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ABSTRACT Clostridium (Clostridioides) difficile causes toxin-mediated diarrhea and
pseudomembranous colitis, primarily among hospital inpatients. Outbreaks of C. dif-
ficile infection (CDI) have been caused by strains with acquired antimicrobial resis-
tance, particularly fluoroquinolone resistance, including C. difficile ribotype (RT) 027
in North America and Europe and RT 017, the most common strain in Asia. Despite
being the most common cause of hospital-acquired infection in high-income coun-
tries, and frequent misuse of antimicrobials in Asia, little is known about CDI in the
Asia-Pacific region. We aimed to determine the antimicrobial susceptibility profiles of
a collection of C. difficile isolates from the region. C. difficile isolates (n � 414) from a
2014 study of 13 Asia-Pacific countries were tested for susceptibility to moxifloxacin,
amoxicillin-clavulanate, erythromycin, clindamycin, rifaximin, metronidazole, van-
comycin, and fidaxomicin according to the Clinical and Laboratory Standards Insti-
tute’s agar dilution method. All isolates were susceptible to metronidazole, van-
comycin, amoxicillin-clavulanate, and fidaxomicin. Moxifloxacin resistance was detected
in all countries except Australia, all RT 369 and QX 239 strains, and 92.7% of RT 018
and 70.6% of RT 017 strains. All C. difficile RT 012, 369, and QX 239 strains were also
resistant to erythromycin and clindamycin. Rifaximin resistance was common in RT
017 strains only (63.2%) and was not detected in Australian, Japanese, or Singapor-
ean isolates. In conclusion, antimicrobial susceptibility of C. difficile varied by strain
type and by country. Multiresistance was common in emerging RTs 369 and QX 239
and the most common strain in Asia, RT 017. Ongoing surveillance is clearly war-
ranted.
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Clostridium (Clostridioides) difficile, the most common cause of health care-associated
infections in high-income countries (1), imposes a heavy burden on national health

care systems (2, 3). C. difficile opportunistically infects the gut, causing toxin-mediated
diarrhea when the commensal microflora is perturbed, most often due to antimicrobial
use. The capability of C. difficile to produce spores that can withstand many disinfec-
tants allows it to survive in health care facility environments, often infecting older
patients with a range of comorbidities, and recurrent infections are common due to
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slow recovery of the gut microflora following antimicrobial treatment. Infection with C.
difficile can lead to life-threatening complications, including pseudomembranous coli-
tis, septic shock, and toxic megacolon, and C. difficile-attributable mortality rates
generally range from 4 to 7% (2, 4).

C. difficile is intrinsically resistant to �-lactam antibiotics (5), and many C. difficile
strains have acquired resistance to a range of other antimicrobials, including the
macrolide clindamycin and fluoroquinolones (6). Acquiring new resistance capabilities
enables C. difficile strains to emerge and spread, both locally and internationally. For
instance, acquired fluoroquinolone resistance via a Thr82Ile mutation in DNA gyrase
subunit A was one of the main driving factors in the global dissemination of the
epidemic C. difficile strain ribotype (RT) 027 (7), which caused some of the most
significant outbreaks of C. difficile infection (CDI) to date, particularly in North America
and Europe (7). Similarly, C. difficile RT 017, the predominant C. difficile strain circulating
in Asia (8) and a common strain worldwide (9–11), is frequently resistant to clindamycin
and fluoroquinolones, a feature that has most likely contributed to its global promi-
nence (12).

In many Asian countries, antimicrobial consumption rates in both humans and
animals are among the highest in the world (13, 14), and antimicrobial usage is
frequently inappropriate due to unrestricted availability without prescriptions (13).
Antimicrobial resistance is escalating among many pathogens, including Staphylococ-
cus aureus, Escherichia coli, Streptococcus pneumoniae, and Neisseria gonorrhoeae in
Asia, particularly in Southeast Asia, but often is poorly monitored (15).

