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ABSTRACT Each year, 5% to 20% of the population of the United States becomes
infected with influenza A virus. Combination therapy with two or more antiviral
agents has been considered a potential treatment option for influenza virus infec-
tion. However, the clinical results derived from combination treatment with two or
more antiviral drugs have been variable. We examined the effectiveness of cotreat-
ment with two distinct classes of anti-influenza drugs, i.e., neuraminidase (NA) inhib-
itor, laninamivir, and interferon lambda 1 (IFN-�1), against the emergence of drug-
resistant virus variants in vitro. We serially passaged pandemic A/California/04/09
[A(H1N1)pdm09] influenza virus in a human lung epithelial cell line (Calu-3) in the
presence or absence of increasing concentrations of laninamivir or laninamivir plus
IFN-�1. Surprisingly, laninamivir used in combination with IFN-�1 promoted the
emergence of the E119G NA mutation five passages earlier than laninamivir alone
(passage 2 versus passage 7, respectively). Acquisition of this mutation resulted in
significantly reduced sensitivity to the NA inhibitors laninamivir (�284-fold) and
zanamivir (�1,024-fold) and decreased NA enzyme catalytic activity (�5-fold) com-
pared to the parental virus. Moreover, the E119G NA mutation emerged together
with concomitant hemagglutinin (HA) mutations (T197A and D222G), which were se-
lected more rapidly by combination treatment with laninamivir plus IFN-�1 (pas-
sages 2 and 3, respectively) than by laninamivir alone (passage 10). Our results show
that treatment with laninamivir alone or in combination with IFN-�1 can lead to the
emergence of drug-resistant influenza virus variants. The addition of IFN-�1 in com-
bination with laninamivir may promote acquisition of drug resistance more rapidly
than treatment with laninamivir alone.

KEYWORDS influenza, interferons, laninamivir

Influenza virus infection affects millions of people around the world, with mortality
estimates of 290,000 to 645,000 deaths per year (1). Influenza virus has been the

cause of four pandemics in the past century, including the 1918 Spanish flu and the
most recent 2009 H1N1 swine flu [A(H1N1)pdm09]. Neuraminidase inhibitors (NAIs)
such as oseltamivir, peramivir, zanamivir, and laninamivir, as well as the recently
approved polymerase inhibitor baloxavir marboxil, are the front line of defense in the
treatment of influenza virus infection. However, NAI-resistant influenza variants that
emerge either naturally or as a result of selective drug pressure have been observed
(2–6).

Amino acid mutations that confer resistance to NAIs are often found within the
neuraminidase (NA) catalytic site and/or framework region, and changes in these areas
may prevent NAIs from effective binding (2). One such mutation, Q136K (N1 numbering
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here and throughout), was first seen between 2006 and 2008 when 2.3% of isolates
circulating in Australia and Southeast Asia acquired this zanamivir-, peramivir-, and
laninamivir-resistant mutation (2, 3). In addition, the H275Y mutation is a predominant
NA change that confers resistance to oseltamivir and peramivir (2). This mutation
emerged rapidly during 2007 to 2009 when the naturally occurring H275Y A(H1N1)
variants gained additional permissive mutations that allowed their spread without
affecting viral fitness (4, 7). The E119D NA substitution, which resulted in resistance to
all four NAIs, has been observed clinically postzanamivir treatment (5, 6). Other N1 NA
mutations, including E119A/G/K/V, R152K, I223K/R/V, S247N, and N295S, have also been
shown to confer resistance to NAIs in vitro and in vivo (8–11). Thus, the emergence of
new drug-resistant influenza virus variants is always a concern.

Laninamivir is a long-lasting anti-influenza NAI, which is inhaled as a prodrug and
converted to its active form within the respiratory tract (12). Unlike the other NAIs,
laninamivir requires only one dose and remains at a concentration above its influenza
50% inhibitory concentration (IC50) in the lungs and blood plasma for at least 5 days
(12). It has been shown that laninamivir remains effective against A(H1N1)pdm09
viruses containing the H275Y NA mutation (13). Despite rapid emergence of drug
resistance in cell culture models (8), no viruses displayed resistance to laninamivir over
six seasons of clinical observation in Japan (14).

NAIs are effective at preventing influenza virus spread, but the human body also has
natural antiviral defense mechanisms, including the ability to express interferon (IFN)
proteins with antiviral activity. Virus-induced IFNs are a group of innate cytokines that
are produced by many cell types in response to viral infection. IFNs activate a cascade
of innate immune responses, including induction of IFN-stimulated genes (ISGs), that
control viral infection through a variety of effector functions (15). There have been
multiple in vitro and in vivo studies evaluating the anti-influenza potential of type I and
type III IFNs (16–23). A recent study with Stat1-deficient mice, which are unable to
respond to type I and type II IFNs, showed that these mice displayed a 10-fold lower
50% median lethal dose compared to the wild-type mice following infection with the
A/Puerto Rico/8/34 (H1N1) strain (16). Pretreatment with IFN-�/� also resulted in
significantly reduced A(H1N1) and A(H5N1) viral replication in mice, demonstrating its
potential antiviral protection in the early stages of influenza virus infection (17, 18). In
a guinea pig model, human recombinant IFN alpha (IFN-�), administered intranasally,
significantly reduced lung and nasal wash titers of a reconstructed 1918 pandemic
H1N1 virus as well as a contemporary H5N1 strain (19). Additionally, type III IFN-�s were
found to exert variable degrees of antiviral activity in vivo without emergence of
resistance against influenza A and B viruses (20, 21), especially in mouse lungs (22).
Moreover, IFN-�1 treatment was shown to be beneficial in the murine upper airway,
where sustained induction of ISGs correlated with a significant reduction of viral
transmission (23).

