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Introduction: To combine numerical simulations, in vitro and in vivo experiments 
to evaluate the feasibility of measuring diffusion exchange across the cell membrane 
with diffusion exchange spectroscopy (DEXSY).
Methods: DEXSY acquisitions were simulated over a range of permeabilities in 
nerve tissue and yeast substrates. In vitro measurements were performed in a yeast 
substrate and in vivo measurements in mouse tumor xenograft models, all at 9.4 T.
Results: Diffusion exchange was observed in simulations over a physiologically rel-
evant range of cell permeability values. In vitro and in vivo measures also provided 
evidence of diffusion exchange, which was quantified with the Diffusion Exchange 
Index (DEI).
Conclusions: Our findings provide preliminary evidence that DEXSY can be used to 
make in vivo measurements of diffusion exchange and cell membrane permeability.
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1  |   INTRODUCTION

Water is exchanged between intracellular and extracellular 
compartments either via direct diffusion across the lipid bi-
layer1 or via integral aquaporin membrane proteins.1 Both 
can be modified in diseases such as cancer,2,3 and disrup-
tion of the cell membrane causes permeability changes 

during apoptosis, oncosis, and necrosis.4-7 Thus, measure-
ments of water exchange could provide useful biomarkers 
of disease progression and response to treatment in cancer, 
alongside other pathologies such as those responsible for 
neurodegeneration.8

Diffusion MRI is widely used in oncology to measure tis-
sue microstructural properties such as cell density, detecting 
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tumors and characterizing response to therapy. Likewise, 
diffusion-weighted imaging has been used to map aquaporin 
reporter gene expression,9 and machine learning approaches 
for measuring cell membrane permeability have also been tri-
alled.10 Other, more specialized MRI techniques have been 
developed to enable changes in water exchange to be mea-
sured, including FEXSY (filter exchange spectroscopy)11 and 
diffusion exchange spectroscopy (DEXSY).12 FEXI (filter 
exchange imaging), the imaging version of FEXSY, provides 
estimates of exchange using a two-compartment exchange 
model.13 The techniques both use double diffusion-encoding 
schemes to identify water exchange between biological com-
partments with different diffusion properties.12 FEXI esti-
mates of exchange have been linked to gene expression, such 
as the relationship between the apparent exchange rate and 
UT-B transporter expression.14 However, FEXI estimates of 
exchange assume a mono-exponential exchange between two 
compartments, which is computationally tractable but may 
under represent the complexity of biological tissue. For this 
to be evaluated, techniques such as DEXSY could be used to 
fully investigate this relationship. Unlike FEXI, DEXSY has 
not yet been trialed in vivo, and could provide more exten-
sive coverage of diffusion parameter space and a model-free 
method for estimating water exchange.

In this study, we have used numerical simulations to as-
sess the feasibility of using DEXSY to measure diffusion ex-
change across the cell membrane in nerve bundles and yeast, 
and compared the results with corresponding simulations 
using FEXSY and diffusion ordered spectroscopy (DOSY). 
Our rationale for this approach was that these simple models 
of nerve bundles are a well-established substrate for diffusion 
simulations, while the results of yeast simulations can be val-
idated in vitro. We also validate our yeast simulations with 
in vitro measurements of diffusion exchange across the cell 
membrane using DEXSY.12,15 Here, yeast was chosen as it is 
a well-established, generalizable model for cellular biology 
studies in eukaryotes.16 Finally, we acquired DEXSY data 

from tumor xenograft models to demonstrate the feasibility 
of measuring diffusion-diffusion exchange in vivo. Through 
this series of experiments, we were therefore able to link to-
gether and co-validate in silico, in vitro, and in vivo data.