Despite the substantial inappropriate use of antimicrobials in Asia and documented
antimicrobial resistance of other pathogens, the epidemiology of CDI is largely under-
investigated due to poor awareness and inadequate testing practices in many Asian
hospitals (8). The pooled prevalence of CDI among all patients with diarrhea in Asia was
calculated at 14.8%, with an estimated incidence of 5.3 cases/10,000 patient days (16).
Overall, the burden of CDI appears to be lower in Asian countries than in other regions,
with rare occurrences of pseudomembranous colitis (PMC) and toxic megacolon and
lower rates of recurrent CDI (17). As mentioned above, the most common strain in Asia,
RT 017, frequently is reported as resistant to clindamycin and fluoroquinolones (18). In
addition to RT 017, other common C. difficile strains circulating frequently in Asia are
often reported as resistant to these agents. These include RTs 018, 002, and 369 (19–21).

A possible explanation for the less severe burden of CDI in Asia is the documented
high prevalence in China and Southeast Asia (22–25) of nontoxigenic C. difficile strains,
which are incapable of causing CDI. Elsewhere in Asia, the prevalence of nontoxigenic
strains is also likely to be high; however, they are not detected and/or confirmed as
nontoxigenic unless culture and PCR for toxin genes are performed, and many labo-
ratories lack anaerobic culture facilities. Even if nontoxigenic strains are detected, they
may not be reported in publications since they do not cause disease; however, they can
also carry antimicrobial resistance genes and thus could contribute to horizontal
transfer of these genes to toxigenic strains (26).

This study aimed to evaluate the antimicrobial susceptibility profiles of a collection
of C. difficile isolates from a prospective study performed in 2014 in 13 Asia-Pacific
countries (17).

RESULTS

All isolates were susceptible to metronidazole (MIC50 � 0.25 mg/liter), vancomycin
(MIC50 � 1 mg/liter), fidaxomicin (MIC50 � 0.125 mg/liter), and amoxicillin-clavulanate
(MIC50 � 0.5 mg/liter [Table 1]). Resistance to clindamycin was most common (80.7%;
MIC50 � 32 mg/liter) overall, followed by erythromycin (55.3%; MIC50 � 256 mg/liter)
and moxifloxacin (44.4%; MIC50 � 2 mg/liter), while resistance to rifaximin was least
common (15.5%; MIC50 � 0.03 mg/liter [Table 1]).

Resistance rates were highest among C. difficile RTs 017, 018, 369, and QX 239. RT
017 isolates had high rates of resistance to clindamycin (94.1%; MIC50 � 32 mg/liter),
erythromycin (86.8%; MIC50 � 256 mg/liter), and moxifloxacin (70.6%; MIC50 � 32 mg/
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TABLE 1 MIC data for eight antimicrobials against C. difficile isolates from the Asia-Pacific region, by ribotype

Ribotype Antimicrobiala

No. (%)
resistant

MIC (mg/liter)

Geometric meanRange 50% 90%

All (n � 414) FDX 0 0.004 to 0.5 0.125 0.25 0.10
VAN 0 0.25 to 4b 1 2 1.44
MTZ 0 0.015 to 2 0.25 0.25 0.22
RFX 64 (15.5) 0.0005 to �32 0.03 �32 0.07
CLI 334 (80.7) 0.015 to �32 �32 �32 12.87
ERY 229 (55.3) 0.03 to �256 �256 �256 23.75
AUG 0 0.03 to 8 0.5 1 0.66
MXF 184 (44.4) 0.5 to �32 2 32 6.17

RT 017 (n � 68) FDX 0 0.004 to 0.25 0.125 0.25 0.11
VAN 0 0.5 to 2 1 2 1.06
MTZ 0 0.015 to 2 0.25 0.25 0.19
RFX 46 (67.7) 0.008 to �32 �32 �32 3.47
CLI 64 (94.1) 0.06 to �32 �32 �32 21.93
ERY 59 (86.8) 0.5 to �256 �256 �256 116.78
AUG 0 0.25 to 2 1 1 0.80
MXF 48 (70.6) 2 to �32 32 32 14.16

RT 014/020 (n � 45) FDX 0 0.03 to 0.5 0.125 0.25 0.13
VAN 0 0.5 to 2 2 2 1.47
MTZ 0 0.06 to 0.5 0.25 0.25 0.23
RFX 0 0.015 to 0.03 0.03 0.03 0.03
CLI 30 (66.7) 0.015 to 8 8 8 4.45
ERY 2 (4.4) 0.03 to �256 2 2 1.64
AUG 0 0.25 to 8 0.5 1 0.64
MXF 4 (8.9) 0.5 to 32 2 4 2.48