In view of the limitations posed by treating influenza with a single drug, combina-
tion antiviral drug therapy has been considered an alternative means to reduce
development of drug resistance and decrease viral spread. However, variable results
have been obtained based on the combinations used so far. While combined use of
rimantadine and nebulized zanamivir led to a faster resolution of viral shedding in
patients with lower respiratory tract influenza infection (24), the combination of
oseltamivir and inhaled zanamivir was less effective than oseltamivir alone in control-
ling viral infection and reducing disease severity (25). It was hypothesized that there
may be a negative interaction at the NA catalytic binding site when antiviral drugs with
similar modes of action are used. Therefore, combination therapy with drugs having
different modes of action may be more effective in mitigating the emergence of drug
resistance, as demonstrated previously when amantadine was combined with oselta-
mivir in vitro (26). Multiple in vitro and in vivo studies have also evaluated the triple
combination of amantadine, oseltamivir, and ribavirin (27–30). A phase II trial of
triple-combination therapy indicated that this may be a more effective treatment
option because there was a significant decrease in viral shedding, even though no
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clinical benefits were observed (30). Additionally, our previous evaluation of the
combination of oseltamivir and recombinant IFN-� or IFN-�1 in vitro indicated that the
use of an NAI plus IFN may provide an effective influenza treatment (31).

So far, no studies have assessed the effect of combination therapy with laninamivir
and type III interferon (IFN-�1) against A(H1N1)pdm09 influenza virus in vitro. Therefore,
we examined whether combined treatment with these two classes of anti-influenza
drugs can alter the emergence of drug-resistant variants. We used the human airway
epithelial cell line, Calu-3, to serially passage A/California/04/09 influenza virus in the
presence of increasing concentrations of laninamivir, laninamivir plus IFN-�1, or media
alone, to generate virus variants that displayed various degrees of NAI resistance. The
Calu-3 cell line functionally recapitulates human airway epithelium and provides an
ideal in vitro model for predicting the emergence of NA inhibitor-resistant variants and
evaluating the mechanism of action of laninamivir�IFN-�1 interactions against influ-
enza infection.

RESULTS
Susceptibility of A(H1N1)pdm09 virus to laninamivir and IFN-�1. We determined

the susceptibility of wild-type (WT) A(H1N1)pdm09 virus to treatment with laninamivir or
IFN-�1 using the virus yield reduction assay in Calu-3 cells (Fig. 1). The 50% effective
concentration (EC50) values for laninamivir and IFN-�1 were 0.5 � 0.02 nM and 0.1
� 0.02 ng/ml, respectively, which is consistent with our previous findings (32). We next
measured the induction of several ISGs in Calu-3 cells after treatment with IFN-�1 at a
starting concentration of 0.3 ng/ml, which is equal to three times (3�) the EC50 value.
ISG expression levels were measured by quantitative real-time PCR (qPCR). As shown in
Fig. 2, an approximate 4-fold increase in IRF7 and MX1 gene expression levels was
observed in the cells after treatment with 0.3 ng/ml IFN-�1 compared to the untreated
control cells. Therefore, 0.3 ng/ml IFN-�1 was chosen for use in our antiviral drug
combination experiments.

Generation of A(H1N1)pdm09 virus variants by serial passaging in Calu-3 cells.
To evaluate the effects of single and combination treatment with laninamivir and
IFN-�1 on viral growth and plaque morphology, WT virus was serially passaged 10 times
in the presence of increasing concentrations of laninamivir (0.01 �M to 50 �M) or
laninamivir plus a fixed concentration (0.3 ng/ml) of IFN-�1. To evaluate the effect of
serial passaging of the virus without any selective pressure, we passaged the WT
virus in Calu-3 in the presence of media alone (no drug). Viral titers and plaque size
were measured by plaque assay in Madin-Darby canine kidney (MDCK) cells at each
passage (P).

