
Human Mutation. 2020;41:1250–1262.1250 | wileyonlinelibrary.com/journal/humu

Received: 25 October 2019 | Revised: 5 February 2020 | Accepted: 4 March 2020

DOI: 10.1002/humu.24010

R E S E A RCH AR T I C L E

Large‐scale in vitro functional testing and novel variant
scoring via protein modeling provide insights into alkaline
phosphatase activity in hypophosphatasia

Guillermo del Angel1 | John Reynders1 | Christopher Negron2 |

Thomas Steinbrecher2 | Etienne Mornet3

1Data Sciences, Genomics, and Bioinformatics,

Alexion Pharmaceuticals, Inc., Boston,

Massachusetts

2Schrödinger Inc., New York, New York

3Laboratoire de Génétique Constitutionnelle

Prénatale et Postnatale, Centre Hospitalier de

Versailles, Le Chesnay, France

Correspondence

Guillermo del Angel, Data Sciences, Genomics,

and Bioinformatics, Alexion Pharmaceuticals

Inc., 121 Seaport Blvd., Boston, MA 02210.

Email: Guillermo.delangel@alexion.com

Funding information

Alexion Pharmaceuticals, Inc.

Abstract

Hypophosphatasia (HPP) is a rare metabolic disorder characterized by low tissue‐
nonspecific alkaline phosphatase (TNSALP) typically caused by ALPL gene mutations.

HPP is heterogeneous, with clinical presentation correlating with residual TNSALP

activity and/or dominant‐negative effects (DNE). We measured residual activity and

DNE for 155 ALPL variants by transient transfection and TNSALP enzymatic activity

measurement. Ninety variants showed low residual activity and 24 showed DNE.

These results encompass all missense variants with carrier frequencies above

1/25,000 from the Genome Aggregation Database. We used resulting data as a

reference to develop a new computational algorithm that scores ALPL missense

variants and predicts high/low TNSALP enzymatic activity. Our approach measures

the effects of amino acid changes on TNSALP dimer stability with a physics‐based
implicit solvent energy model. We predict mutation deleteriousness with high spe-

cificity, achieving a true‐positive rate of 0.63 with false‐positive rate of 0, with an

area under receiver operating curve (AUC) of 0.9, better than all in silico predictors

tested. Combining this algorithm with other in silico approaches can further increase

performance, reaching an AUC of 0.94. This study expands our understanding of

HPP heterogeneity and genotype/phenotype relationships with the aim of improving

clinical ALPL variant interpretation.
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1 | INTRODUCTION

Hypophosphatasia (HPP) is a rare, systemic, inherited, metabolic

disorder characterized by low alkaline phosphatase (ALP) enzymatic

activity and typically caused by pathogenic variants in the

tissue‐nonspecific alkaline phosphatase (TNSALP) gene (ALPL;

MIM #171760; Taillandier et al., 2018; Weiss et al., 1988). HPP is a

clinically heterogeneous disease, with manifestations ranging from

severe skeletal hypomineralization, seizures, and respiratory pro-

blems at birth (Baumgartner‐Sigl et al., 2007; Kozlowski et al., 1976;

Leung et al., 2013; Silver, Vilos, & Milne, 1988) to predominantly

recurrent fractures, pain, muscle weakness, and functional limitations
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later on (Berkseth et al., 2013; Seshia, Derbyshire, Haworth, &

Hoogstraten, 1990; Weber, Sawyer, Moseley, Odrljin, &

Kishnani, 2016; Whyte, 2017; Whyte et al., 2015). Historically,

HPP has been classified into distinct clinical forms based on the

age at which skeletal disease or other significant complications

present: perinatal, prenatal benign, infantile, childhood, adult, and

odonto‐HPP (Whyte, 2016). Perinatal and infantile HPP are gen-

erally considered the most severe forms and are associated with

high mortality (Baumgartner‐Sigl et al., 2007; Leung et al., 2013;

Silver et al., 1988; Whyte et al., 2016), especially before the

availability of enzyme replacement therapy. Though these classi-

fications are helpful in describing the disease, the clinical pre-

sentation and severity of HPP can vary widely between patients,

regardless of form and even within a given form of the disease

(Kishnani et al., 2017; Whyte, 2017).

