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Abstract

Plant genomes contain two major classes of innate immune receptors to recognize dif-

ferent pathogens. The pattern recognition receptors perceive conserved pathogen-

associated molecular patterns and the resistance genes with nucleotide-binding

(NB) and leucine-rich repeat (LRR) domains recognize specific pathogen effectors. The

precise regulation of resistance genes is important since the unregulated expression of

NB-LRR genes can inhibit growth and may result in autoimmunity in the absence of path-

ogen infection. It was shown that a subset of miRNAs could target NB-LRR genes and

act as an important regulator of plant immunity in the absence of pathogens. Plants not

only interact with pathogens, but they can also establish symbiotic interactions with

microbes. Nitrogen-fixing symbiotic interaction and nodule formation of legumes may

also require the suppression of host defence to prevent immune responses. We found

that upon symbiotic interactions, miRNAs repressing NB-LRR expression are upregulated

in the developing nodules of Medicago truncatula. Furthermore, we show that the sup-

pression of the activity of the NB-LRR genes targeted by these miRNAs is important dur-

ing nodule development. Our results suggest that the downregulation of NB-LRR

resistance genes in the developing nodule produces a suitable niche that facilitates bac-

terial colonization and the development of an N-fixing nodule.
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1 | INTRODUCTION

Plants have evolved together with pathogens and during this evolu-

tion they developed several defence pathways to overcome pathogen

infection. Plant genomes contain two major classes of innate immune

receptors to recognize different pathogens (Chisholm, Coaker, Day, &

Staskawicz, 2006; Jones & Dangl, 2006). The first line of defence

comprises the pattern recognition receptors (PRRs) that recognize

conserved pathogen-associated molecular patterns (PAMPs) and acti-

vate PAMP-triggered immunity (PTI). However, PTI can be suppressed

by the pathogen, usually through secreted proteins called effectors.

Plant genomes also contain large numbers of resistance (R) genes withAnita Sós-Hegedűs and �Agota Domonkos contributed equally to this work.
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nucleotide-binding (NB) and leucine-rich repeat (LRR) domains

(Meyers, Kaushik, & Nandety, 2005), which function as a second line

of defence, that recognize specific pathogen effectors and trigger

resistance responses. As a consequence, R genes are protecting plants

from diseases caused by devastating pathogens. However, the

unregulated expression of NB-LRR-type resistance genes can inhibit

growth and may result in autoimmunity in the absence of pathogen

infection (Michael Weaver, Swiderski, Li, & Jones, 2006).

In addition to innate immune receptors, in plants and other eukary-

otes, small RNA (sRNA) systems mediate gene silencing which is

thought to have evolved as a defence system against viruses and other

molecular intruders (Ding, 2010; Ding & Voinnet, 2007). sRNAs are also

important gene expression regulators, involved in many developmental

processes and stress responses. These molecules are generally 21- to

24-nt-long and based on their biogenesis we distinguish two main clas-

ses: microRNAs (miRNAs) and small interfering RNAs (siRNAs). miRNAs

function in a post-transcriptional manner by downregulating target

mRNAs in a variety of cellular processes (Rogers & Chen, 2013). The

large majority of the plant sRNAs are siRNAs and one class of siRNAs

termed phased siRNAs (phasiRNAs) (Zhai et al., 2011) regulate protein-

coding genes in a similar fashion as miRNAs.

Plant genomes contain large numbers of NB-LRR-type resistance

genes that recognize specific pathogen effectors and trigger resis-

tance responses (Meyers, Kozik, Griego, Kuang, & Michelmore, 2003),

however, the unregulated expression of NB-LRR genes may be harm-

ful to plant growth and to immune responses (Michael Weaver et al.,

2006). It was shown that a subset of plant miRNAs (miR482/2118

superfamily, miR1507, miR2109) can target NB-LRR genes and regu-

late plant immunity (Deng et al., 2018; Li et al., 2012; Shivaprasad

et al., 2012; Su et al., 2018; Yang et al., 2015; Zhai et al., 2011). The

miR482/2118 superfamily is the most ancient among the NB-LRR-

regulating miRNAs and it emerged first in Gymnosperms, followed by

extensive radiation in seed plants. This gene family is present in the

sequenced legume genomes except in Lotus japonicus (Chávez Montes

et al., 2014; de Vries, Kloesges, & Rose, 2015). The miR1507 and

miR2109 (also known as miR5213 in Medicago truncatula) also target

NB-LRR genes and they are prevalent in Fabaceae (Taylor, Tarver, His-

cock, & Donoghue, 2014; Zhang, Xia, Kuang, & Meyers, 2016). Some

of the NB-LRR-targeting miRNAs are capable of triggering the produc-

tion of phasiRNAs from their cleaved target mRNAs and target a large

number of NB-LRR mRNAs by phasiRNAs (Zhai et al., 2011). More-

over, this regulation by miRNAs is proposed as a mechanism for

reducing fitness costs associated with NB-LRR genes by targeting

them in the absence of pathogens (Shivaprasad et al., 2012). It was

proposed that in the absence of pathogens, the NB-LRR resistance

genes are transcribed but cleaved by miRNAs/phasiRNAs keeping

their translation at a very low level. During pathogen attack, the levels

of miRNAs and phasiRNAs are reduced resulting in an increased level

of resistance gene transcript (Shivaprasad et al., 2012). The NB-LRR

proteins are normally associated with effector-triggered immunity

(Jones & Dangl, 2006), however, if the NB-LRR proteins are over-

expressed (Bendahmane, Kanyuka, & Baulcombe, 1999), defence can

also be induced independently of protein-based recognition

mechanisms. Therefore, the elevated levels of NB-LRR proteins accel-

erate the activation of the defence pathways in non-race-specific

defence against viral and bacterial pathogens (Shivaprasad

et al., 2012).