2  |   METHODS

The DEXSY pulse sequence used to measure diffusion  
exchange in this study incorporates two pairs of diffusion- 
encoding gradients, G1 and G2 (Figure 1). These are sepa-
rated by a mixing time, tm, which allows diffusion exchange  
to occur. An inverse Laplace transform is applied to the 
DEXSY signal to produce a distribution of diffusion coef-
ficients. This can be displayed as a 2D spectrum in which 
diffusivities encoded with G1 are plotted against diffusivi-
ties encoded with G2. Peaks that lie along the diagonal of 
these diffusion-diffusion exchange spectra represent spins 
exhibiting the same diffusivity during both sets of diffu-
sion encoding gradients, whereas off-diagonal peaks rep-
resent spins that have exchanged between two different 
diffusion environments.12,17 The signal equation for the 
DEXSY sequence is17: 

where subscripts correspond to parameters associated with  
either G1 or G2. The summation is across all spins in the system. 
For a pair of gradient pulses, b = �

2
�
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the gyromagnetic ratio, G is the gradient strength, δ is the dura-
tion of the diffusion encoding gradient, Δ is the diffusion time; 
D is the distribution of diffusivities, S is the acquired signal S0 
is the signal acquired with no diffusion encoding gradients; p 
is the probability of the contribution to the signals from D1 and 
D2. The DEI (Diffusion Exchange Index) is defined here as the 
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exchange peaks) to the nonexchange signal (sum of the volume 
of the intracellular and extracellular peaks), and is proposed as 
a normalized measure of diffusion exchange.

In FEXI, a similar pulse sequence is used. However, the 
first gradient pair has a fixed magnitude and is used as a fil-
ter, while the mixing time is varied. An estimate of exchange 
is then calculated from the data acquired using a mono- 
exponential two compartment exchange model.13 In DOSY 
acquisitions, chemical shift spectra are acquired in combina-
tion with a range of diffusion encoding gradients, allowing 
the diffusivities of specific molecules to be measured.18

2.1  |  Simulations

We simulated measurements of diffusion exchange across 
the cell membrane using DEXSY and FEXSY in two sub-
strates: (a) a substrate modeling nerve bundles and (b) a yeast 
substrate. Yeast was used as it is a well-established model for 
eukaryotic cells16 and enabled us to validate our simulations 
with in vitro measurements in yeast.

We modified the corpus callosum nerve bundle model 
used by Alexander et al,19,20 to include permeable cell mem-
branes. The nerve bundle model uses a gamma distribution 
of cylinder radii with a shape parameter of 5.3316, a scale 
parameter of 1.0242 × 10−7 m with 100 cylinders and a lattice 
size of 1.65 × 10−5 m.

In this study, the probability of walkers crossing the cell 
membrane was adjusted to include a wide range of permea-
bilities, which exceeded the range previously measured in a 
variety of cells.21 For this, the probability of a random walker 
crossing a cell membrane was varied between 0 and 0.1. The 
25 probabilities were centered at 0.003, which corresponds 
to a physiological cell membrane permeability of 1.0 μm/s, 
and is equivalent to that measured in a rat brain axon.21 There 
were 10 probabilities evenly spaced between 0.0001 and 
0.00055. To mimic a yeast suspension, a substrate consisting 
of 500 spheres (5 μm diameter) with a packing fraction of 
0.62 was used.22 The probability of walkers crossing the cell 
membrane is directly proportional to the permeability for a 
given substrate. The relationship is given by the following 
equation: 

where p is the probability of a walker crossing the cell mem-
brane, k is the permeability dt is the time step and D is the 
diffusivity.23

Monte Carlo simulations were performed using 
CAMINO24 with 100 000 walkers, a duration of 400 ms, dif-
fusivity of 2.0 × 10−9 m2

∕s and 16  000 time steps, in both 
yeast and nerve tissue substrates. DEXSY and FEXSY signals 

were simulated in order to determine their relationship with 
cell membrane permeability.

Parameters for simulated DEXSY acquisitions in-
cluded δ  =  15  ms, Δ  =  17  ms and tm = 100  ms, G1 and 
G2 = 0-900 mT/m in 16 × 16 linearly spaced steps. A DOSY18 
acquisition was also simulated with the following parame-
ters: δ = 15 ms, Δ = 17 ms and encoding gradients set to vary 
between 0 and 900 mT/m in 256 steps. The DOSY is used to 
validate the accuracy of the DEXSY diffusion measurements. 
Simulated FEXSY acquisitions included the following pa-
rameters: δ = 15 ms, Δ = 17 ms and a filter gradient strength 
of 68 mT/m and an encoding strength varying between 
0−68 mT/m in 9 steps with tm = 0, 10, 100, 200, 300 ms.