The clinical variability of HPP is largely a consequence of its ALPL

genetic heterogeneity (Mornet, 2018). To date, over 390 pathogenic

variants have been identified, with the majority being missense

variants (University of Versailles‐Saint Quentin, 2019). Missense

ALPL variants can affect the expression, folding, modification,

trafficking, and dimerization of the TNSALP protein, resulting in

varying levels of residual enzymatic activity (Brun‐Heath et al., 2007;

Lia‐Baldini et al., 2008; Makita et al., 2012). Further, ALPL variants

can exhibit a dominant‐negative effect (DNE), potentially as a result

of negative interactions between mutated and wild‐type (WT)

monomers or because of sequestration of the WT protein by the

mutated one, preventing transport to the membrane (Lia‐Baldini
et al., 2008; Mornet, 2015). Some evidence suggests that the clinical

presentation of HPP correlates with the in vitro enzymatic activity of

the mutant protein and/or with the strength of the DNE (Fauvert

et al., 2009; Lia‐Baldini et al., 2001; Zurutuza et al., 1999). However,

the residual enzymatic activity and DNE are known for only a frac-

tion of reported HPP variants (University of Versailles‐Saint
Quentin, 2019).

The present study had two specific objectives, with the over-

arching goal of improving the understanding of ALPL genotype/phe-

notype relationships by (a) expanding the pool of ALPL variants

whose residual enzymatic activity is characterized in vitro and (b)

using the in vitro data to develop novel computational approaches to

detect the presence or absence of low residual enzymatic activity of a

particular variant.

2 | MATERIALS AND METHODS

2.1 | Editorial policies and ethical considerations

Patients included in this analysis were tested for diagnostic purposes,

and the study was designed in accordance with the tenets of the

Declaration of Helsinki. Informed consent was obtained from all

patients and/or their parents for ALPL variant screening and testing

for HPP‐related genes. All patients were of apparent European,

Middle Eastern, or Japanese ancestry.

2.2 | ALPL variant selection

With the goal of expanding the current catalog of functionally tested

ALPL variants, 155 variants were selected and prioritized to

represent those in general population data bases and in HPP patients

(see details in the Supporting Information Materials). Genotypic

data were assembled from a retrospective historical cohort of

345 patients with confirmed HPP diagnoses who underwent genetic

testing between 1997 and 2016 at the Unité de Génétique

Constitutionnelle Prénatale et Postnatale (formerly the SESEP

Laboratory; Centre Hospitalier de Versailles, Le Chesnay, France).

Additional missense, frameshift, in‐frame indel, and nonsense

ALPL variants were collected from the Genome Aggregation Data-

base (gnomAD; Karczewski et al., 2019; Lek et al., 2016), the HPP

patient cohort, and other sources (see details in the Supporting

Information Materials). Together, the assembled set of variants in-

cluded all nonsynonymous exonic gnomAD ALPL variants with an

allele frequency of >1/25,000 and a random sample of rarer patient

and population variants.

2.3 | Plasmid preparation, transfection, and
TNSALP activity measurement

Complete details regarding plasmid preparation, transfection, and

TNSALP activity measurement can be found in the Supporting In-

formation Materials. Briefly, MDCK II cells were transiently trans-

fected with 100% of mutant plasmid or a mix corresponding to

mutant plasmid:WT plasmid (ratio 50:50). The normalized TNSALP

value was determined by dividing the measured TNSALP absorbance

at 405 nm by the measured β‐galactosidase absorbance at 405 nm.

Pure mutant and cotransfected WT:mutant data were calculated as

the mean value over three transfections and expressed as a per-

centage of pure WT plasmid transfected on the same plate.

2.4 | Predicting in vitro activity of patient
genotypes

To predict the in vitro activity of variants from patients in the his-

torical HPP cohort (n = 345) by genotype (i.e., homozygous, hetero-

zygous, and compound heterozygous), TNSALP residual activity was

estimated and expressed as a fraction of WT activity for each patient

as follows:

• The estimated activity for homozygous patients was the measured

mutant in vitro activity. If a patient did not have a variant that had

been tested in vitro but had a variant computationally predicted to

be a complete loss of function (LoF; i.e., nonsense, splice, or fra-

meshift variant), it was assumed that their TNSALP residual ac-

tivity would be null.

• The estimated activity for heterozygous patients was the mea-

sured in vitro activity of the 50/50 cotransfected mixture. For
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patients with a single heterozygous LoF variant with no measured

TNSALP residual activity, the estimated TNSALP residual activity

was 0.5, with the assumption that the LoF allele would not express

any protein.