Legumes establish symbiotic interactions with microbes, however,

it is not fully understood how they differentiate between symbiotic or

pathogenic microbial partners. Based on recent research achieve-

ments, symbiotic interaction and nodulation require the suppression

of host defences to prevent immune responses (Yang, Tang, Gao,

Krishnan, & Zhu, 2010). The M. truncatula genome encodes around

540 NB-LRR genes, and more than 60% of them could be targeted by

the NB-LRR-targeting miRNAs such as miR1507, miR2109, and

miR2118 (member of the miR482 superfamily) or by the phasiRNAs

that are produced from at least 114 phasiRNA producing loci by the

action of these miRNAs (Zhai et al., 2011).

Legumes invite symbiotic soil bacteria, termed rhizobia to enter

into their roots and induce the development of nitrogen-fixing symbi-

otic nodules. It is a long-lasting vital question of how the host plants

differentiate between interacting beneficial and detrimental microbes.

Remarkable similarities have been found in sensing both categories of

microbes leading to activation of distinct signalling pathways and

physiological responses (Cao, Halane, Gassmann, & Stacey, 2017;

Gourion, Berrabah, Ratet, & Stacey, 2015; Zipfel & Oldroyd, 2017).

Previous observations indicated the involvement of several miRNA

families in nodule development (Combier et al., 2006; Lelandais-Brière

et al., 2009; Li, Deng, Wu, Subramanian, & Yu, 2010; Subramanian

et al., 2008; Tsikou et al., 2018) and the regulation of R gene-

mediated immunity in a rhizobial strain-specific manner was also

reported (Yang et al., 2010).

Here we report, that the expression level of the NB-LRR-

regulating miRNAs (miR1507, miR2109, and miR2118) is induced at

the early phase of symbiotic interaction in M. truncatula and this

induction is maintained in the symbiotic nodule, co-localizing with

symbiotic bacteria in colonized nodule cells. Furthermore, the target

NB-LRR mRNAs of these miRNAs are downregulated in the symbiotic

nodules. We show that modification of the expression level of the

NB-LRR-regulating miRNAs (either upregulation or downregulation)

significantly changed the number of the symbiotic nodules on

M. truncatula plants. These results indicate that nodulation requires

the fine-tuned differential regulation of NB-LRR genes by miRNAs

during symbiotic interactions to prevent the host's immune responses.

2 | MATERIALS AND METHODS

2.1 | Plant materials and growth conditions

Medicago truncatula Jemalong genotype was used in all experiments.

Seeds were chemically scarified and sterilized with sulphuric acid as

described in the M. truncatula handbook (Chabaud, Lichtenzveig,

Ellwood, Pfaff, & Journet, 2006). Seeds were germinated with over-

night incubation in the dark at room temperature on inverted agar

plates (1% wt/vol agar in water) following 4–6-day-long cold

1118 SÓS-HEGEDŰS ET AL.



treatment at 4�C. Seedlings for all experiments were planted in zeolite

substrate (Geoproduct Kft., Mád, Hungary) perfused with nitrogen-

free Gibson medium (Gibson & Nutman, 1960) and were grown in a

growth chamber under long-day photoperiod (16 hr light and 8 hr

darkness at 24�C) for 5 days before inoculation with rhizobia (Journet,

De Carvalho-Niebel, Andriankaja, Huguet, & Barker, 2006).

2.2 | Viral inoculation of M. truncatula seedlings

Five-day-old M. truncatula cotyledons were infected with the sap of

Nicotiana glutinosa infected with alfalfa mosaic virus (AMV) (Salamon,

Sós-Hegedűs, Gyula, & Szittya, 2018) as previously described (Kis,

Salamon, Kis, & Szittya, 2017).

2.3 | Treatment of M. truncatula seedlings with
flg22

Roots of 7-day-old M. truncatula plants were immersed in 1 μM flg22

(Ezbiolab) solution diluted in Fahräeus medium (Barker et al., 2006) or

in Fahräeus medium as a mock control for 6 hr. Then roots were

washed with distilled water and incubated in Fahräeus medium for

an additional 24 hr. RNA was isolated from roots and cDNA was

synthesized for qPCR. As markers of the activation of plant

defence responses, expression of PATHOGENESIS-RELATED1 (PR1,

Medtr2g435490) and PATHOGENESIS-RELATED10 (PR10, Med-

tr2g035150) genes were tested by qPCR (Domonkos et al., 2017).

2.4 | Bacterial strains and inoculation of
M. truncatula roots

Five-day-old plants were infected with wild-type Sinorhizobium

(Ensifer) meliloti 1021 or its exoY mutant derivative defective in

succinoglycan production (Reuber & Walker, 1993). Rhizobial strains

were grown for 24–48 hr at 30�C in tryptone yeast (TY) medium sup-

plemented with 6 mM CaCl2, and inoculations were carried out as

described previously (Journet et al., 2006). In hairy root transforma-

tion experiments, Agrobacterium rhizogenes ARqua1 strain was used.

2.5 | In situ hybridization

M. truncatula nodules inoculated either with wild-type S. meliloti or

S. meliloti exoY were collected at 4, 7, 14 days post-inoculation (dpi)

and 14 dpi, respectively. The nodules were fixed in a fixative solution

of 4% (wt/vol) paraformaldehyde (Sigma) in phosphate-buffered saline

pH 7.4 (PBS) and processed for paraffin embedding as described pre-

viously (Várallyay & Havelda, 2011). Longitudinal sections of nodules

(10 μm thick) were mounted to specific poly-L-lysine-coated micro-

scope slides (Leica). For all in situ hybridization, 50 digoxigenin (DIG)-

labelled locked nucleic acid oligonucleotides (Exiqon) were used

(Table S1). The stock solution of oligonucleotides was diluted to

20 pmol μl−1 concentrations, and 2 μl probe was used per slide in

150 μl hybridization solution. Hybridization was performed overnight

at 50�C with each probe and slides were washed with 0.2× saline

sodium citrate (SSC) buffer pH 7.0. Slides were incubated in Blocking I

solution (0.5% vol/vol Blocking Reagent in 1× Tris-buffered saline

buffer pH 7.4, TBS, Roche) for 30 min and were transferred into

Blocking II solution (1% vol/vol BSA in 1× TBS and 0.3% vol/vol Tri-

ton™ X-100) for 15 min. The anti-DIG solution was diluted in Blocking

II solution (1:1,250), 150 μl solution was applied per slide and incu-

bated for 90 min. After washing with 1× TBS, SB buffer containing

nitro-blue tetrazolium: 5-bromo-4-chloro-30-indolyl phosphate (1:50,

vol/vol) was applied to develop the colour reaction (Medzihradszky,

Schneitz, & Lohmann, 2014). The reaction was stopped after 12 hr by

rinsing the slides with water.