Viruses passaged in the presence of single or combination therapy produced
average viral titers of 5.6 � 0.9 or 6.0 � 0.8 log10 PFU/ml, respectively (Fig. 3A). The WT
virus passaged without selective pressure produced average viral titers of 7.1 � 1.3

FIG 1 Antiviral effect of laninamivir (�M) and IFN-�1 (ng/ml) against the WT virus in Calu-3 cells as
measured by the virus yield reduction assay. Mean EC50 values and standard deviations are calculated
from two independent experiments.
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log10PFU/ml. Virus passaged in the presence of laninamivir demonstrated mixed plaque
morphology at P3 and P4 with both large plaques of 1.2 � 0.2 mm and small plaques
of 0.2 � 0.1 mm (Fig. 3B). The WT virus passaged in media alone exhibited significantly
increased plaque sizes throughout the 10 passages, ranging from the largest at P8
(1.4 � 0.3 mm) to the smallest at P1 (0.5 � 0.2 mm; P � 0.01) (Fig. 3B). At P5, a mixed
population was observed by plaque morphology that included two distinct sizes of WT
plaques: 1.5 � 0.3 mm and 0.5 � 0.2 mm. In contrast, no mixed population was ob-

FIG 2 Effect of treatment with IFN-�1 (0.3, 3, and 30 ng/ml) on induction of individual ISGs (i.e., IFIT3,
OAS1, IRF7, IFIT1, and MX1) in Calu-3 cells. Expression level values higher than the threshold line are
statistically significant (P � 0.05 compared with the results for the mock-treated cells; one-way ANOVA).

FIG 3 Comparison of viral titers (A) and plaque sizes (B) in the presence of increasing concentrations of
laninamivir (WT�LAN), laninamivir plus IFN-�1 (WT�LAN�IFN-�1), or in the absence of selective
pressure (WT with media) over 10 passages in Calu-3 cells. *, P � 0.05; °, P � 0.01 compared to WT by
one-way ANOVA; M, mixed population present.
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served in virus that was passaged in the presence of laninamivir plus IFN-�1 (plaque
size � 0.2 � 0.03) (Fig. 3B).

Six virus variants were selected during the passaging protocol, and they were
designated as follows: LAN (P5), LAN (P7), and LAN (P10) for viruses passaged in the
presence of laninamivir, LAN�IFN (P5) and LAN�IFN (P10) for viruses passaged in the
presence of laninamivir plus IFN-�1, and P10 for virus passaged in the presence of
media alone. We next determined the growth kinetics of the WT virus and our selected
variants at 24, 48, and 72 h postinfection (hpi) in Calu-3 cells (Fig. 4). The LAN (P7), LAN
(P10), LAN�IFN (P5), and LAN�IFN (P10) viruses exhibited significantly increased viral
replication titers compared to the WT virus at 24 and 48 hpi (�3.2-fold increase;
P � 0.01). LAN�IFN (P10) also showed significantly increased viral titers at 72 hpi
(1.2-fold increase; P � 0.05). The control P10 virus demonstrated significantly higher
viral titers than the WT virus at each time point (�2.3-fold increase; P � 0.01).

Sequence analysis of selected A(H1N1)pdm09 variants. We next sequenced the
complete genomes of our selected variants (Table 1). The D127E HA1 mutation (H1
hemagglutinin [HA] numbering here and throughout) was found in all viruses se-
quenced. While T197A and D222G were present as mixed populations in LAN (P10) and
LAN�IFN (P5), D222G was present as a pure population in the LAN�IFN (P10) variant
(Fig. S1 in the supplemental material). The E119G NA mutation was observed as a mixed
population in LAN (P7), and it became a pure population in LAN (P10). Notably, the
E119G mutation was found as a pure population in LAN�IFN (P5) and remained as such
in LAN�IFN (P10) variant (Fig. S1). Interestingly, the G155E HA1 and Y56C NA mutations
were found in the P10 variant only (Table 1). To analyze the speed of emergence of the
HA and NA mutations in the variants which were under treatment, we performed
additional sequence analysis of the P1 to P4 passages (Fig. S2). We observed that the
LAN�IFN combination selective pressure promoted the emergence of T197A HA1 and
E119G NA as early as P2, indicating that the latter mutation arose at least five passages
sooner than it was observed in the virus passaged in the presence of laninamivir alone

FIG 4 Replication of the WT, LAN (P5), LAN (P7), LAN (P10), LAN�IFN (P5), LAN�IFN (P10), and P10
variants in Calu-3 cells. *, P � 0.05; °, P � 0.01 compared to WT at corresponding time point by one-way
ANOVA.

TABLE 1 Amino acid changes identified in selected A(H1N1)pdm09 variants

Virus Passage no. Laninamivir (�M) IFN-�1 (ng/ml) HA1a,b NP NAb,c M1 NS1

LAN (P5) 5 1.3 D127E
LAN (P7) 7 5.1 D127E E119G
LAN (P10) 10 50.0 D127E, T197A, D222G L108P E119G A149G
LAN�IFN (P5) 5 1.3 0.3 D127E, T197A, D222G E119G
LAN�IFN (P10) 10 50.0 0.3 D127E, T197A, D222G E119G A227S
P10 10 D127E, G155E Y56C
aBased on H1 numbering as in Burke et al. (55).
bItalics indicate mixed population.
cBased on N1 numbering as in Colman (56).
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[i.e., LAN (P7); Fig. S1]. The D127E HA1 mutation was first seen at P2 after treatment
with laninamivir alone or in combination with IFN-�1 (Fig. S2).

