordinating the activity of multiple motors. In 

parallel, we have begun to scratch the surface of the tubulin and MAP codes that 

regulate traffic on the surface of dendritic microtubules. Understanding how 

combinations of PTMs and MAPs instruct the itineraries of dendritic motor-

cargo looms as a new frontier. In light of new evidence indicating that dendritic 

microtubules resemble multilane highways of unidirectional orientation, it is 

imperative to determine: i) which MAPs associate with microtubule bundles of 

particular orientation, ii) how motors and their cargo switch between 

microtubules of opposing orientations, and iii) how microtubule organization and 

membrane traffic transitions through dendritic branch points. The latter pose 

many questions about the continuity, directionality and regulation of membrane 

traffic at dendritic branch junctions.
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4. Dendritc spines. The width and area of dendritic spines, which are not much 

larger than the diffraction limit of light microscopy, have posed limitations in the 

study of membrane traffic in dendritic spines. Recent technological advances in 

time-lapse super-resolution microscopy usher in a new era of spine research. 

Microtubule entry into dendritic spines has also raised new questions about 

membrane traffic in and out of spines. For example, the mechanisms of 

microtubule capture and entry, and their regulation by neuronal activity, are 

poorly understood. It is also unknown how microtubules interface with actin 

filaments, and how membrane traffic may transition from microtubules to actin 

and vice versa in dendritic spines.

Future research in these areas will transform our current understanding of membrane traffic 

in dendrites, and provide new insights into the pathogenesis of neurological diseases that 

arise from defects in neuronal trafficking. Autism spectrum disorders, intellectual disabilities 

and neuropsychiatric disorders are all characterized by alterations in neuronal dendritic trees 

and spines (Kulkarni and Firestein, 2012). Mutations in clathrin adaptor proteins have been 

reported in patients with intellectual disabilities, epileptic encephalopathy and spastic 

paraplegia (Sanger et al., 2019). Epileptic phenotypes result directly from defects in 

kinesin-1/KIF5-mediated transport of GABAA receptors (Nakajima et al., 2012). Similarly, 

defects in the somatodendritic transport of serotonin (5-hydroxytryptamine, 5-HT1A) 

receptors by kinesin-3/KIF13A and NMDA receptors (NR2B) by kinesin-2/KIF17 are linked 

to the pathogenesis of anxiety and schizophrenia, respectively (Alsabban et al., 2019; Zhou 

et al., 2013). In addition to motors, MAPs and PTMs are also implicated in disease-causing 

alterations of membrane traffic. In Alzheimer’s disease, amyloids cause an abnormal 

accumulation of hyperphosphorylated tau in the somatodendritic compartment, which in turn 

results in loss of dendritic spines; tau is a critical component of post-synaptic excitotoxicity 

(Ittner and Ittner, 2018). In summary, more work is needed to unravel how defects in 

membrane traffic contribute to the abnormal development and degeneration of dendrites. 

Future studies will advance our knowledge of dendritic membrane traffic in health and 

disease, and may lead to new therapeutic avenues for the treatment of neurological disorders.
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Highlights

• Dendrites are highly branched and specialized compartments with distinct 

membrane and cytoskeletal organization.

• How post-synaptic proteins partition and traffic preferentially into dendrites is 

a fundamental question of basic neuroscience.

• Recent advances have shed new insights into the spatial control of dendritic 

membrane traffic.

• Dendrite-specific mechanisms promote and underlie the axonodendritic 

polarity of neuronal membrane traffic, which might have co-evolved with 

their highly arborized morphology.
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Figure 1. 
Dendritic polarity and traffic toolbox. Dendrites are enriched with post-synaptic membrane 

proteins including the AMPA (GluR1/2, GluR2/3) and NMDA (NR1, NR2A/B) receptors of 

the excitatory synapse, the GABAA and glycine receptors (GlyR) of the inhibitory synapse, 

kainate receptors such as GluR5 and KA2, potassium (Kv4.2, Kv2.1) and copper (ATP7B) 

ion channels, and the transferrin receptor (TfR). Dendritic localization and targeting of these 

receptors and channels involves interaction with adaptor and scaffold proteins (e.g., PSD95, 