2.6 | Microscopy

In situ hybridized nodule sections were observed with ZEISS axiostar

plus M light microscope and images captured using a euromex HD ultra

1080p digital camera. To analyse the presence of rhizobia in nodules, in

situ sections were stained with 5 μM SYTO™ 13 in PBS (pH 7.4) for

20–60 min and were analysed with confocal laser scanning microscopy.

Confocal laser scanning microscopy was performed using a Leica

SP5AOBS confocal laser scanning microscope (Leica, Germany) on

DMI6000 microscope base using HCX PL FLUOTAR ×5 dry objective

with a numerical aperture of 0.15. SYTO™ 13 fluorescence was detected

between 502 and 587 nm using 488 nm laser excitation. In situ hybridi-

zation signal of the same sample was detected using a Zeiss Axiocam

MRc-5 colour camera (Carl Zeiss MicroImaging GmbH, Germany) con-

nected to the side port of the confocal microscope.

2.7 | RNA extraction, northern hybridization

M. truncatula roots, nodules, leaves, or cotyledons were collected at

different time points, and total RNA was isolated by using the phenol/

chloroform extraction method (Szittya, Salamon, & Burgyán, 2000).

Northern hybridization was performed essentially as previously

described (Baksa et al., 2015). Briefly, 1 μg total RNA was separated in

a 12% (wt/vol) polyacrylamide gel in 1× tris-borate EDTA buffer con-

taining 8 M urea and transferred to the neutral nylon

membrane Hybond™-NX (Amersham/GE Healthcare) by semi-dry

electroblotter for 45 min. RNA molecules were cross-linked by

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide chemical cross-

linking method at 60�C for 90 min (Pall & Hamilton, 2008). RNA blots

were pre-hybridized at 38�C for 1 hr with ULTRAhyb®-oligo

ultrasensitive hybridization buffer (Thermo Scientific). For miRNA detec-

tion, oligonucleotide probes complementary to miRNAs (Table S1) were

end-labelled with [γ32P] ATP (Perkin Elmer) for 1 hr at 37�C using T4

polynucleotide kinase (Thermo Scientific). Hybridization with labelled

probes was performed at 38�C for 16–18 hr. Then blots were washed
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twice with 2× SSC buffer containing 0.1% (wt/vol) SDS at 38�C and

exposed to PhosphorImager® screens (GE Healthcare).

2.8 | RT-qPCR assays

Total RNA samples were treated with DNase I (Thermo Scientific).

The cDNA synthesis was performed with 500 ng total RNA by High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems)

according to the manufacturer's instructions. For the RT-qPCR, a Light

Cycler 96 (Roche) machine and SYBR™ Select Master Mix (Applied

Biosystems) were used. Data were analysed by LightCycler®

96 SW1.1 software (Roche). Relative expression levels were calcu-

lated by normalization against the expression of PTB (polypyrimidine

tract-binding-like protein, Medtr3g090960). The miRNA cleavage

sites in the target transcripts were predicted with the psRNATarget

server (Dai & Zhao, 2011). Primers for the miRNA target genes were

designed around the miRNA target sites using eprimer3, part of the

EMBOSS software package (Rychlik, 1993).

2.9 | Construct design and plant transformation

Overexpression constructs were generated by Gateway Technology (Life

Technologies). For miRNA overexpression, constructs of miRNA precur-

sors were amplified from M. truncatula genomic sequences with Phusion

DNA Polymerase (Thermo Scientific) using the primers previously

described (Fei, Li, Teng, & Meyers, 2015) (Table S1). miRNA precursors

were inserted into pDONR201 vector by homologous recombination by

BP clonase (Life Technologies), and sequences were verified. Destination

clones were made by LR clonase II (Life Technologies) mediated recombi-

nation. The binary vector contained the 966-bp-long EF1α promoter

(At1g07920—GTP binding Elongation factor Tu family protein) upstream

the homologous recombination sites and DsRed fluorescent selection

marker gene under the control of the Arabidopsis thaliana UBIQUITIN10

promoter. The base of the destination vector was the pKGW-R vector

(obtained from Plant Systems Biology, VIB-Ghent University) in which the

EF1α promoter was inserted between the SpeI and HindIII sites, the box

containing the bacterial selection marker, chloramphenicol resistance, and

the two homologous recombination sites (AttR1-CmR-ccDB-AttR2) were

inverted (pKGW-R-pEF1). We used short tandem target mimic (STTM)

construct to decreasemiR2118abcmiRNA levels (Fei et al., 2015) and IPS-

based target mimicry construct (Franco-Zorrilla et al., 2007) to decrease

the miR2118a level (Table S1). in vitro synthesized STTM sequences

(Integrated DNA Technologies) and the amplified nos terminator was

cloned into SpeI and AatII site of pKGW-R-pEF1 plasmid, using infusion

technology (In-Fusion® HD cloning kit Clontech). For analysis of the

expression of miRNA regulated NB-LRR target genes, plants were treated

with A. rhizogenes as described earlier (Boisson-Dernier et al., 2001). After

6 days on Fahräeus agar medium, the transformed seedlings were trans-

ferred to Fahräeus agar complemented with kanamycin (25 μg ml−1) and

cefotaxime (250 μg ml−1) for 2 weeks. Kanamycin was used as a selection

marker for the vector and the constructs, while cefotaxime was used for

eliminating Agrobacterium from the transformed hairy roots. The plants

were kept sterile until the red fluorescent transformed roots were col-

lected for RNA preparation and qPCRs were performed on NB-LRR target

genes.

For the quantification of infection events and nodule numbers, all

constructs were introduced in M. truncatula Jemalong plants using

A. rhizogenes hairy root transformation (Boisson-Dernier et al., 2001).

DsRed was the fluorescent selection marker of transformed hairy roots.