Two-dimensional inverse Laplace software25 was used to 
process the DEXSY and DOSY raw data, to produce diffusion- 
diffusion exchange plots to summarize DEXSY data, and dif-
fusion spectra for DOSY. The AXR (apparent exchange rate) 
parameter was estimated from FEXSY simulations, follow-
ing the method of Nilsson et al.26

2.2  |  In vitro experiments

In vitro data were acquired to validate our in silico DEXSY 
measurements of diffusion-diffusion exchange in a yeast 
substrate. The data were acquired using a 20 cm horizontal 
bore 9.4 T Varian scanner with a 26 mm Rapid RF coil and 
1000 mT/m gradient inserts, with a slice selective DEXSY 
sequence. Two samples were used, consisting of 15 mL fal-
con tubes containing a suspension of l’hirondelle cake yeast 
in PBS (18  g and 22  g in 10  mL PBS, respectively). The 
two samples were scanned using different DEXSY scan pa-
rameters sensitive to different diffusion lengths (10 μm and 
9 μm). Data were acquired from sample 1 with DEXSY scan 
parameters included δ = 15 ms, Δ = 17 ms, tm = 200 ms,  
G1 and G2  = 0-640 mT/m in 16 × 16 linearly spaced steps. 
For sample 2, with DEXSY scan parameters included 
δ = 9 ms, Δ = 14 ms, tm = 200 ms, G1 and G2 = 0-640 mT/m 
in 16 × 16 linearly spaced steps. In each case, the slice used 
to acquire the data included the whole falcon tube.

2.3  |  In vivo experiments

All in vivo experiments were performed in accordance with 
the UK Home Office Animals Scientific Procedures Act, 
1986 and United Kingdom Coordinating Committee on 
Cancer Research (UKCCCR) guidelines.27 CD-1 mice were 
inoculated with 3 million SW1222 cells in their left flank, in 
order to create a subcutaneous xenograft tumor model. Data 
were acquired using a 20 cm horizontal bore 9.4 T Varian 
scanner with a 39 mm Rapid RF coil and 400 mT/m gradient 
inserts, with a slice selective DEXSY sequence.

(2)p = k

√

6dt

D
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A subcutaneous xenograft model was chosen for two rea-
sons: first, our primary interest is in measuring cell membrane 
permeability in cancer; and secondly because subcutaneous 
tumor xenografts can easily be captured in a single slice with-
out contamination from other tissues. This approach is less 
straightforward in normal mouse organs which, with a slice- 
selective DEXSY sequence, would exhibit significant partial 
volume artifacts, making its interpretation challenging. This 
is even the case in the brain where the skull, in which multi-
ple tissues (eg, ventricles and air cavities) would be included 
in the slice. Each slice was positioned coronally through the 
tumor and each slice thickness corresponded to the depth of 
the tumor being scanned. DEXSY scan parameters included 
δ = 15 ms, Δ = 17 ms, tm = 200 ms, G1 and G2 = 0-640 mT/m 
in 16  ×  16 linearly spaced steps. Mice were scanned under 
anesthetic with a mixture consisting of 1%-2.5% isoflurane in 
1 L/min of oxygen. The four scans presented here are acquired 
from slices that included the whole tumor and avoided the sur-
rounding tissue. The cohort initially contained 5 mice, all of 
which were scanned at the first time point. Due to time con-
straints and excessive tumor growth, three of those mice were 
repeat scanned at the second time point.

3  |   RESULTS

3.1  |  Simulations

The results of our simulations of diffusion exchange in a sub-
strate mimicking nerve bundles are shown in Figure 2. In 
DEXSY diffusion-diffusion plots, diagonal peaks represent dif-
fusion within a single discrete compartment (here, intracellular 
and extracellular) and cross-peaks represent diffusion exchange 
between compartments. Figure 2A shows a diffusion-diffusion 
exchange plot from a simulation carried out in a nervous tissue 
substrate with P = .0 (no exchange). Two peaks can been seen, 
labeled A and B, positioned on the line of identity; B is asso-
ciated with intracellular diffusion, due to its lower diffusivity 
caused by restricted diffusion, and A is associated with extra-
cellular diffusion, due to its higher diffusivity corresponding to 
hindered diffusion. The diffusivity of peak A is lower than the 
inherent diffusivity of the simulation (2.0 × 10−9 m2

∕s) due to 
the hindered diffusion environment.