We next analyzed the frequency of HA and NA amino acid mutations present in a
pure population in our variants in �35,000 A(H1N1)pdm09 virus sequences (Fig. S3;
https://www.fludb.org). The D127E and G155E HA1 mutations were found at the
highest frequency of 1.4% in 2012 and the lowest frequency of �0.1% in 2018. The
D222G HA1 mutant fluctuated in frequency from 2.6% in 2010 to �0.1% in 2018.
The E119G NA mutation was observed sporadically (�0.4% in 2014), and the Y56C NA
variant was only seen in one virus in 2009 (Fig. S3).

Effect of HA changes on HA receptor affinity. To evaluate the effect of the D127E
and G155E HA1 mutations observed as a pure population on HA binding properties, we
examined the affinity of the WT, LAN (P7), and P10 variants to four biotinylated
�2,6-sialylglycopolymers (6-Su-6=SLN, YDS, 6=SLN, and 6=SL) using a direct binding
assay (Fig. 5) (33, 34). Affinity for �2,3 glycans was not measured because the affinity
of the WT virus for these receptors was minimal (35). LAN (P7) containing the D127E
mutation exhibited a significant decrease in affinity (2.8-fold) to 6=SL compared to WT
(P � 0.01). In contrast, P10 with the double HA1 mutation, D127E and G155E, demon-
strated a statistically significant decrease in binding affinity to 6Su-6=SLN, YDS, and 6=SL
glycans compared to the WT virus (3.4-fold; P � 0.01) (Fig. 5).

Effect of NA mutations on susceptibility to NAIs and enzymatic activity. We
next examined the effect of the NA mutations found in our selected variants on
susceptibility to three NAIs, oseltamivir carboxylate, zanamivir, and laninamivir, using
an enzyme-based NA inhibition assay (Table 2). LAN (P7) carrying the E119G NA
mutation as a mixed population exhibited reduced inhibition by laninamivir (11.5-fold

FIG 5 HA receptor affinity of the WT, LAN (P7), and P10 variants. °, in color, P � 0.01, compared to WT
by one-way ANOVA. *, in black, P � 0.05; °, in black, P � 0.01, compared to LAN (P7) by one-way ANOVA.

TABLE 2 Sensitivity of selected A(H1N1)pdm09 variants to NAIsa

Virus
Passage
no.

Oseltamivir carboxylate Zanamivir Laninamivir

Laninamivir
(�M)

IFN-�1
(ng/ml) IC50 (nM)

Fold change
(phenotype) IC50 (nM)

Fold change
(phenotype) IC50 (nM)

Fold change
(phenotype)

WT 1.7 � 0.5 1.1 � 0.1 0.2 � 0.1
LAN (P5) 5 1.3 1.9 � 0.3 1.1 (S) 1.1 � 0.1 1.0 (S) 0.3 � 0.1 1.5 (S)
LAN (P7) 7 5.1 2.4 � 0.8 1.4 (S) 9.3 � 1.4 8.5 (S) 2.3 � 0.7 11.5 (RI)
LAN (P10) 10 50.0 2.9 � 0.2 1.6 (S) 1,158.5 � 218.5 1,053.2 (HRI) 67.8 � 2.1 339.0 (HRI)
LAN�IFN (P5) 5 1.3 0.3 5.7 � 0.1 3.4 (S) 934.6 � 45.5 849.6 (HRI) 50.3 � 2.6 251.5 (HRI)
LAN�IFN (P10) 10 50.0 0.3 2.5 � 0.4 1.5 (S) 1,287.5 � 99.7 1,170.5 (HRI) 52.1 � 4.0 260.5 (HRI)
P10 10 1.2 � 0.1 0.7 (S) 1.9 � 0.1 1.7 (S) 0.2 � 0.1 1.0 (S)
aViral sensitivities were determined by NA inhibition assay. The values were fit to nonlinear regression curves with the variable slope model to determine the IC50,
using GraphPad Prism. Values are means � standard deviation from two or more independent experiments. IC50-fold changes were calculated relative to the WT
virus. Phenotypes are described as follows: S, susceptible (�10-fold increase in IC50 compared to WT); RI, reduced inhibition (10- to 100-fold increase in IC50

compared to WT); HRI, highly reduced inhibition (	100-fold increase in IC50 compared to WT).
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increase in IC50) compared to WT. The LAN (P10), LAN�IFN (P5), and LAN�IFN (P10)
variants containing the E119G mutation demonstrated highly reduced inhibition by
zanamivir (�1,024-fold increase in IC50) and laninamivir (�284-fold increase in IC50)
compared to WT, but all three of these viral variants remained susceptible to oseltamivir
carboxylate. The P10 variant remained susceptible to all NAIs tested despite the
presence of the Y56C NA mutation (Table 2).

To evaluate the effect of the E119G NA mutation on NA enzymatic activity, a
fluorescence-based assay based on 2=-(4-methylumbelliferyl)�-D-N-acetylneuraminic acid
sodium salt hydrate (MUNANA) catalyzation was used to measure changes in the relative
enzymatic activity (Vmax), Michaelis-Menten constant (Km), and catalytic efficiency (kcat/Km)
of mutant NA compared to WT NA (Table 3). We observed a significant decrease in
enzymatic activity of LAN�IFN (P10) carrying the E119G mutation (Vmax ratio relative to
WT 
 0.2; P � 0.05). Moreover, LAN�IFN (P10) demonstrated a significantly reduced MU-
NANA affinity (37.6-fold) and catalytic efficiency (7.0-fold) compared to the WT virus.