• For compound heterozygous patients, if neither allele had a DNE

(defined as any allele that had a measured in vitro activity from the

mutant/WT mixture of <0.4 relative to WT), the TNSALP residual

activity was the average activity of both alleles. However, if allele 1

showed a DNE in its in vitro assay, the total activity was estimated

to be allele 2's activity divided by four (see details in the

Supporting Information Materials).

Patients who did not have at least one of their ALPL variants

tested in vitro were considered as having missing data and were

removed from further evaluation.

2.5 | TNSALP homology model and variant scoring
based on stability/affinity changes

A protein homology model for human TNSALP was constructed using

a template corresponding to the human placental alkaline phospha-

tase (PLAP; Le Du, Stigbrand, Taussig, Menez, & Stura, 2001). The

template had a sequence identity to TNSALP of 57% and an X‐ray
crystal structure resolution of 1.8 Å. The structure was prepared for

residue scanning using the Schrödinger Suite Protein Preparation

Wizard (Sastry, Adzhigirey, Day, Annabhimoju, & Sherman, 2013).

Each possible ALPL missense variant was automatically generated,

and its effect on protein stability and dimer binding affinity were

predicted using the Molecular Mechanics/Generalized Born Surface

Area (MM/GBSA) method, a physics‐based approach that scores

single‐residue mutations based on predicted changes to protein

stability and binding affinity (Beard, Cholleti, Pearlman, Sherman, &

Loving, 2013). Complete details regarding the construction of the

TNSALP model and residue‐scanning software can be found in the

Supporting Information Materials.

For a particular variant or allele ai, we denote as Δs(ai) the

computationally predicted change in protein stability, and we denote

as Δa(ai) the change in binding affinity between both dimer com-

plexes, using methods described by Beard et al. (2013). We also

denote Δmax(ai) = max(Δs(ai), Δa(ai)) as the maximum of these two

values. The Δs(ai), Δa(ai), and Δmax(ai) were computed for all possible

TNSALP missense variants (see details in the Supporting Information

Materials).

2.6 | Using in vitro data to assess in silico algorithm
performance

In vitro activity values were used as a reference data set to assess

the performance of (a) existing in silico variant scoring algorithms

and (b) a novel approach of scoring variants based on MM/GBSA

stability/affinity changes. In assessments of the in silico approaches,

“low” enzymatic activity was defined as ≤0.25 relative to WT and

“high” enzymatic activity was defined as ≥0.5 relative to WT. Variants

with activity between these thresholds were excluded from further

evaluation, as their activity range makes their pathogenicity hard to

ascertain.

Receiver operating characteristic (ROC) curves and area under

the ROC curves (AUC) were computed for each of the following in

silico variant prediction algorithms:

• Combined Annotation Dependent Depletion (CADD; Kircher

et al., 2014).

• Deleterious Annotation of Genetic Variants Using Neural

Networks (DANN; Quang, Chen, & Xie, 2015).

• MutationTaster2 (Schwarz, Cooper, Schuelke, & Seelow, 2014).

• PolyPhen‐2 (Adzhubei, Jordan, & Sunyaev, 2013).

• Protein Variation Effect Analyzer (PROVEAN; Choi, Sims, Murphy,

Miller, & Chan, 2012).

• Sorting Intolerant From Tolerant (SIFT; Sim et al., 2012).

ROC and AUC scores were computed using the algorithm rank

scores obtained from the dbNSFP variant annotation database

(version 3.1; Liu, Wu, Li, & Boerwinkle, 2016), accessed through the

Ensembl Variant Effect Predictor annotation tool (version 87;

McLaren et al., 2016).

A novel approach was explored in which protein stability algo-

rithm scores were combined with existing in silico algorithm scores

to improve overall variant classification. For a particular ALPL variant

or allele ai, we first denoted e(ai) = 1 if a variant had low activity, or

0 otherwise. The protein stability‐based estimator took the follow-

ing form:
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i
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In this equation, Ts = stability scoring threshold, above which

Δs(ai) is deemed pathogenic, and Ta = affinity scoring threshold,

above which Δa(ai) is deemed pathogenic.