Transformed plants were planted in zeolite substrate and inoculated with

S. meliloti 1021 strain carrying the pXLGD4 plasmid constitutively

expressing the lacZ reporter gene for counting infection events or

F IGURE 1 Expression of the NB-LRR-regulating miRNAs in
Medicago truncatula roots and nodules during pathogen attack (a) and
symbiosis (b, c). (a) Small RNA northern blot analysis showed the
suppression of miR2118a, miR1507, and miR2109 expression in
M. truncatula cotyledons 4 days post-inoculation (dpi) with Alfalfa
mosaic virus (AMV) compared to mock samples. The expression of the
same miRNAs was analysed in M. truncatula seedlings 24 hr after
treated with the synthetic flg22-peptide for 6 hr. (b) Small RNA
northern blot analysis of miR2118a, miR1507, and miR2109 in mock-
treated M. truncatula roots and roots inoculated with exoY mutant and
wild-type (wt) strains of Sinorhizobium meliloti at 1 dpi. The RNA was
transferred to a membrane and probed with radiolabelled DNA
oligonucleotides for miR2118a, miR1507, miR2109, and U6 snRNA as
a loading control. (c) Spatial distribution of miR2118 in M. truncatula

nodules. In situ hybridization of longitudinal sections of nodules either
with 50 digoxigenin (DIG)-labelled LNA-modified oligonucleotide
probe for miR2118 or chicken miR449 as a negative control. Nodules
were harvested at 4, 7, and 14 dpi with wt S. meliloti, and 14 dpi with
exoY mutant of S. meliloti. (d) The images show the symbiotic
phenotype of nodules induced by the wild-type and the exoY mutant
S. meliloti at 14 dpi. Scale bars: in panel c—100 μm; in panel d—1 mm
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S. meliloti 1021 (wt) for nodule number analysis. To quantify micro-

colonies and infection threads, at least 15 red fluorescent transformed

roots per construct were fixed and stained with 0.1% (wt/vol) X-Gal solu-

tion as described earlier (Domonkos et al., 2017). Blue-stained micro-

colonies and infection threads were counted at 5 dpi. Numbers of

infection events were normalized to root length (counts per mm of root).

Nodule number was counted at 4 weeks post-inoculation (wpi)

with S. meliloti 1021. Following quantification, the roots were individ-

ually frozen in liquid nitrogen and total RNA was isolated for northern

analysis of sRNAs.

2.10 | Statistical analysis

In the case of RT-qPCR analysis and nodule number quantification,

unpaired, one-tailed t tests were performed to estimate statistical sig-

nificance of the difference between the samples; infected plants were

compared to mock-treated ones or transgenic roots were compared

to empty vector-transformed roots. In the RT-qPCR experiments, four

independent biological replicates were measured with two technical

repeats the mean of which was used in the statistical analysis. In the

nodule number quantification, at least 45 (miRNA target mimicry lines)

or 15 (miRNA overexpression lines) transgenic roots were counted.

The statistical tests were performed in Microsoft Excel. Statistical sig-

nificance of the observed difference was marked in the figures with

asterisks according to the following categories: ***p ≤ .001;

**p ≤ .01;*p ≤ .05, ns = not significant.

2.11 | Promoter analysis

The pri-miRNA sequences were identified by PatMan (Prüfer et al.,

2008) using the mature miRNA sequences as the query patterns and

the r5.0 version of the M. truncatula A17 annotated transcripts (Pecrix

et al., 2018) as the database. Promoters of the five MIRNA genes were

obtained by extracting the sequences 2 kb upstream of the transcrip-

tion start site (TSS) of the identified transcripts using BEDTools

v2.26.0 (Quinlan & Hall, 2010). Promoter analysis was conducted

using the PLACE tool (Higo, Ugawa, Iwamoto, & Korenaga, 1999). The

lists of motifs of the five MIRNA promoters were compared and drawn

with an online Venn-diagram drawing tool (http://bioinformatics.psb.

ugent.be/webtools/Venn/). The selected common elements were

plotted with a custom R script and further edited with Inkscape.

3 | RESULTS AND DISCUSSION

3.1 | Both pathogen infection and symbiotic
interaction modulates the expression level of NB-LRR-
regulating miRNAs

To test the effect of pathogen infection on the expression level of

NB-LRR-regulating miRNAs (miR1507, miR2109, and miR2118) in

legumes able to form symbiotic N-fixing interaction, we infected

M. truncatula plants with AMV (Salamon et al., 2018). The level of the

NB-LRR-targeting miRNAs was monitored in the inoculated cotyle-

dons of mock and virus-infected plants with northern blots 4 dpi

(Figure 1a). We found that similarly to previous reports in Solanaceae

species (Deng et al., 2018; Li et al., 2012; Shivaprasad et al., 2012;

Yang et al., 2015), the expression level of these three NB-LRR-

regulating miRNAs decreased during AMV infection in M. truncatula

cotyledons and the largest reduction was detected in the expression

of miR2118.

In plants, a 22-amino acid sequence (flg22) of the conserved N-

terminal part of bacterial flagellin is a well-characterized PAMP,

known to activate PTI. Pre-stimulation of plants with flg22 led to the

activation of PTI and enhanced resistance against bacterial invaders

(Zipfel et al., 2004). We tested the effect of the synthetic flg22 on the

level of NB-LRR-regulating miRNAs (miR1507, miR2109, and

miR2118). We immersed M. truncatula seedlings into media con-

taining 1 μM flg22, and after incubation for 6 hr, the seedlings were

transferred into a new media with no flg22. Following incubation for a

further 24 hr, RNA was extracted from the seedlings and subjected to

northern blot to analyse the expression level of the NB-LRR-regulating

miRNAs. We found that the expression level of all three miRNAs

decreased as a consequence of flg22 treatment (Figure 1a). This result

shows that the activation of PTI with flg22 can trigger the plant

defence signalling to suppress the level of NB-LRR-regulating miRNAs

in M. truncatula.