Drug-drug interaction of laninamivir and IFN-�1. Due to the more rapid emer-
gence of drug-resistant NA mutations when the WT virus was passaged in the presence
of laninamivir plus IFN-�1 versus laninamivir alone (P2 versus P7), we examined
potential drug-drug interactions between laninamivir and IFN-�1 at concentrations
similar to those used for serial passaging in Calu-3 cells. We observed drug antagonism
(�2.04%) when 0.13 �M laninamivir was combined with 0.3 ng/ml IFN-�1 (Fig. 6). These
drug concentrations were equivalent to those used at P1.

TABLE 3 NA enzyme kinetics properties of purified influenza A(H1N1)pdm09 viruses

Virus Vmax (�M/min) Vmax ratioa Km (�M)b Kcat/Km (�M min)�1c

WT 5.2 � 0.7 1.0 203.7 � 71.4 7.7 � 2.8
LAN�IFN (P10) 1.1 � 0.8c 0.2c 7,666.0 � 843.2c 0.1 � 0.04c

aThe Vmax was calculated using nonlinear regression of the curve according to the Michaelis-Menten
equation, and then the ratio of the respective viruses’ NA Vmax to the Vmax of the wild-type CA virus was
determined.

bThe Km represents the Michaelis-Menten constant at which the reaction rate is half of Vmax. The enzyme
kinetic data were fit to the Michaelis-Menten equation using GraphPad Prism, version 7.0. Values are the
means � 95% confidence interval from 3 independent determinations.

cP � 0.05 compared with the value for WT by unpaired t test.

FIG 6 Three-dimensional plot showing the interaction of laninamivir and IFN-�1. Antagonism was calculated at a
99.9% confidence level.
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DISCUSSION

NAIs provide the front line of defense in the treatment of influenza virus infection.
However, drug-resistant mutants can arise either naturally or as a result of drug
pressure imposed by the clinical use of NAIs. Therefore, it is important to identify
additional novel therapeutic options in case drug-resistant virus variants arise. Combi-
nation therapy with two or more antiviral agents has been considered a potential
option for influenza treatment. However, the clinical results derived from combination
treatment with two or more antiviral drugs have been variable. In this study, we
evaluated the effectiveness of laninamivir combined with IFN-�1 against the emer-
gence of A(H1N1)pdm09 drug-resistant variants.

We observed that laninamivir used as a single drug or in combination with IFN-�1
promoted emergence of the E119G NA mutation, which correlated with significantly
reduced susceptibility to laninamivir and zanamivir (i.e., 283.7- and 1,024.4-fold de-
creases, respectively) in Calu-3 cells. These results are consistent with similar findings
reported by Samson et al., which showed that the E119G NA mutation was associated
with significantly decreased sensitivity of the A/Quebec/144147/2009 [A(H1N1)pdm09]
influenza virus to laninamivir and zanamivir (8). The amino acid residue at position 119
is the key NA residue in the influenza virus that determines susceptibility to laninamivir
and zanamivir. Both laninamivir and zanamivir contain a 4-guanidino group, which
forms hydrogen bonds with the viral NA glutamic acid at this position. Therefore, amino
acid changes at residue 119 can lead to reduced NA binding by both NAIs (36).
Moreover, the E119G NA mutation was also shown to confer resistance to peramivir
because of the guanidino group in this drug (8). In contrast to the three NAIs discussed
above (i.e., laninamivir, zanamivir, and peramivir), oseltamivir contains an acetamide
group instead of guanidine, which explains the high sensitivity of our selected variants
containing the E119G mutation to this NAI.

Amino acid changes at residue 119, i.e., E119A/G/K/V, were shown previously to
reduce NA activity and decrease viral replication in vitro (37). A(H1N1)pdm09 virus with
the E119G mutation demonstrated significantly reduced NA activity and decreased viral
fitness and transmissibility in ferrets (38). The E119G NA mutation evolved alone or in
combination with H275Y in an immunocompromised infant who was infected with
A(H1N1)pdm09 virus and then treated with oseltamivir and zanamivir. This double
E119G/H275Y change was associated with highly reduced inhibition by four different
NAIs (39). Analysis of the E119G mutation frequency indicated that the emergence of
this NA substitution is a rare event (e.g., only 0.4% was observed in 2014). However, if
this amino acid change emerges alone or in conjunction with H275Y in circulating
viruses, such an influenza strain could display resistance to either three or all four of the
NAIs that are currently available for treatment of influenza virus infection (10, 11).