The reasoning behind the form of this estimator was that, if a

variant had a high change in protein stability or binding affinity (es-

timator yields a value e(ai) = 1), it was likely to have low enzymatic

activity and, thus, be deleterious. However, the converse (estimator

yields a value e(ai) = 1) was not necessarily true, as there can be

causes of low variant activity other than protein structural changes.

In this case, no conclusions can be reached about variant patho-

genicity and the existing in silico score should be used. Nevertheless,

the classifications provided by the structural model can be used to

improve any existing in silico variant scoring algorithm by setting the

algorithm output as max(e(ai), f(ai)), where f(ai) is any particular in

silico score normalized to (0, 1).
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To determine the variability of AUC estimates and to assess

the statistical significance of performance differences between

the in silico algorithms, a classical bootstrap procedure was

performed by sampling data with replacement, measuring

resulting AUC for each in silico algorithm, and repeating the

sampling 10,000 times.

2.7 | Statistical analysis

All statistical tests were performed in the R language (R Core Team,

2017), version 3.6.0. Plots were generated using R package ggplot2,

version 3.1.1. (Wickham, 2016).

2.8 | Variant nomenclature

The Human Genome Variation Society recommendations were

used to standardize the nomenclature of all analyzed variants.

The reference sequences used to specify ALPL variants were

RefSeq sequence NM_000478.6 (identical to Ensembl sequence

ENST000000374840.8) for the coding region canonical transcript.

Protein variants are specified relative to the amino acid sequence

resulting from translation of this transcript, specified in NP_000469.3

(identical to Ensembl sequence ENSP00000363973.3).

3 | RESULTS

3.1 | ALPL functional assays, residual TNSALP
activity, and presence of DNE

Overall, 94% (146/155) of the assayed variants were missense var-

iants (Table 1). Fifty‐eight percent (90/155) of the variants showed

residual activity ≤0.25, 34% (52/155) showed activity ≥0.5%, and 8%

(13/155) showed activity between these two thresholds (Figure 1).

As expected, LoF variants (i.e., frameshift, in‐frame deletions, and

nonsense) showed null residual activity (relative to WT), whereas

missense variants spanned the entire range of possible relative en-

zymatic activities (Figure 1).

Variants present only in HPP patients had significantly lower

residual enzymatic activity than variants only in the gnomAD popu-

lation or variants in both the gnomAD population and HPP patients

(Figure 2). Of all variants tested, 24 showed presence of DNE (15 in

HPP patients only, 8 in both HPP patients and in the gnomAD po-

pulation, and 1 only in the gnomAD population) and 124 showed

absence of DNE, where the presence of DNE is defined as a

WT/mutant activity <0.4 and the absence of DNE is defined as a

WT/mutant activity >0.45. These thresholds account for measure-

ment variability and are consistent with previous reports on the

classification of DNE (Taillandier et al., 2018). A complete listing of

the residual enzymatic activity and DNE results for the 155 assayed

variants is provided in Table S1.

Figure 3a shows the enzymatic activity (relative to WT) for all

tested ALPL variants, including mutant plasmids and the 50:50

WT:mutant plasmid cotransfections, categorized by the protein do-

main in which the variant appears (Silvent, Gasse, Mornet, &

Sire, 2014). The analysis of mutant residual values as a function of

each domain shows that the active site or vicinity, crown domain, and

homodimer interface are strongly associated with low TNSALP

residual activity values (Figure 3b). For example, 94% (17/18) of

tested variants that localized to the active site or vicinity showed low

residual enzymatic activity, as opposed to the 53% (73/137) of tested

variants outside this region that showed low activity (odds ratio:

11.74; Fisher's exact test for binary comparison p = .003). Similarly, of

18 variants that localized to the active site or vicinity, 10 showed

DNE presence and 6 showed DNE absence (with two indeterminate

results); conversely, of 137 variants that localized outside this site,

14 showed DNE presence (odds ratio: 13.61; Fisher's exact test

p = 8.5 × 10−6).

3.2 | Patient characteristics and TNSALP activity

When the historical patient cohort is categorized based on clinical

subtype, estimated in vitro residual activity is significantly reduced

relative to WT in patients with the perinatal lethal and infantile HPP

subtypes compared with the other subtypes and the overall cohort

(pairwise p < .01; Figure 4 and Table S2). In contrast, there is no

significant statistical difference in estimated in vitro residual activity

between the childhood, adult, and odonto‐HPP groups (pairwise

p > .25; not shown in the figure).