The quick and precise regulation of plant immunity is not only

paramount during pathogen attack, but it could also be very impor-

tant during the recognition of beneficial microbes to establish sym-

biotic interaction with nitrogen-fixing rhizobia. To test this

hypothesis, we used the M. truncatula–Sinorhizobium meliloti symbi-

otic interaction as a model system to investigate the role of

miRNAs in regulating NB-LRR genes during symbiosis. In our experi-

ments, we monitored the expression level of the three NB-LRR-

regulating miRNAs at the early stage of the symbiotic interaction.

Five-day-old M. truncatula seedlings were inoculated with wild-

type S. meliloti strain 1021 and RNA samples were collected from

non-inoculated roots (mock) and inoculated roots at 1 dpi. The col-

lected RNA samples were subjected to sRNA northern blot, and the

expression level of all three NB-LRR-regulating miRNAs was moni-

tored (Figure 1b). We found that the basal expression of all three

miRNAs increased at 1 dpi. During this experiment, we also inocu-

lated M. truncatula seedlings with the exoY mutant derivative of

S. meliloti deficient in succinoglycan (exopolysaccharide I) produc-

tion (Reuber & Walker, 1993). The exoY mutant of S. meliloti is

defective to induce infection thread formation and hence nodule

primordia lacking rhizobia develop on the roots of M. truncatula

(Jones et al., 2008). We collected RNA samples from non-

inoculated roots (mock) and inoculated roots at 1 dpi with the

mutant rhizobia. The expression level of all three NB-LRR-regulating

miRNAs was tested with sRNA northern blot. We found that the

expression level of miR2118a, miR1507, and miR2109 was also

increased in roots inoculated with S. meliloti exoY mutant, similarly
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what was found with wild-type rhizobia (Figure 1b). These results

indicate that the miRNAs regulating NB-LRR genes could play a role

during the establishment of symbiotic interaction with rhizobia by

the post-transcriptional downregulation of the NB-LRR genes.

3.2 | Promoters of Mtr-MIR2118a,b,c, Mtr-
MIR2109, and Mtr-MIR1507 genes contain both
pathogen-responsive and nodulation-regulated motifs

The observed dual regulation of the miRNA levels raised the possibility

that the promoters of these NB-LRR-regulating miRNAs respond both

to pathogens and symbionts. We searched for known regulatory motifs

in the promoters of the five miRNAs with PLACE (Higo et al., 1999)

and found several sequence motifs that were associated either with

pathogen response or nodulation, and other functions as well

(Table S2). We wondered if there were motifs that were present in all

the five promoters, therefore we analysed the sets of motifs and visual-

ized the result in a Venn-diagram (Figure 2a). There were 44 common

sequence motifs present in the promoters of the five miRNAs, eight of

which were associated either with pathogen-response (i.e., W-boxes) or

nodulation (Table S2). For simplicity, we grouped these sequence motifs

into two categories and visualized their location on the 2 kb sequence

upstream to the TSS of the corresponding MIRNA genes (Figure 2b).

The promoters of these MIRNA genes are diverse despite their similar

mature miRNA sequences suggesting that they are regulated differ-

ently. For example, the promoter of the Mtr-MIR2118a and Mtr-

MIR2118b genes contain many pathogen-responsive motifs but only a

few nodulation-regulated motifs. This might explain our finding that the

miR2118 level drops the most upon pathogen attack (Figure 1a) since

the WRKY transcription factors that bind W-boxes are often negative

regulators of gene expression (Pandey & Somssich, 2009; Rushton,

Somssich, Ringler, & Shen, 2010). Other motifs might be responsible for

the integration of other external or internal signals, or for functions in

tissues other than nodules.

3.3 | The NB-LRR-targeting miRNAs are
upregulated during symbiotic nodule development

The suppression of plant immunity could be important at two stages

of the nitrogen-fixing symbiosis. During the early events of the symbi-

otic interaction, leguminous plants control their defence responses by

the rapid and transient activation of defence genes (Lohar et al.,

2006). In addition, the involvement of an NB-LRR disease protein con-

trolling nodulation in a strain-specific manner in soybean has been

reported indicating the role of effector-triggered immunity in the rhi-

zobial symbiotic interaction (Yang et al., 2010). Also, during the later

events, when the intracellular rhizobial invasion of nodule cells occurs,

the regulation of plant immunity is also required. To monitor the pres-

ence of NB-LRR-targeting miRNAs during nodule development, we

carried out in situ hybridizations of these miRNAs in developing nod-

ules at different time points post-inoculation with rhizobia.

We inoculated M. truncatula roots with wild-type and exoY

mutant S. meliloti and investigated the distribution of miR2118 in 4-,

7-, and 14-day-old nodules with in situ hybridization (Figures 1c and

S1). At 4 dpi, strong expression of miR2118 was detected only in the

symbiotic cells of nodule primordia. In the 7- and 14-day-old nodules,

the miR2118 expression localized to the nodule meristem and the

infected nodule cells. The presence of bacteria detected by the DNA-

binding SYTO™ 13 staining and the signal of miR2118 expression pre-

dominantly overlap in 7- and 14-day-old nodule sections indicating

the elevated expression level of miR2118 in colonized nodule cells

F IGURE 2 Promoter analysis of the NB-LRR-targeting MIRNA
genes. Promoter analysis was conducted using the PLACE tool (Higo
et al., 1999). The lists of motifs of the five MIRNA promoters were
compared with each other using an online Venn-diagram drawing tool
(http://bioinformatics.psb.ugent.be/webtools/Venn/). There were
44 common elements in all the five promoters (a). From them, we
selected the potential nodulation-regulated motifs (NODCON2GM,
OSE2ROOTNODULE) and the pathogen-responsive elements
(BIHD1OS, WBOXATNPR1, WRKY71OS, WBOXHVISO1,
WBOXNTERF3, GT1GMSCAM4), and plotted them by position
within the promoter (b). The downward- and upward-pointing
triangles mark the sites found on the forward and the reverse strands,
respectively
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(Figure S1). This result also revealed that no signal of miR2118 expres-

sion was detected by in situ hybridizations in root tissue and non-

symbiotic cells of root nodules. Furthermore, we tested the expres-

sion pattern of miR2118 by in situ hybridization in M. truncatula nod-

ules induced by the exoY mutant of S. meliloti. No expression of

miR2118 was found in nodules devoid of any bacteria further

suggesting the incidence of bacterial presence and miR2118 expres-

sion (Figure 1c). These results indicate that (i) cells colonized by

rhizobia could have a lower NB-LRR level than non-infected cells and

(ii) higher NB-LRR gene expression level in non-symbiotic nodule cells

might block the colonization of these cells by rhizobia.