RT 018 (n � 41) FDX 0 0.03 to 0.5 0.06 0.125 0.08
VAN 0 1 to 4b 2 2 1.80
MTZ 0 0.125 to 0.5 0.25 0.25 0.23
RFX 3 (7.3) 0.015 to �32 0.015 2 0.03
CLI 39 (95.1) 1 to �32 �32 �32 25.99
ERY 38 (92.7) 1 to �256 �256 �256 174.85
AUG 0 0.25 to 1 1 1 0.74
MXF 38 (92.7) 2 to �32 32 32 24.68

RT 002 (n � 38) FDX 0 0.015 to 0.25 0.125 0.25 0.09
VAN 0 1 to 4b 2 2 1.49
MTZ 0 0.06 to 0.5 0.25 0.25 0.22
RFX 1 (2.6) 0.015 to �32 0.03 0.03 0.03
CLI 26 (68.4) 0.5 to �32 8 �32 9.43
ERY 15 (39.5) 0.25 to �256 2 �256 10.14
AUG 0 0.25 to 1 1 1 0.73
MXF 18 (47.4) 2 to �32 4 �32 7.30

RT 012 (n � 20) FDX 0 0.03 to 0.125 0.125 0.125 0.09
VAN 0 1 to 4b 2 2 2.00
MTZ 0 0.125 to 0.25 0.25 0.25 0.24
RFX 0 0.015 to 0.125 0.015 0.03 0.02
CLI 20 (100.0) 8 to �32 �32 �32 28.84
ERY 20 (100.0) 256 to �256 �256 �256 256.00
AUG 0 0.5 to 1 0.5 1 0.62
MXF 5 (25.0) 1 to 16 2 16 3.03

RT 369 (n � 17) FDX 0 0.03 to 0.25 0.125 0.25 0.10
VAN 0 1 1 1 1.00
MTZ 0 0.125 to 0.25 0.25 0.25 0.21
RFX 0 0.015 to 0.25 0.03 0.03 0.02
CLI 17 (100.0) �32 �32 �32 32.00
ERY 17 (100.0) �256 �256 �256 1.00
AUG 0 0.5 to 2 1 1 0.82
MXF 17 (100.0) 8 to �32 16 �32 18.83

QX 239 (n � 15) FDX 0 0.015 to 0.06 0.03 0.06 0.04
VAN 0 0.5 to 4b 1 4 1.45

(Continued on next page)
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liter), and 67.7% were resistant to rifaximin (MIC50 � 32 mg/liter). RT 018 isolates were
almost all resistant to erythromycin (92.7%; MIC50 � 256 mg/liter) and moxifloxacin
(92.7%; MIC50 � 32 mg/liter) and clindamycin (95.1%; MIC50 � 32 mg/liter), and 7.3%
were resistant to rifaximin (MIC50 � 0.015 mg/liter [Table 1]). C. difficile RT 369 and QX
239 isolates were all resistant to clindamycin, erythromycin, and moxifloxacin (MIC50 �

32 mg/liter, MIC50 � 256 mg/liter, and MIC50 � 16 mg/liter, respectively, for RT 369, and
MIC50 � 32 mg/liter, MIC50 � 256 mg/liter, and MIC50 � 32 mg/liter, respectively, for QX

TABLE 1 (Continued)

Ribotype Antimicrobiala

No. (%)
resistant

MIC (mg/liter)

Geometric meanRange 50% 90%

MTZ 0 0.06 to 0.25 0.25 0.25 0.18
RFX 0 0.008 to 0.03 0.015 0.03 0.02
CLI 15 (100.0) 32 to �32 �32 �32 32.00
ERY 15 (100.0) �256 �256 �256 256.00
AUG 0 0.5 to 2 1 1 0.87
MXF 15 (100.0) 16 to �32 32 32 30.55

QX 032 (n � 15) FDX 0 0.03 to 0.25 0.125 0.25 0.09
VAN 0 0.25 to 2 1 2 0.95
MTZ 0 0.125 to 0.25 0.25 0.25 0.22
RFX 0 0.0005 to 0.03 0.03 0.03 0.02
CLI 11 (73.3) 0.03 to �32 �32 �32 13.26
ERY 11 (73.3) 0.03 to �256 �256 �256 48.37
AUG 0 0.03 to 1 0.5 1 0.48
MXF 0 2 to 4 2 2 2.00