In vitro residual activity relative to WT of ALPL variants (n = 57),

that overlap with ClinVar (Landrum et al., 2018), categorized by re-

ported clinical classification (benign/likely benign, variant of un-

certain significance, and pathogenic/likely pathogenic) is shown in

Figure 5. As expected, pathogenic/likely pathogenic variants had

lower residual enzymatic activity. Figure 5 also illustrates the re-

lationship between in vitro activity relative to WT and total gnomAD

allele frequency in the population. The majority of assessed variants

are rare in the population, having an allele frequency of <10−4 re-

gardless of the level of residual enzymatic activity; more common

variants with allele frequencies >10−3 tend to have higher residual

enzymatic activity. Interestingly, the variant c.571G>A/p.Glu191Lys

was the only one with low residual enzymatic activity and a gnomAD

allele frequency >10−3.

TABLE 1 Molecular consequence of the 155 ALPL variants

Variant type No. of variants assayed, n (%)

Missense 146 (94.2)

Nonsense (stop‐gained) 5 (3.2)

Frameshift 2 (1.3)

In‐frame deletion 2 (1.3)
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3.3 | Protein structural model and TNSALP activity
predictions

Figure 6 shows the TNSALP dimer homology model depicted as a

ribbon structure, with amino acid positions found to have a DNE

from in vitro experiments displayed in red. Although DNE variants

appear throughout all protein domains, the homodimer interface is

enriched for DNE (odds ratio: 4.04; Fisher's exact test p = .0026)

based on protein domain positions described in Silvent et al. (2014).

From the homology model, a total of 469 amino acid positions

were included in the residue scanning process, with 16 excluded

positions where side chains interacted via coordinate covalent bonds

with metal cofactors or where disulfide bridges were present (see

Supporting Information Materials for a list of the exclusions). Each

was scored with all 19 possible standard amino acid changes to yield

a total of 8,911 mutant predictions. A complete list of the result-

ing Δs, Δa, and Δmax values is shown in Table S3. Importantly, the

presence of such coordinate bonds at a particular amino acid position

is a strong predictor of disrupted enzymatic activity for a variant. Of

the 155 variants assayed here, 16 were in these crosslinked positions

and all showed low enzymatic activity (odds ratio: infinity; Fisher's

exact test p = .001). Of these 16 assayed variants in crosslinked po-

sitions, seven showed a DNE, as opposed to 17 of 134 non‐
crosslinked variants showing a DNE (odds ratio: 5.17; Fisher's exact

test p = .005). Seven variants were excluded from testing as they

showed measured DNE values between low and high thresholds (as

defined above). Of note is the enrichment of variants showing a DNE

in the homodimer interface. Whereas variants located in the homo-

dimer interface did not show a statistically significant enrichment for

low enzymatic activity (odds ratio: 2.26; Fisher's exact test p = .09),

these variants were more enriched for the presence of a DNE (odds

ratio: 3.48; Fisher exact test p = .017; Figure 6).

Using low/high enzymatic activity classification as the reference

data, ROC curves for the six in silico algorithms assessed (i.e., CADD,

DANN, MutationTaster, PolyPhen‐2, PROVEAN, and SIFT) and for

the three approaches based on protein stability/affinity measure-

ments (i.e., Prime_S, Prime_A, and Prime_max) are shown in Figure 7a,

Scoring based on stability changes (Prime_S) achieved a significant

true‐positive rate (0.63), while maintaining the false‐positive rate at

0, which is notably better than any of the other tested approaches.

The composite score (Prime_max) performed slightly better than

the stability score (Prime_S), and the affinity score (Prime_A) was the

poorest performer.

On the basis of these data, the scores from the in silico algo-

rithms were combined with predictions based on the stability score

(Prime_S). Figure 7b shows bootstrap AUCs obtained for all six al-

gorithms tested, with both original AUC values and AUC and ROC

values obtained after combining the in silico scores with stability

F IGURE 1 Residual activity of ALPL

variants relative to wild‐type by
variant type
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score predictions. Scores were combined using a threshold value of

Ts = 36.9, which corresponded to the threshold at which Prime_S

showed the highest true‐positive rate subject to a false‐positive rate

of 0. Using the combined approach resulted in significant AUC per-

formance increases, reaching a mean (95% confidence interval) of

0.945 (0.907–0.976) when combined with PolyPhen‐2, the best ex-

isting in silico algorithm assessed. Mean and 95% confidence inter-

vals for AUC scores are summarized in Table S4.