Next, we investigated the spatial distribution of all of the other

NB-LRR-targeting miRNAs during different stages of nodule develop-

ment by in situ hybridization. In 4-day-old nodules, the expression of

all NB-LRR-targeting miRNAs (miR2118, miR2109, and miR1507) was

detected and distributed uniformly in the developing nodules, and no

expression of the miRNAs was detected in the non-symbiotic tissues

of the nodule (Figure S2a). In 7-day-old nodules, we were able to

detect the expression of all three NB-LRR-targeting miRNAs

(Figure S2b). Similarly, all three NB-LRR-targeting miRNAs were

expressed in 14-day-old nitrogen-fixing nodules, but they showed dif-

ferent spatial distribution. The miR2118 was evenly expressed in the

nodule meristem and the different symbiotic zones of the 14-day-old

nodules. The miR1507 expression showed a gradient expression pre-

dominantly localized to the meristem, the infection, and intermediate

zones of the nodules, while a lower expression was found in the nitro-

gen fixation zone. The spatial expression pattern of miR2109 was

mainly restricted to the apical part of the nodule (Figure S2c). We also

investigated the spatial distribution of all of the other NB-LRR-

targeting miRNAs in 14-day-old nodules elicited by the exoY mutant

of S. meliloti and similarly to miR2118a, we did not detect the expres-

sion of any of these NB-LRR-targeting miRNAs in nodules devoid of

rhizobia (Figure S2d). The nodules produced upon these infection pro-

cesses are not able to fix nitrogen, because the exoY mutant S. meliloti

bacteria are entrapped in the infection thread. Since the expression

level of NB-LRR-targeting miRNAs is very low in these nodules lacking

bacteria, the level of NB-LRR proteins could be increased to a level

that would contribute to the block of colonization of S. meliloti exoY

mutant in these nodules.

3.4 | miR2118, miR2109, and miR1507 silence NB-
LRR mRNAs

The M. truncatula genome encodes approx. 540 NB-LRR genes and

more than 60% of these genes can be targeted by the NB-LRR-

targeting miRNAs or by the phasiRNAs that are produced by the

action of the NB-LRR-targeting miRNAs (Zhai et al., 2011). The

upregulation of all three NB-LRR-regulating miRNAs during symbiotic

interactions in the nodules predicts that they decrease the level of the

mRNAs of their target NB-LRR genes. To confirm that the targeted

NB-LRR gene expressions are indeed downregulated, we selected two

NB-LRR genes targeted by each miRNA (miR2118, miR2109, and

miR1507), respectively. We measured their expression level in symbi-

otic nodule by qRT-PCR at 4, 7, and 14 dpi with S. meliloti. As it was

expected, the expression level of all the six investigated miRNA-

targeted NB-LRR gene was suppressed in the symbiotic nodules com-

pared either to the symbiotically insensitive region of roots (Figure 3a)

or to empty nodules elicited by S. meliloti exoY mutant (Figure 3b).

However, the activity of NB-LRR genes showed differential suppres-

sion and temporal variation (Figure 3). These results show that the

three NB-LRR-regulating miRNAs control the expression level of the

NB-LRR genes and this regulation could contribute to the successful

induction of symbiotic nodule development by facilitating the infec-

tion and the bacterial colonization of the root and the developing nod-

ule tissue.

3.5 | Symbiotic nodule number is regulated by the
expression level of NB-LRR-regulating miRNAs

Our model predicts that if the reduced level of NB-LRR gene expression

is necessary to the formation and proper development of symbiotic

nodules, the higher level of NB-LRR gene expression will interfere with

the process resulting in the reduction of nodule number. To test this

hypothesis, we generated composite M. truncatula plants, using

A. rhizogenes-mediated hairy root transformation, expressing short

sequences mimicking miRNA target sites (Franco-Zorrilla et al., 2007;

Yan et al., 2012) that lead to the degradation of targeted miR2118 and

hence lowering the level of the NB-LRR-targeting miR2118. This obser-

vation was in line with a previous report (Fei et al., 2015) where the

same short sequences mimicking miR2118 target sites (MIM2118)

were reported to reduce the level of NB-LRR-targeting miRNAs. In

MIM2118 transgenic roots, we checked the expression level of an NB-

LRR gene targeted by miR2118 and its expression level was elevated as

expected (Figure S3a). Next, we examined the hairy roots of the com-

posite plants for the characteristics of root growth and nodulation by

S. meliloti. We also confirmed the downregulation of miR2118 in all of

the transgenic roots by northern blot analysis (Figure 4a). We found

that under our growing conditions, the lower level of miR2118 had no

significant effects on root growth characteristics. To test the early

infection events during the downregulation of miR2118, we counted

the microcolonies (Figure S4a) and infection threads (Figure S4b) on

MIM2118 transgenic roots at 5 dpi with S. meliloti. We found no signifi-

cant differences in any early infection events compared to control

roots. Nevertheless, when we scrutinized the nodule numbers in the

transgenic hairy roots showing reduced miR2118 expression level

3 wpi with S. meliloti, we found a significant reduction in the number of

mature nodules compared to the control roots transformed with empty

vector (Figure 4b,c), irrespectively of which of the two mimicking con-

structs was expressed. The mature nodules were similar in size, infected

with bacteria, and displayed normal morphology on both the MIM2118

transgenic and control roots (Figure S5). Based on these results, we

concluded that the expression level of NB-LRR-regulating miR2118 cor-

related with the nodule number but had no effect on nodule morphol-

ogy and rhizobial colonization.
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To further confirm this conclusion, we tested the effect of symp-

tomless virus infection on nodulation. We have shown that AMV

infection of M. truncatula plants reduces the expression level of the

NB-LRR-regulating miRNAs (Figure 1a). Furthermore, it has been pre-

viously demonstrated that the inhibition of the function of these

miRNAs (miR2118, miR2109, and miR1507) leads to the upregulation

of their target mRNAs (Fei et al., 2015). Based on these results, we

speculated that AMV infection leads to the downregulation of the

NB-LRR-regulating miRNAs that might cause the upregulation of its

target NB-LRR genes similarly to the target mimicry plants reported

earlier (Fei et al., 2015). It is also important to mention that AMV

infection, beside downregulating the NB-LRR-regulating miRNAs, does

not induce any visible phenotypes of M. truncatula plants (Figure S6a).