Figure 2B shows a diffusion-diffusion exchange plot from 
a simulation carried out in the same substrate at P = .0003. 
Two additional peaks can be observed, labeled C and D, 

F I G U R E  2   Results of diffusion exchange simulations carried out in a nerve tissue substrate. DEXSY diffusion-diffusion exchange plots 
are shown for p  = 0.0 (no exchange) (A), P = .0003 (B) and P = .001 (C). Labeled peaks correspond to extracellular diffusion (A), intracellular 
diffusion (B), extracellular to intracellular exchange (C), and intracellular to extracellular exchange (D). D, Results of DOSY simulations in the 
nerve tissue substrate, with P = .0 (no exchange). E, DEI vs permeability for a range of permeability values with standard error bars
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associated with exchange between intracellular and extra-
cellular compartments. Peak B is split and there is an addi-
tional spurious peak in the bottom left hand corner. These 
are assumed to be artifacts introduced by the inverse Laplace 
transform algorithm.28 Figure 2C shows a diffusion-diffusion 
exchange plot from a simulation carried out in the same sub-
strate, with P = .001. Due to the high permeability, a single 
peak can be observed, corresponding to the averaged contri-
butions of intracellular and extracellular diffusion. Figure 2D 
shows a DOSY plot from the same simulation as shown in 
Figure 2A. This spectrum shows that diffusivities measured 
with DOSY reflect a projection along the line of identity in 
the DEXSY diffusion-diffusion plot, as would be expected. 
The lower diffusion peak is broader in the off diagonal direc-
tion and narrower in the diagonal direction suggesting that 
the diffusion is restricted.

The DEI is our proposed measure of diffusion exchange 
rate from DEXSY. Figure 2E shows DEI plotted against per-
meability in the range corresponding to P = .0001 to .00055 
(a permeability of 0.37 to 2.0 μm/s), which shows a mono-
tonic increase, and a Spearman’s rank correlation coefficient 
of 1 (P < .05).

The results of our simulations of diffusion exchange in 
a yeast substrate are shown in Figure 3. Figure 3A shows a 
diffusion-diffusion exchange plot from a simulation carried 
out in the yeast substrate with P =  .0 (no exchange). As in 
the nerve substrate, two peaks can be seen on the line of iden-
tity, correpsonding to extracellular and intracellular diffusion  
(A and B, with low and high diffusivity, respectively). The 
diffusivity of peak A is lower than the inherent diffusivity of 
the simulation (2.0 × 10−9 m2

∕s) due to the hindered diffu-
sion environment.

Figure 3B shows a diffusion-diffusion exchange plot 
from a simulation carried out in the same yeast substrate 
with P = .0003. Here, as in the nerve substrate, an additional 
two peaks can be observed which correspond to diffusion 
exchange (C and D). Figure 3C shows a diffusion-diffusion 
exchange plot from a simulation carried out in the same sub-
strate at P = .1. Due to the high permeability the peaks all 
merge into a single diffusion peak, coincident with the loca-
tion of the extracellular peak.

Figure 3D shows a DOSY plot from the same simulation 
as shown in Figure 3A it shows diffusion measured with 
DOSY is equivalent to the diffusion along the line of identity 

F I G U R E  3   Results of diffusion exchange simulations carried out in the yeast substrate. DEXSY diffusion-diffusion exchange plots are 
shown for exchange probabilities of P = .0 (A), P = .0003 (B), and P = .1 (C). As in previous figures, labeled peaks correspond to extracellular 
diffusion (A), intracellular diffusion (B), extracellular to intracellular exchange (C), and intracellular to extracellular exchange (D). D, Results of 
DOSY simulations in the yeast substrate, with P = .0 (no exchange). E, DEI plotted against permeability
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as measured with DEXSY. Figure 3E shows DEI plotted 
against permeability in the range in which four peaks can be 
found which corresponds to a range of P = .0001 to .00055, 
the relationship is clearly monotonic, with a Spearman’s rank 
correlation coefficient of 1 (P < .05).