4 | DISCUSSION

In this study, we tested 155 ALPL variants, expanding the catalog of

ALPL variants whose residual enzymatic activity is characterized.

Functional testing was performed not only on variants in HPP pa-

tients, but also on variants in the general population, which allowed

for a more comprehensive analysis. Low residual activity and/or

DNEs were discovered in a number of previously unreported

variants.

Overall, 94% of the assayed variants were missense; the re-

mainder were LoF (i.e., frameshift, in‐frame deletions, and nonsense).

As expected, variants present only in HPP patients and not in the

gnomAD population (i.e., rare variants) had lower residual enzymatic

activity than variants in the overall gnomAD population or variants in

both HPP patients and the gnomAD population. This is consistent

with evolutionary pressures keeping variants with lower enzymatic

activity to a lower population frequency. The variant c.571G>A/

p.Glu191Lys was a notable outlier, with a relatively high presence in

both HPP patients and the gnomAD population while having a re-

sidual enzymatic activity of 0.214, close to the low activity threshold

of 0.25. This was the only variant classified as having a low activity

that had a gnomAD allele frequency >10−3 (Figure 5b). This variant is

known to be the most common variant in HPP patients of European

ancestry, with a previously reported allele frequency of 0.08 in an

HPP cohort consisting of infantile, childhood, and odonto‐HPP pa-

tients (Whyte et al., 2015) and an allele frequency of 0.09 in the HPP

cohort analyzed herein. However, this variant is, in all likelihood, not

fully penetrant, as illustrated by the fact that gnomAD version 2.1

possesses five homozygous, presumably healthy subjects, and this

variant reached a carrier frequency of >3% of the Finnish population

in this data set (Karczewski et al., 2019). Lastly, it should be noted

that some variants can be found with a higher frequency in a specific

population. For example, the variant c.1001G>A/p.Gly334Asp was

present only in HPP patients in our analysis (Table S1) but has an

estimated carrier frequency of 1/25 in the Manitoba Mennonite

population (Greenberg et al., 1990)

The analysis of residual enzymatic activity as a function of each

protein domain showed that the active site, crown domain, and

homodimer interface were strongly associated with low TNSALP

residual activity. This finding is consistent with previous findings that

pathogenic variants associated with the severe disease commonly

occur around these three sites, which are critical functional domains

F IGURE 2 Residual activity of ALPL

variants expressed as a fraction of wild‐
type activity by the source of the variant. p
Values from pairwise Kruskal–Wallis

nonparametric tests are added on top of
each pair of groups if they are below the
significance threshold. gnomAD, Genome

Aggregation Database; HPP,
hypophosphatasia
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of TNSALP (Mornet et al., 2001). Previous reports also note that

variants associated with severe disease are located in the calcium‐
binding site (Brun‐Heath, Taillandier, Serre, & Mornet, 2005; Mornet

et al., 2001). Interestingly, in our analysis, TNSALP residual activity at

this site was wide‐ranging and there was no significant enrichment of

low enzymatic activity variants in this domain. Hence, variant pa-

thogenicity in this domain may depend on other factors, such as the

specific amino acid changes involved and more detailed positional

interactions. Furthermore, our analysis found that though variants

with DNE were located throughout all protein domains, the TNSALP

homodimer interface, as well as the active site or vicinity, were en-

riched with variants with DNE. This was consistent with previous

analyses that found that the majority of variants with DNE were

located in the active site or its vicinity, the crown domain, or the

homodimer interface (Fauvert et al., 2009; Taillandier et al., 2018).

Variants with severely depleted enzymatic activity tend to have

very low frequency in the HPP population, consistent with the rare

nature of HPP, especially in its perinatal and infantile forms (Mornet,

Yvard, Taillandier, Fauvert, & Simon‐Bouy, 2011). Interestingly, while
low residual activity predicts pathogenicity, the converse is not true, and

a higher residual activity value does not necessarily preclude that a

variant is pathogenic. This was observed in two instances. First, when

predicting residual activity in the HPP cohort, we found that very low in

vitro values were associated almost exclusively with perinatal lethal or

infantile HPP (Figure 4). However, there was substantial overlap in

predicted in vitro activity among HPP subtypes. In addition, there was

an overlap between activity levels in HPP patients and activity levels

theoretically corresponding to healthy carriers (≥50%). Hence, the

predictive value of low in vitro TNSALP enzymatic activity is limited to

very low values being associated with the most severe HPP subtypes.