Therefore, the mock and the AMV infected plants were indistinguish-

able from each other by visual inspection. We infected five-day-old

M. truncatula seedlings with AMV or mock inoculum, and after 7 days

the plants were inoculated with S. meliloti. The nodule numbers of

virus-infected plants, verified by the presence of the viral AMV coat

protein gene using northern blot (Figure S6b), were quantified at

7 and 10 dpi with S. meliloti. We found that virus-infected plants

developed a significantly reduced number of nodules compared to the

mock-inoculated control plants (Figure S7). This result might indicate

F IGURE 3 Expression of miRNA-regulated NB-LRR transcripts in Medicago truncatula nodules. (a) Roots were infected with Sinorhizobium
meliloti and samples were taken from nodule-less root parts (R) or nodules (N) at 4, 7, and 14 days post-inoculation (dpi). (b) Roots were infected
either with wt or exoY mutant S. meliloti. Samples were taken from nodules at 14 dpi. The expression levels were determined by RT-qPCR. The
expression level of target genes was normalized to the PTB (polypyrimidine tract-binding-like protein; Medtr3g090960.1) level in the same
sample. RK1 = Medtr4g014990.1, RK2 = Medtr4g023400.1, RK3 = Medtr7g025250.1, RK4 = Medtr4g043630.1, RK5 = Medtr7g091110.1,
RK6 = Medtr3g086070.1. The values are means of four independent experiments with SE. An unpaired, one-tailed t test was performed to
estimate statistical significance. ***p ≤ .001; **p ≤ .01; *p ≤ .05, ns = not significant
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that the downregulation of the NB-LRR genes by miRNAs is important

during nodule development.

To confirm this hypothesis, we generated the overexpressing

constructs of the same miRNAs (miR2118OX, miR2109OX, and

miR1507OX) that were shown previously (Fei et al., 2015) to increase

the abundance of miR2118, miR2109, and miR1507 in M. truncatula

roots, to test their effect on nodulation. We generated hairy root

composite M. truncatula plants using A. rhizogenes-mediated transfor-

mation system. Next, these plants were examined for root growth

characteristics and nodulation by S. meliloti. We verified the over-

expression of miRNAs in DsRed-positive transgenic roots by northern

blot analysis 4 wpi with rhizobia. The results confirmed that trans-

genic roots of the plants transformed by the three miRNA over-

expressing constructs had significantly higher miRNA expression

levels (Figure 5a). Under our growing conditions, overexpression of

these miRNAs (miR2118, miR2109, and miR1507) did not cause any

significant changes in the characteristics of root growth. Compared

with empty vector transformed controls, the miRNA overexpressing

F IGURE 4 The decreased level of miR2118 induced by target
mimicry constructs led to the reduction of nodule number on
Medicago truncatula roots inoculated with Sinorhizobium meliloti.
Target mimicry constructs reducing the expression level of
miR2118a,b,c (MIM2118abc) and miR2118a (MIM2118a)
respectively, controlled by the constitutively active Arabidopsis
thaliana EF1α gene promoter were introduced into in M. truncatula
roots using Agrobacterium rhizogenes-mediated transformation.
(a) Small RNA northern blot analysis of the same transgenic roots
displayed in panel b showed a decreased abundance of mature
miRNAs in transgenic lines at 3 weeks post-inoculation (wpi). RNAs
isolated from M. truncatula roots were separated on a 12% (wt/vol)
polyacrylamide gel and subsequently transferred to a membrane and
probed with radiolabelled DNA oligonucleotides for miR2118, and U6
snRNA as a loading control. (b) Representative images of nodulated
transgenic roots 3 wpi with S. meliloti, transformed with MIM2118abc
(abc) and MIM2118a (a) target mimicry constructs or with empty
vectors (EV) identified by expressing the DsRed fluorescent protein.
Scale bars: 1 mm. (c) Average nodule numbers of at least
45 transgenic roots were counted for each construct at 3 wpi with
S. meliloti

F IGURE 5 Constitutive overexpression of miRNAs in Medicago
truncatula hairy roots generated with Agrobacterium rhizogenes-
mediated transformation resulted in an increased nodule number.
NB-LRR-regulating miRNAs (miR2118, miR2109, and miR1507) were
driven by the constitutive Arabidopsis thaliana EF1α gene promoter
in M. truncatula transgenic roots. (a) Small RNA northern blot
analysis of the same transgenic roots showed an increased
abundance of mature miRNAs. RNAs isolated from M. truncatula
transgenic roots were separated on a 12% (wt/vol) polyacrylamide
gel. The RNA was transferred to a membrane and probed with
radiolabelled DNA oligonucleotides for miR2118, miR2109,

miR1507, and U6 snRNA as a loading control. (B) Representative
images of nodulated transgenic roots, overexpressing miR2118
(2118OX), miR2109 (2109OX), and miR1507 (1507OX) or
transformed with empty vector (EV), identified by expressing the
DsRed fluorescent protein 4 weeks post-inoculation (wpi) with
Sinorhizobium meliloti. Scale bars: 1 mm. (c) Average nodule numbers
of at least 15 transgenic roots for each construct were counted at
4 wpi with S. meliloti
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transgenic lines showed no obvious differences in root length or lat-

eral root density. In miR1507OX, miR2109OX, and miR2118OX trans-

genic roots we checked the expression level of NB-LRR genes

targeted by each of these miRNAs and their expression level was

decreased, as it was expected (Figure S3). To test the early infection

events during the overexpression of NB-LRR-regulating miRNAs, we

quantified microcolonies and infection threads on the miRNA over-

expressing (miR2118OX, miR2109OX, and miR1507OX) transgenic

roots at 5 dpi with S. meliloti. We found significantly more micro-

colonies with all three miRNA overexpression constructs (Figure S4a)