Figure 4A shows AXR plotted against permeability in the 
range P = .0001 to .00055 for the nerve tissue substrate, al-
though it is not obvious the relationship is monotonic, with 
a Spearman’s rank correlation coefficient of 1 (P  <  .05).
However, it seems to break down at between P  =  .0004 
and .0005. Conversely, for the yeast substrate in the range 
P =  .0001 to .00055, this relationship is clearly monotonic 
with a Spearman’s rank correlation coefficient of 1 (P < .05) 
(Figure 4B).

3.2  |  In vitro experiments in yeast

Figure 5A,B show the results of in vitro DEXSY meas-
urements from sample 1 (the lower yeast concentration). 
Extracellular (A) and intracellular (B) diffusion peaks, 
alongside diffusion exchange peaks (C and D) can be iden-
tified at baseline (acquisition 1) and at 102  minutes later 
(acquisition 2). Intracellular diffusivity measurements were 
larger than in simulations (0.32 ± 0.006) × 10−9 m2/s vs 
(0.06 ± 0.006) × 10−9 m2/s, potentially due to differences 
in yeast cell size.

We measured DEI= 0.045 for the first acquisition and also 
DEI = 0.045 for the second acquisition (quoted to 2 signif-
icant figures). Figures 5C,D show DEXSY scans from sam-
ple 2, which contained a higher concentration of yeast than 
sample 1. Again, extracellular, intracellular, and diffusion 
exchange peaks were present in both acquisitions and, for the 
first scan DEI = 0.039, and again DEI = 0.039 for the second 
scan (to 2 significant figures). Values of DEI for the first and 
second scans for both samples are consistent suggesting good 
repeatability.

3.3  |  In vivo experiments in mouse tumor 
xenograft models

Figure 6A,B show DEXSY diffusion-diffusion exchange 
plots from the same subcutaneous tumor, scanned at an ini-
tial time point and then again 10 days later. Between the two 
time points, the tumor volume increase by a factor of 1.6, 
which could in part explain differences between exchange 
plots. Figure 6C,D show DEXSY diffusion-diffusion ex-
change plots from tumors (derived from the same cell line) 
in two different mice. In each of the diffusion-diffusion plots 
in Figure 6, potential diffusion exchange peaks are labeled  
C and D, while potential extracellular, intracellular, and per-
fusion peaks are labeled A, B, and E, respectively. The addi-
tion of a peak corresponding to vascular perfusion appeared 

F I G U R E  4   Results of FEXSY 
simulations, displayed as plots of AXR 
against permeability, for A, the nerve 
tissue substrate and B, the yeast substrate. 
Permeability values correspond to the range 
in which diffusion exchange peaks could 
be observed in DEXSY diffusion-diffusion 
plots
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F I G U R E  5   DEXSY diffusion-diffusion plots calculated from in-vitro measurements in yeast, at baseline (t = 0) in sample 1 (A), and at 
t = 102 min (B). The same plots are shown from sample 2 at baseline (C) and at t = 102 min (D). Sample 1 contained a lower concentration of 
yeast (18 g in 10 mL PBS) than sample 2 (22 g in 10 mL PBS). Peaks A-D are labeled according to the convention defined above

F I G U R E  6   Diffusion-diffusion exchange plots from a DEXSY measurements performed in a murine tumor xenograft model (subcutaneous) 
at an initial time point (A) and ten days later (B). C, and D, show DEXSY diffusion-diffusion plots at a single time point in two further mice, with 
tumors derived from the same cell line. Potential diffusion exchange peaks are labeled C and D while, potential extracellular diffusion, intracellular 
diffusion, and perfusion peaks, are labeled A, B, and E, respectively
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at very high diffusivity (>1.0 × 10−8 m2/s). Previous work 
using VERDICT MRI,29 provided guidance on the diffusivity 
to expect for intracellular, extracellular, and vascular pseudo-
perfusion in the same type of subcutaneous xenograft model. 
As such, perfusion peaks representing the pseudo-diffusion 
in the microvasculature appeared where expected. The DEIs 
for the four scans are 0.26, 0.91, 0.30, 0.23 (to 2 significant 
figures). There is great variability in DEI covering a simi-
lar range to that found in the yeast substrate simulations. 
However, a great deal of variability could be observed be-
tween scans, which could reflect the variation in the size and 
shape of the tumors, alongside physiological variation and 
measurement uncertainty.