Second, a similar observation was noted when relating a variant's

measured in vitro residual activity with ClinVar clinical significance

(Landrum et al., 2018). Though we observed an expected concentration

of low enzymatic activity values in the pathogenic/likely pathogenic

variant classifications, higher activity values (>50% of WT reference)

could be associated with any clinical significance (Figure 5). It is im-

portant to note that accurate prediction of milder HPP subtypes (e.g.,

perinatal benign, childhood, adult, odonto) based exclusively on ALPL

variant information will likely not be improved only by collecting in vitro

data from more variants. There is significant clinical heterogeneity

among patients, even among family members with the same ALPL var-

iants (Hofmann et al., 2014; Stevenson et al., 2008). This suggests that

other genes, as well as epigenetic or environmental factors, may have an

influence on the HPP phenotype (Mornet, 2018). As such, a better

F IGURE 3 Residual activity of ALPL variants (mutant plasmids and 50:50 WT:mutant plasmid cotransfections) relative to WT (a) and fraction

of residual activity of ALPL variants relative to WT (b) categorized by protein domain location. Each mutant's cDNA is listed relative to canonical
RefSeq transcript NM_000478.6, and is colored according to the protein domain in which it appears, based on the descriptions and positions
referenced in Silvent et al. (2014). p Values from pairwise Kruskal–Wallis nonparametric tests are added on top of each pair of groups if they are

below significance threshold. cDNA, complementary deoxyribonucleic acid; TNSALP, tissue‐nonspecific alkaline phosphatase; WT, wild‐type

F IGURE 4 Residual activity of ALPL

variants relative to wild‐type by HPP
subtype. p Values from pairwise Kruskal–
Wallis nonparametric tests are added on

top of each pair of groups if they are below
significance threshold. ALPL, tissue‐
nonspecific alkaline phosphatase gene;

HPP, hypophosphatasia
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understanding of how other genes interact with TNSALP and how they

might modify TNSALP expression and activity will be needed to improve

clinical subtype prediction.

Collectively, these observations underscore the genetic complex-

ity of HPP and support the classification of a variant as potentially

disease‐causing if it has low in vitro residual activity. This is consistent

with the published literature (Mornet, 2015; Zurutuza et al., 1999), in

which very low values of residual enzymatic TNSALP activity were

associated with the more severe clinical presentations of HPP (e.g.,

perinatal lethal, infantile). Conversely, higher frequency ALPL variants,

as well as variants classified in ClinVar (Landrum et al., 2018) as

“benign” or “likely benign,” have residual enzymatic activities closer to

the WT reference value. However, high values of residual enzymatic

activity relative toWT do not necessarily preclude HPP, as impairment

of enzymatic activity may not be the only pathogenic mechanism by

which a genetic variant causes this disease. Specifically, it has been

suggested that particular alleles in patients with severe disease may

not degrade enzymatic activity, but instead impair regular function-

ality through other mechanisms, such as disrupting the TNSALP dimer

anchoring, transport, and localization in the extracellular domain, or

compromising the creation of aggregates not correctly degraded in the

proteasome (Brun‐Heath et al., 2007; Lia‐Baldini et al., 2008).

F IGURE 5 Fraction of residual activity

relative to wild‐type based on ClinVar
significance (left) and gnomAD global
allele frequency (right). ALP, alkaline

phosphatase; B, benign; gnomAD, Genome
Aggregation Database; LB, likely benign;
LP, likely pathogenic; P, pathogenic;

TNSALP, tissue‐nonspecific alkaline
phosphatase; VUS, variant of uncertain
significance

F IGURE 6 Location of variants with DNE within the ribbon
structure of the TNSALP dimer homology model. Positions where a
dominant‐negative variant was found, are shown as red atoms.