RT 001 (n � 13) FDX 0 0.03 to 0.25 0.03 0.06 0.04
VAN 0 1 to 4b 2 4 1.90
MTZ 0 0.125 to 0.25 0.25 0.25 0.24
RFX 0 0.015 to 0.03 0.03 0.03 0.02
CLI 7 (53.9) 0.5 to �32 �32 �32 11.02
ERY 7 (53.9) 1 to �256 �256 �256 20.89
AUG 0 0.25 to 1 0.5 0.5 0.43
MXF 5 (38.5) 1 to �32 2 32 4.95

RT 106 (n � 12) FDX 0 0.03 to 0.5 0.25 0.5 0.15
VAN 0 1 to 2 1 2 1.33
MTZ 0 0.125 to 0.25 0.25 0.25 0.24
RFX 0 0.03 0.03 0.03 0.03
CLI 8 (66.7) 4 to �32 8 �32 8.00
ERY 3 (25.0) 1 to �256 1 �256 4.76
AUG 0 0.5 to 1 0.5 1 0.57
MXF 2 (16.7) 2 to 32 2 32 3.36

RT 046 (n � 11) FDX 0 0.03 to 0.25 0.125 0.125 0.16
VAN 0 1 to 4b 2 4 1.41
MTZ 0 0.125 to 0.5 0.25 0.5 0.25
RFX 0 0.015 to 0.125 0.015 0.03 0.03
CLI 11 (100.0) 8 to �32 �32 �32 8.98
ERY 10 (90.9) 1 to �256 �256 �256 7.55
AUG 0 0.5 to 1 1 1 0.63
MXF 4 (36.4) 1 to 32 2 16 3.17

Others (n � 119) FDX 0 0.015 to 0.25 0.125 0.25 0.10
VAN 0 0.5 to 4b 2 4 1.49
MTZ 0 0.125 to 0.5 0.25 0.25 0.23
RFX 13 (10.9) 0.015 to �32 0.03 �32 0.05
CLI 86 (72.3) 0.5 to �32 8 �32 8.11
ERY 32 (26.9) 0.25 to �256 2 �256 5.56
AUG 0 0.25 to 2 0.5 1 0.57
MXF 28 (23.5) 0.5 to �32 2 32 3.28

aAbbreviations: FDX, fidaxomicin; VAN, vancomycin; MTZ, metronidazole; RFX, rifaximin; CLI, clindamycin; ERY, erythromycin; AUG, amoxicillin-clavulanate; MXF,
moxifloxacin.

bIsolates with MICs of �2 mg/liter by agar dilution were further tested for vancomycin susceptibility by Etest and confirmed as susceptible. Values reported here are
for agar dilution only.
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239) (Table 1). Intermediate vancomycin resistance (MIC � 4 mg/liter) was found in 27
isolates.

Summaries of country- and RT-specific resistance for clindamycin, rifaximin, moxi-
floxacin, and erythromycin are shown in Fig. 1. Clindamycin resistance was found in the
majority of isolates across all countries. Moxifloxacin resistance was most frequently
found in Japan (93.5%), Indonesia (85.7%), Republic of Korea (64.0%), China (52.3%),
Thailand (50.0%), Philippines (44.4%), Hong Kong (33.3%), Singapore (31.8%), and
Taiwan (22.7%), in RT QX 239 (100.0%), 369 (100.0%), 018 (92.7%), 017 (70.6%), 002
(47.4%), 001 (38.5%), and 046 (36.4%) isolates (Fig. 1 and Table 1). No moxifloxacin
resistance was detected in isolates from Australia. Rifaximin resistance was mainly
found in RT 017 (67.7%) and some RT 018 (7.3%), 002 (2.6%), and 027 (100.0%) isolates
and was not detected in isolates from Australia, Japan, or Singapore (Fig. 1 and