Three HA mutations, D127E, T197A, and D222G, were observed in all variants
passaged in the presence of laninamivir alone or laninamivir plus IFN-�1. Interestingly,
the emergence of the D127E HA1 mutation preceded acquisition of the E119G NA
mutation in the presence of laninamivir. This mutation appeared five passages earlier
than E119G under laninamivir selective pressure and was conserved throughout the
drug-mediated selection process. The T197A and D222G HA1 substitutions were se-
lected more rapidly by the combination treatment (P2 and P3, respectively) than by the
single-drug pressure (P10). The D127E HA1 mutation correlated with a significant
decrease in 6=SL binding affinity of the WT virus and has been shown to contribute to
more efficient and prolonged viral replication of A/California/04/09 [A(H1N1)pdm09]
virus in the lungs of experimentally infected mice (40). The D222G mutation, associated
with the HA receptor binding site and mapped to the antigenic site Ca (41), conferred
enhanced virulence to A(H1N1)pdm09 virus via increased binding affinity to �2,3 sialyl
receptors while maintaining �2,6 specificity (42). Moreover, the D222G HA1 mutation
was associated with higher viral titers in Calu-3 cells (43) and more prolonged hospi-
talization of patients (44). This mutation was also associated with a higher frequency of
severe and fatal cases (44). Taking into account the balance between the functions of

Adams et al. Antimicrobial Agents and Chemotherapy

July 2020 Volume 64 Issue 7 e00301-20 aac.asm.org 8

https://aac.asm.org


the HA and NA glycoproteins (45), we surmise that the mechanism of in vitro laninami-
vir resistance involves compensating HA mutation(s) that modify virus binding to its
cognate cell surface receptors. These changes would result in increased efficiency of
viral release from infected cells with less dependence on the reduced NA function.

To monitor the emergence of amino acid changes associated with adaptation of the
WT virus to growth in Calu-3 cells, we passaged the parental virus in parallel in the
absence of any selective pressure by antivirals. Two mutations in the HA1 protein
(D127E and G155E) and one mutation in the NA protein (Y56C) were associated with
adaptation of the parental A(H1N1)pdm09 virus to growth in respiratory epithelial cells.
We showed previously that the G155E mutation located within the Sa antigenic site is
necessary for the enhanced growth of the A/California/04/09 [A(H1N1)pdm09] virus
both in vitro in Calu-3 cells and in vivo in mice (43, 46). Further characterization of the
receptor specificity of the P10 variant revealed that the G155E HA1 substitution was
associated with a significant decrease in binding to �2,6 glycans, i.e., 6Su-6=SLN, YDS,
and 6=SL. It is likely that the observed HA1 changes (D127E and G155E) in the P10
variant contributed to the increased ability of the parental virus to infect and spread in
mammalian respiratory epithelium.

It was shown previously by others that certain ISGs can enhance virus infectivity (47,
48). The ISG, LY6E, is a member of the LY6-uPAR family that was found to promote HIV-1
virus entry in human cells (47). Moreover, Mar et al. demonstrated that LY6E is also able
to promote A/WSN/33 (H1N1) influenza virus entry and uncoating in human airway
epithelial cells (48). Based on these findings, one can speculate that combination
antiviral drug therapy could trigger proviral ISGs and/or host factors that might explain
the antagonistic interaction between laninamivir and IFN-�1 that we observed in this
study. Additional studies will be necessary to identify and measure the expression of
proviral ISGs that might be induced by treatment with laninamivir alone or laninamivir
in combination with IFN-�1. Such studies might help to determine if the induction of
one or more proviral ISGs accounts for the more rapid emergence of HA and NA
mutations after treatment with laninamivir plus IFN-�1 versus laninamivir alone.

In summary, our results show that resistance to NAIs can be induced by extended
exposure to laninamivir alone or laninamivir in combination with IFN-�1. Development
of antiviral drug resistance in Calu-3 cells correlated with acquisition of the E119G NA
mutation and was associated with decreased NAI sensitivity and enzyme catalytic
activity. This NA mutation emerged together with concomitant HA mutations that
modify virus receptor-binding affinity. These observations highlight a critical interrela-
tionship between the HA and NA proteins. The identification of HA/NA mutation
patterns that confer resistance to NAIs may help to predict clinical cases of antiviral
drug resistance. Therefore, our finding that combined treatment with laninamivir
plus IFN-�1 induced stronger HA and NA mutation pressure than laninamivir alone
indicates that this combination may be less effective than using either agent alone
in vivo. Caution should be exercised when considering the possibility of combined
therapy with this NAI together with recombinant IFN in the treatment of influenza
virus infection.

MATERIALS AND METHODS
Cells, viruses, and compounds. The MDCK and Calu-3 cell lines were obtained from the American

Type Culture Collection (Manassas, VA, USA) and were maintained as described previously (31, 49).
Human influenza A/California/04/09 [A(H1N1)pdm09] virus was kindly provided by Robert G. Webster

(St. Jude Children’s Research Hospital, Memphis, TN, USA). Stock virus was prepared by one passage in
the allantoic cavities of 10-day-old embryonated chicken eggs for 48 h at 37°C, and aliquots were stored
at �70°C until use. Stock viruses of six selected variants [i.e., LAN (P5), LAN (P7), LAN (P10), LAN�IFN (P7),
LAN�IFN (P10), and P10] were prepared in Calu-3 cells. All experimental work was performed in a
biosafety level 2 laboratory approved for use of these strains by the U.S. Department of Agriculture and
the U.S. Centers for Disease Control and Prevention.