and a significantly increased number of infection threads on trans-

genic roots overexpressing miR2118 or miR2109 (Figure S4b) com-

pared to empty vector transformed control roots. Next, we examined

the nodule numbers in the transgenic hairy roots 4 weeks after

S. meliloti inoculation. We found increased nodule numbers on trans-

genic hairy roots overexpressing miR2118, miR2109, and miR1507

compared to control empty vector transformed roots at 4 wpi with

S. meliloti (Figure 5b,c). The mature nodules were similar in size,

infected with bacteria, and morphologically looked normal in all three

miRNA overexpressing transgenic and control roots (Figure S5). Our

result is in line with a report showing that the overexpression of

miR482, another member of the miR482/2118 superfamily increases

soybean nodulation (Li et al., 2010). These results suggested that the

NB-LRR-regulating miRNAs are important components of nodulation

by regulating the expression level of NB-LRR genes and, hence, pro-

moting bacterial infection and development of nitrogen-fixing symbi-

otic nodules.

4 | CONCLUSIONS

The expression level of the three miRNA families (miR2118,

miR2109, and miR1507) that regulate NB-LRR mRNAs post-

transcriptionally is affected by the nature of plant–microbe interac-

tions in legumes (see proposed model in Figure 6). In pathogen-

infected plants, the expression level of these NB-LRR-regulating

miRNAs decreases and in line with previous findings (Li et al., 2012;

Shivaprasad et al., 2012), this allows pathogen-induced accumulation

of NB-LRR mRNAs which could result in elevated expression of NB-

LRR proteins and in the activation of defence responses. Interestingly,

the interaction with the symbiotic microbial partner upregulates the

expression level of the same set of miRNAs and thus affects the

downregulation of the NB-LRR defence genes in the developing nod-

ule. This dual regulation may be attributed to the presence of both

pathogen-responsive and nodulation-regulated sequence motifs in

the promoter of the NB-LRR-regulating MIRNA genes (Figure 2b). The

suppressed activity of these resistance genes facilitates both the

infection and accommodation of legume roots by symbiotic bacteria

finally resulting in the development of a higher number of nodules

(Figure 6). The M. truncatula genome harbours more than 500 NB-LRR

genes and their post-transcriptional regulation by miRNAs would

reduce the fitness cost associated with these genes by keeping their

basal level low in the absence of pathogen infection. The miRNA-

based post-transcriptional regulation would allow the plant to fine-

tune the level of NB-LRR transcripts depending on the character of

the microbe interacting with the plant. Pathogen infection can

F IGURE 6 Model for the miRNA
mediated regulation of NB-LRR genes.
The expression level of the three
miRNA families (miR2118, miR2109,
and miR1507) regulating NB-LRR
mRNAs post-transcriptionally is
modulated by the nature of plant–
microbe interactions in legumes. In
pathogen-infected plants, the

expression level of these miRNAs
decreases advancing pathogen
inducible expression of NB-LRR
proteins and thus activating defence
mechanisms against pathogen attack.
In contrast, the interaction with the
nitrogen-fixing symbiotic bacterial
partner upregulates the expression
level of the same set of miRNAs and
resulting in the downregulation of the
NB-LRR defence genes. As a
consequence, the plant's innate
immunity is suppressed in the nodule
during symbiosis. Red tildes represent
miRNAs, green wavy lines represent
NB-LRR mRNAs, and light blue bubbles
show NB-LRR proteins
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decrease the basal level of the NB-LRR-regulating miRNAs resulting in

efficient defence response. However, during symbiotic interaction,

the increased expression level of the NB-LRR-regulating miRNAs

lowers the transcript level of defence genes and therefore can pro-

vide a suitable niche to the symbiotic bacteria to infect the roots and

colonize the developing nodules. Because the NB-LRR-targeting

miRNAs can respond to both pathogens and symbiotic partners in

M. truncatula, they could function as an elegant molecular switch to

provide a fast and adequate response by increasing or decreasing the

level NB-LRR mRNAs according to the nature of plant–microbe

interaction.

In M. truncatula, these miRNAs target at least 114 NB-LRR genes

that produce phasiRNAs that can target additional NB-LRR genes

and in this way, it is estimated that this regulating cascade can effi-

ciently target at least 60% of the plant's NB-LRR mRNA repertoire

post-transcriptionally (Fei et al., 2015; Zhai et al., 2011). The genera-

tion of phasiRNAs by these miRNAs, therefore, constitutes an effi-

cient amplification system to modulate the expression of a large set

of target mRNAs. By modulating the expression level of NB-LRR-

regulating miRNAs, legume plants are able to fine-tune their

response to the microbial partner in a cost-effective way. This

mechanism along with other regulatory systems (Djordjevic, Mohd-

Radzman, & Imin, 2015; Imin, Patel, Corcilius, Payne, & Djordjevic,

2018; Mortier, Holsters, & Goormachtig, 2012) could contribute to

the control of nodule numbers developed on legume roots. The spa-

tial distributions of these miRNAs within the nodule furthermore

indicate that they control the invasion of non-symbiotic nodule cells

by the symbiotic bacteria. However, the regulation of the NB-LRR

genes by a miRNA switch could have a fitness cost during special

circumstances. Virus infection can trigger the accumulation of NB-

LRR mRNAs by downregulating the miRNAs, and as a consequence,

the interaction with the symbiotic partner could be blocked or

attenuated. In line with this hypothesis, a reduced number of devel-

oping nodules was observed on the roots of virus-infected alfalfa

(Medicago sativa), and these virus-infected plants showed growth

reduction when the nitrogen source was limiting (Ohki, Leps, &

Hiruki, 1986).

Since miR482/2118 superfamily is present in many plant families

(González, Müller, Baulcombe, & Puigdomènech, 2015), it is tempting

to speculate that they might contribute to the regulation of both path-

ogenic and symbiotic interactions besides the legume family as well.
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