4  |   DISCUSSION AND 
CONCLUSION

In this study, we have presented numerical simulations, in vitro 
and in vivo data that demonstrate the feasibility of measuring 
diffusion exchange across the cell membrane with DEXSY.

Peaks corresponding to diffusion exchange were ob-
served in numerical simulations, for a wide range of 
physiologically relevant cell membrane permeabilities 
(1.0 μm/s-1.4 μm/s). Moreover, there is a clear monotonic 
relationship between cell membrane permeability and the 
DEI parameter, both in nerve tissue and yeast substrates. 
Conversely, the FEXSY AXR parameter displayed a less 
clear relationship with permeability. However, the calcu-
lation of the inverse Laplace transform is affected by the 
diffusion exchange rate and restriction effects during each 
PGSE block, which result in non-Gaussian diffusion,12,30 
and this is likely to be responsible for the deviation of the 
results from the expected linear relationship between DEI 
and permeability.

Results of our in vitro experiments in yeast suspensions 
revealed intracellular and extracellular diffusion peaks, 
alongside exchange peaks. These peaks are observed with 
two different sets of DEXSY scan parameters, which are 
sensitive to two different diffusion lengths. The DEI mea-
sured in vitro, with the two scans was 0.039 and 0.045, 
which is within the range of DEI measurements found in 
silico. This reflects our in silico findings. There is a no-
ticeable difference in the size of the peaks observed in the 
two samples; however, this can easily be explained by the 
20% difference in the concentration of the yeast suspension 
used in each sample. However, further work could be done 
to determine if the relationship between DEI and permea-
bility found in silico, is also found in-vitro. This could be 
achieved by conducting an experiment in which the perme-
ability of the yeast is altered with a detergent (or similar).13 
in silico and in vitro experiments provided a basis for inter-
preting the in vivo measurements in mouse tumor xenograft 

models. These are the first DEXSY data to be acquired in 
vivo, and provided some challenges in their interpreta-
tion. There was evidence of intracellular and extracellular 
compartments, in addition to diffusion exchange and per-
fusion peaks, although with much greater variability than 
in in-vitro measurements. It is difficult to determine how 
the differences in tumor microstructure between the dif-
ferent scans relate to the variations in the DEXSY signal 
acquired. This is because the tumors are likely to vary in 
terms of cell size, density, necrotic fraction, and vascular 
perfusion. However, it is also clear that the variations in the 
signal acquired could indicate that the technique is highly 
sensitive to changes in tissue microstructure.

Further in vivo validation is needed to determine 
whether DEI can be used as a quantitative indicator of 
cell membrane permeability. A significant advantage of 
DEXSY is that it provides a model-free approach to mea-
suring diffusion exchange, and, as suggested by our numer-
ical simulations, the DEI is perhaps more directly related 
to membrane permeability than AXR from FEXSY. A lim-
itation of this study is the low spatial resolution and fur-
ther work using rapid imaging techniques,31 to investigate 
the influence of heterogeneous tumor pathology (such as 
necrosis, edema, cysts), and phenomena such as changes 
in cell size and/or viscosity on DEI measurements should 
be undertaken. The hardware requirements for DEXSY and 
FEXI are very similar so it should be possible to imple-
ment DEXSY in clinical scanners. However, DEXSY scans 
would inherently require longer acquisition times than 
FEXSY, which could limit clinical translation.

Our DEXSY acquisitions currently take 102  minutes, 
using a comprehensive acquisition consisting of a 16 × 16 
acquisition matrix. However, work has been published which 
advocates a new method for reducing the acquisition time. 
The MADCO framework restrains the acquisition parame-
ters based on a 1D diffusion spectra in order to reduce the 
number of data points acquired resulting in potentially more 
robust data processing.31,32 This technique could remove 
spurious peaks and reduced the acquisition time required to 
image the whole human brain with DEXSY to 22 minutes,31 
which makes DEXSY a viable technique for in-vivo imaging 
in humans.
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