Human recombinant IFN-�1 protein was obtained from R&D Systems, Inc. (Minneapolis, MN, USA).
Oseltamivir carboxylate was provided by Roche Diagnostics GmbH (Mannheim, Germany). Zanamivir was
obtained from Sigma-Aldrich (St. Louis, MO, USA). Laninamivir was provided by Daiichi Sankyo Co., Ltd.
(Tokyo, Japan).
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Infectivity of A(H1N1)pdm09 influenza viruses. The infectivity of WT and selected variants was
determined by at least three or four independent plaque assays (50). Briefly, confluent cultures of MDCK
cells were incubated at 37°C for 1 h with 10-fold serial dilutions of each virus prepared in infection
medium (i.e., minimal essential medium [MEM] containing 4% bovine serum albumin [BSA], sodium
bicarbonate, 100 U of penicillin per ml, and 1 �g/ml L-[tosylamido-2-phenyl]ethylchloromethylketone
[TPCK]-treated trypsin). The cells were then washed and overlaid with MEM containing 0.3% BSA, 0.9%
Bacto agar, and 1 �g/ml TPCK-treated trypsin. After 3 days of incubation at 37°C, the cells were stained
with 0.1% crystal violet in 10% formaldehyde solution. The number of PFU per milliliter and plaque size
of any 10 plaques were determined using a Finescale magnifying comparator.

Virus yield reduction assay. The extracellular virus yield reduction assay was performed as de-
scribed previously in 24-well plates containing confluent Calu-3 cells (26). The concentrations of IFN-�1
ranged from 0.01 to 10 ng/ml (the 50% cytotoxic concentration for IFN-�1 is 	1,000 ng/ml), and cells
were pretreated with IFN-�1 overnight (31). The concentrations of laninamivir ranged from 0.001 to
10 �M, and cells were pretreated with laninamivir for 2 h. After pretreatment, the cells were infected with
influenza virus (100 �l/well) at a multiplicity of infection (MOI) of 0.01 PFU/cell for 1 h and then incubated
in a drug-containing medium for 72 h at 37°C. Virus yields were determined as the number of PFU/ml
in MDCK cells. The drug concentration that caused a 50% decrease in the PFU titer in comparison to
control wells without drug was defined as the EC50. The results of two independent experiments, each
consisting of two replicates, were averaged.

Virus yield reduction assay was also performed for synergy/antagonism determination for laninamivir
combined with IFN-�1 in Calu-3 cells. Briefly, cells were pretreated overnight with 0, 0.03, 0.3, and
3 ng/ml concentrations of IFN-�1. Laninamivir was added for 2 h pretreatment at concentrations of 0,
0.13, 1.3, and 10.3 �M. Cells were then infected with WT at an MOI of 0.01 PFU/cell for 1 h, followed by
3-day incubation with media containing the combination of laninamivir and IFN-�1. Virus yields were
determined by plaque assay in MDCK cells. Values are the mean of two independent experiments, each
consisting of two replicates.

Measurement of ISG expression. Quantification of changes in ISG gene expression was carried out
by qPCR measurement of individual ISGs, IFIT3, OAS1, IRF7, IFIT1, MX1, IRF3, and CXCL10. Total cellular RNA
was isolated from Calu-3 cells stimulated with 0, 0.3, 3, and 30 ng/ml IFN-�1 for 24 h using RNeasy minikit
(Qiagen, Germantown, MD, USA). The RNA samples were then treated with DNase, and 1.6 �g of each
purified RNA sample was then reverse transcribed to cDNA with Quantiscript reverse transcriptase
(Qiagen). The cDNAs were mixed with RT2 SYBR green qPCR mastermix (Qiagen), and qPCR analyses were
performed using the ViiA 7 instrument (Applied Biosystems, Waltham, MA, USA). Graphing and statistical
analysis of the qPCR results were performed using Prism 7.0 (GraphPad Software, La Jolla, CA, USA).
Values are the means of three independent determinations. No changes in IRF3 or CXCL10 gene
expression were observed in Calu-3 cells after treatment with 0, 0.3, 3, or 30 ng/ml IFN-�1 for 24 h.

Viral replication kinetics. To determine multistep growth curves, Calu-3 cells were infected with the
A(H1N1)pdm09 viruses at an MOI of 1 PFU/cell. After incubation for 1 h, the cells were washed and
overlaid with MEM containing 0.3% BSA and 1 �g/ml TPCK-treated trypsin. The supernatants were
collected at 24, 48, and 72 hpi and stored at �80°C until titration. The results of at least two or three
independent experiments were averaged.

Virus sequence analysis. Viral RNAs were isolated from virus-containing cell culture fluid after
passages in Calu-3 cells. Samples were reverse transcribed and analyzed by PCR using universal primers
specific for influenza gene segments as described previously (51). Sequencing was performed by the
Research Central Facility for Biotechnology Resources at the U.S. Food and Drug Administration, Silver
Spring, MD. DNA sequences were completed and edited by using a Lasergene sequence analysis
software package (DNASTAR, Madison, WI, USA).