Mirror residues on the opposite chain are not marked with arrows/
circles. DNE, dominant‐negative effect; TNSALP, tissue‐nonspecific
alkaline phosphatase
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F IGURE 7 ROC curves showing TPR versus

FPR for variant prediction algorithms (a) and
bootstrap AUCs for in silico algorithms by
original AUC values and AUC and ROC values

obtained after combining in silico scores with Δs

(b). AUC, area under the ROC curve; CADD,
Combined Annotation Dependent Depletion;

DANN, Deleterious Annotation of Genetic
Variants Using Neural Networks; FPR, false‐
positive rate; PROVEAN, Protein Variation Effect
Analyzer; ROC, receiver operating

characteristics; SIFT, Sorting Intolerant From
Tolerant; TPR, true‐positive rate; Δs,

computationally predicted change in protein

stability
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We calculated ROC curves for six in silico variant prediction algo-

rithms (i.e., CADD, DANN, MutationTaster, PolyPhen‐2, PROVEAN, and

SIFT) and for the three approaches based on protein stability/affinity

measurements (Prime_S, Prime_A, and Prime_max). The Prime_S ap-

proach provided the best result, with a true‐positive rate of 0.63, while

maintaining a false‐positive rate of 0. Additionally, by itself, Prime_S

showed the best mean AUC of all assessed computational approaches

(Figure 7 and Table S4). These results show that Prime_S is, by itself, the

most specific ALPL variant pathogenicity predictor tested and that, for all

tested variants, if Prime_S flags a variant as potentially pathogenic, this

prediction will, in all likelihood, be correct. Importantly, we showed a

simple way to improve performance scores even more for estimated

residual TNSALP enzymatic activity by combining the scores from ex-

isting in silico algorithms with predictions based on the stability score

(Prime_S). To our knowledge, this combined predictor is the best com-

putational predictor of ALPL variant pathogenicity published so far.

Our study had several limitations. Our analysis is based on a

homology model of human placental ALP as opposed to a direct 3D

structural model of TNSALP. However, the template chosen had an

X‐ray crystal structure of high‐resolution (1.8 Å) and high‐sequence
identity with TNSALP (57%; Supporting Information Materials). As

such, we believe that the computational methods used for this ana-

lysis would only improve further if a high‐resolution TNSALP struc-

tural model had been available. This study was not designed to

capture mechanisms by which ALPL variants may become pathogenic

other than disrupting TNSALP enzymatic activity. With regard to the

estimation of TNSALP residual activity for compound heterozygous

patients, this was determined based on the absence or presence of

DNE, as described in Section 2.4 and the Supporting Information

Materials. A better method, in principle, would be to produce a

mutant/mutant mixture and measure its activity. However, the fea-

sibility of this approach is limited in practice, as it would require

testing all possible variant pairings (e.g., about 5,000 tests would be

required for 100 variant pairings). Additionally, the plasmid‐based
technology used for in vitro variant characterization cannot assess

the pathogenicity of non‐exonic variants such as splicing, intronic or

variants of the 5′/3′ untranslated region and is an involved and ex-

pensive process that is hard to scale to assess an ever‐increasing
number of reported ALPL variants. The computational scoring of ALPL

variants based on changes to protein stability could also be improved

in the future, for example by using free‐energy perturbation methods

(Ford & Babaoglu, 2017; Steinbrecher, Abel, Clark, & Friesner, 2017),

which would allow simulating changes in protein backbone flexibility

as well as explicit solvation effects. Additionally, whereas the focus of

the computational aspect of this study was on predicting low residual

enzymatic activity, further research should be done to improve the

prediction of DNE from variants.

5 | CONCLUSIONS

In total, 155 ALPL variants present in both the general population

and HPP patients were assayed, expanding the catalog of known

ALPL in vitro functional variation. Associations were observed

between residual enzymatic activity and the source of the var-

iant, type of variant, affected protein domain, and HPP subtype

(only in terms of perinatal/infantile vs. others; there was no sig-

nificant statistical difference in estimated in vitro residual ac-

tivity between the childhood, adult, and odonto‐HPP groups). We

described an approach combining structural model predictions

with existing in silico algorithms that improved performance

scores for estimating residual TNSALP enzymatic activity. Im-

portantly, this study confirms that low in vitro residual activity

supports classifying a variant as potentially disease‐causing.
However, the predictive value of low in vitro TNSALP enzy-

matic activity is limited to very low values being associated with

the most severe HPP subtypes (perinatal and infantile HPP). Al-

though it is clear that TNSALP enzymatic activity alone cannot be

used to assess HPP disease severity, this tool in combination with

clinical assessments will further our understanding of the HPP

phenotypic spectrum.
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