SAP97, GRIP1, mLin10, Liprin-α, GABARAP), which interface with membrane- and 

cytoskeleton-based mechanisms of intracellular traffic. Specificity in the trafficking of 

dendritic membrane proteins is achieved during sorting at the trans-Golgi and endosomes, 
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transport by kinesin, dynein and myosin motors, and additional guidance from microtubule-

associated proteins (MAPs) and post-translational modifications (PTMs) of the cytoskeleton 

which provide spatial cues. This figure summarizes and tabulates the sorting motifs that 

interact with membrane coat adaptors, the cytoskeletal motors and their interactions with 

adaptor/scaffold and cargo proteins, and the MAPs and PTMs that function in dendritic 

membrane polarity and traffic.
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Figure 2. 
Sorting of somatodendritic and axonal proteins by membrane adaptors. Schematic shows the 

major compartments of a neuronal cell and the clathrin adaptors (AP-1, AP-3, AP-4) 

involved in the sorting of somatodendritic and axonal proteins in the trans-Golgi of the cell 

body. Adaptors proteins (NEEP21, SorCS1) that mediate the sorting of axonal proteins for 

retrieval from dendrites (transcytosis) and the endocytic recycling of dendritic membrane 

proteins (AP-2, SNX27, SNX1) are also outlined.
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Figure 3. 
Cytoskeletal motors and adaptors in the polarized and local traffic of dendritic proteins. 

Schematic shows the microtubule (kinesin, dynein) and actin motors (myosins, myo) 

involved in the retrieval of somatodendritic proteins from the axon initial segment and 

transport from the cell body to dendrites. In addition, the myosin motors that drive 

membrane traffic in dendritic spines are shown. Kinesin motors are summarized under their 

respective families (e.g. kinesin-1) and the adaptor/scaffold proteins that mediate interaction 

with dendritic cargo are provided in parentheses.
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Figure 4. 
Spatial control of dendritic membrane traffic by MAPs and microtubule PTMs. Schematic 

depicts dendritic MAPs and microtubule PTMs with roles in the regulation of kinesin-driven 

membrane traffic. SEPT9 and DCLK1 localize in proximal and distal dendrites, respectively. 

SEPT9 impedes traffic of axonal cargo of kinesin-1 into dendrites, while it promotes the 

anterograde transport of dendritic cargo of kinesin-3. DCLK1, DCX and MAP9 also 

promote the microtubule binding and motility of kinesin-3. In vitro motility assays indicate 

that MAP2, DCX and MAP9 inhibit kinesin-1 motility, but it is unknown whether these 

MAPs can impede entry of kinesin-1 and its axonal cargo into dendrites. Dendrites contain 

tyrosinated and acetylated microtubules, which are oriented with their plus-ends away and 

toward the cell body, respectively. The kinesin-3/KIF1A motor associates preferentially with 

tyrosinated plus-end out microtubules and kinesin-1/KIF5 interacts with acetylated plus-end 

in microtubules. Dendritic microtubules are also modified with short glutamate chains, 

which are maintained by the tubulin glutamylase TTLL7 (tubulin tyrosine like ligase 7) and 

the deglutamylase CCP1 (cytosolic carboxypeptidase 1). Note that kinesin-2/KIF17 

transports the kainate receptors GluR5 and KA2 in distal dendrites, which is indicative of a 

spatial specificity in dendritic motor-cargo traffic.
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Figure 5. 
Membrane traffic in dendritic spines. (A) The actin motors myosin V and VI mediate the 

transport of post-synaptic cargo toward and away from the dendritic spine head, respectively. 

At the base of the dendritic spines and along the dendritic shaft, endolysosomes are 

entrapped and anchored to actin patches by myosin V, which provides a mechanism for 

fusion with the spine membrane in response to synaptic activity. Dendritic membrane 

proteins recycle through retromer-positive endosomes, which localize along the dendritic 

shaft membrane. (B) Dynamic microtubules that enter into dendritic spines deliver vesicles 

to the spine membrane by either a handoff mechanism, which involves vesicle switching 

from microtubules to actin filaments, or direct delivery of microtubule plus-end-associated 

vesicles to the membrane. Microtubule-dependent transport of vesicles also occurs in the 

dendritic shaft, where vesicles with post-synaptic receptors are delivered by microtubule 

motors to synapses and membrane sites of the dendritic shaft.
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Figure 6. 
Actin-microtubule crosstalk in dendritic spines. Microtubule plus ends are captured at the 

base of dendritic spines by dynamic patches of actin filaments and possibly other 

cytoskeletal elements such as septins, which are enriched at the membrane curvature along 

the base and neck of dendritic spines. Microtubule-actin crosstalk is mediated by proteins 

such as drebrin, which interacts with both actin and microtubules, and myosin V, which can 

diffuse on the microtubule lattice and thereby, could transition vesicular cargo from 

microtubules to actin filaments. Notably, microtubules have the capacity to regulate the actin 

organization of dendritic spines through proteins that associate with microtubule plus ends. 

For example, p140Cap/SNIP associates with the microtubule plus-end protein EB3 and 

interacts with cortactin that promotes Arp2/3-induced assembly of branched actin filaments. 

Microtubule plus ends with p140Cap/SNIP can promote actin assembly by inhibiting the Src 

kinase, which is a negative regulator of cortactin.
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