Receptor-binding assay. The affinity for biotinylated 6=-glycans was measured in a direct binding
assay as described previously (33–35). Briefly, plates were precoated with each virus at 4°C for 16 h,
followed by washing with 0.05% Tween 20 in phosphate-buffered saline (PBS). After the addition of
biotinylated sialylglycopolymer in PBS supplemented with 0.02% Tween 20, 0.02% BSA, and 3 mM
oseltamivir carboxylate, plates were incubated at 4°C for 1 h. Plates were then washed with cold
PBS-Tween 20 and incubated with streptavidin-peroxidase (Sigma-Aldrich) at 4°C for 1 h. After washing,
tetramethylbenzidine (TMB) substrate solution (KPL, Gaithersburg, MD, USA) was added, and the reaction
was stopped with TMB stop solution (KPL). Optical density was determined at 450 nm with a Synergy 2
multimode microplate reader (BioTek Instruments, Winooski, VT, USA). The association constant (Ka;
1/�M sialic acid) values were determined by fitting the data to the one site-total binding equation by
using nonlinear regression in Prism 7.0 software (GraphPad Software). The reported data represent the
mean of at least four individual and independent experiments for each virus.

Virus purification. Allantoic fluid was clarified by low-speed centrifugation. The WT and LAN�IFN
(P10) viruses were pelleted and then purified through 27% and 49% (wt/vol) sucrose cushions. Virus-
containing bands were pelleted and stored in PBS at �80°C until use. NA concentrations were deter-
mined by optical densitometry of the SDS-PAGE gel images, and total protein content was determined
by bicinchoninic acid protein assay (Pierce Biotechnology, Rockford, IL, USA).

NA enzyme inhibition assay. Influenza viruses were standardized to equivalent NA activity and
incubated for 30 min at 37°C with NAIs at concentrations of 0.0001 to 5 �M and with MUNANA
(Sigma-Aldrich) as a substrate for 1 h at 37°C. The reaction was then terminated by adding 14 mM NaOH,
and fluorescence was quantified in a Synergy 2 multimode microplate reader. The IC50 concentration of
each NAI was determined by plotting the dose-response curve of inhibition of NA activity as a function
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of the compound concentration. Values represent the mean of at least two independent experiments,
each consisting of two or three replicates.

NA enzyme activity. The NA activity of influenza viruses was measured by a fluorescence-based
assay using the fluorogenic substrate MUNANA (Sigma-Aldrich), based on the method of Potier et al. (52)
as described previously (32). Briefly, all viruses were standardized to an equivalent NA protein content of
0.2 ng/�l as determined by protein gel electrophoresis using purified and concentrated viruses. This virus
dilution was selected as a dilution that converted �15% MUNANA substrate to product during the
reaction time to meet the requirements for steady-state kinetic analysis (53). Virus dilutions were
prepared in enzyme buffer (32.5 mM 2-[N-morpholino]ethanesulfonic acid, 4 mM calcium chloride, pH
6.5) and added (100 �l/well) in duplicate to a flat-bottom 96-well opaque black plate (Corning, Tewks-
bury, MA, USA). After preincubation for 20 to 30 min at 37°C, the MUNANA substrate at various
concentrations (separately preincubated for 20 to 30 min at 37°C) was added to all wells (50 �l/well).
Immediately after adding the MUNANA substrate, the plate was transferred to a 37°C prewarmed
Synergy 2 multimode microplate reader, and fluorescence was measured every 60 s for 60 min at
37°C, using excitation and emission wavelengths of 360 nm and 460 nm, respectively. Time course
data from each concentration of the MUNANA substrate were examined for linearity by linear
regression analysis. The kinetic parameters Michaelis-Menten constant (Km), maximum velocity of
substrate conversion (Vmax), and catalytic efficiency (kcat/Km) of the NAs were calculated by fitting the
data to the appropriate Michaelis-Menten equations by using nonlinear regression in Prism 7.0
software (GraphPad Software). Values represent the means of at least two to four individual and
independent determinations.

Statistical analysis and synergy determinations. ISG expression values, virus yield, plaque size,
binding to sialyl receptors, IC50 values, and NA enzyme kinetic parameters (Km, Vmax, and kcat/Km) of the
WT and selected variants were compared by unpaired t test or analysis of variance (ANOVA). Probability
values �0.05 indicate statistically significant differences.

The combination data were analyzed with MacSynergy II software (54). Theoretical additive interac-
tions were calculated from dose-response curves for each drug used individually. This calculated additive
surface was then subtracted from the experimentally determined dose-response surface to give regions
of nonadditive interactions. The confidence intervals around the experimental dose-response surface
were used to evaluate the data statistically, and the volume of peaks was calculated and used to quantify
the volume of synergy (or antagonism) produced. The guidelines for volumes of synergy determinations
expressed as unit2% (unit � unit � percent) at a 99.9% confidence level were as follows: 0 to 25,
insignificant; 25 to 50, minor but significant; 50 to 100, moderate; 	100, strong synergy or antagonism.
Synergy plots were generated at the 99.9% confidence limit.

Data availability. Sequences have been deposited in GenBank under accession numbers MT423008
to MT423014.
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