FIG 1 Numbers of susceptible (S), intermediate (I), and resistant (R) isolates and geometric mean MIC by ribotype and country or region
for clindamycin (CLI), rifaximin (RFX), moxifloxacin (MXF), and erythromycin (ERY). AUS, Australia; CHN, China; HKG, Hong Kong; IDN,
Indonesia; MYS, Malaysia; PHL, Philippines; JPN, Japan; KOR, Republic of Korea; SGP, Singapore; TWN, Taiwan; THA, Thailand; VNM, Vietnam.
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Table 1). Erythromycin resistance was found in isolates from all study countries and in
the majority of isolates from Vietnam (85.7%), Japan (82.6%), Indonesia (71.4%), Re-
public of Korea (70.8%), China (63.6%), Philippines (55.6%), Thailand (55.3%), and Hong
Kong (50.0%) (Fig. 1).

Mean cumulative resistance scores varied for study countries. The overall mean
score was 4.23. Australia (2.58) and Singapore (2.66) had the lowest scores, followed by
Hong Kong (3.67) and Taiwan (3.27). The highest scores were found in Indonesia and
Malaysia (6.71 and 8.00, respectively [see Fig. S1 in the supplemental material]).

DISCUSSION

The C. difficile isolate collection tested in this study was diverse, comprising a broad
array of 79 different RTs representing the most common RTs circulating in Asia-Pacific
countries. Various susceptibilities to the agents tested were found across different RTs
and between countries. Overall, rates of resistance to clindamycin were highest (80.7%
of all isolates), followed by erythromycin (55.3%) and moxifloxacin (44.4%), and a
minority of strains was resistant to rifaximin (15.5% [Table 1]).

Some of the most common C. difficile strains in the study isolate collection showed
resistance to three or more agents. All RT 369 and QX 239 isolates, and 92.7% of RT 018
isolates, were resistant to �3 agents (clindamycin, moxifloxacin, and erythromycin
[Table 1]). For RT 017, the most common strain in the collection, 66.1% of isolates were
resistant to three agents, and 61.8% were resistant to four agents (clindamycin,
erythromycin, moxifloxacin, and rifaximin). Multiresistance to these agents likely has
contributed to these strains’ predominance in the Asia-Pacific region.

Rifaximin resistance varied by country, was not detected in Australia, Singapore, or
Japan (Fig. 1), and was primarily found in RT 017 isolates (Table 1). Rifampin, a
derivative of rifaximin, is one of the most commonly used antituberculosis agents
worldwide and is typically used as long-term therapy, placing a substantial selective
pressure for developing resistance. High prevalence of C. difficile RT 017 has been
reported previously for tuberculosis patients in South Africa (11). The high prevalence
of tuberculosis in Southeast Asian countries (27) may contribute to rifaximin resistance
and may even contribute to the predominance of RT 017 in particular in these
countries. Rapid emergence of rifaximin and rifampin resistance following treatment
with rifaximin has been demonstrated many times for S. aureus and has also been
shown in patients infected with C. difficile (28–30). Tuberculosis is rare in Australia,
Singapore, and Japan, where rifaximin resistance was not detected in the current study,
and supports the theory that rifaximin resistance in C. difficile may have emerged in
regions where tuberculosis is more prevalent and rifaximin and rifampin are used more
frequently for treatment of tuberculosis. In fact, Japan only introduced rifaximin in 2016
(31).

Infection with QX 239 was previously significantly associated with outcome of
recurrent CDI in this study (17). With PCR ribotyping, QX 239 gives a banding pattern
similar to that of RT 018, differing by one band (17), and corresponds to smz’ in other
reports from Japan (H. Kato, personal communication). It was isolated from one site
only in the current study, and all QX 239 isolates were resistant to clindamycin,
moxifloxacin, and erythromycin, which likely contributed to their association with
recurrent infection. These isolates also demonstrated reduced susceptibility to vanco-
mycin by agar dilution (MIC90 � 4 mg/liter [Table 1]); however, by Etest they had MICs
of �2 mg/liter.

Meta-analysis suggests that MICs for both vancomycin and metronidazole are
increasing (32), which is a cause of major concern since these are the two primary
agents used to treat CDI cases. New antimicrobial agents for treatment of CDI have
narrow-spectrum activity, targeting C. difficile while conserving the gut microflora, thus
reducing the risk of recurrent infection. Fidaxomicin, a macrocyclic antibiotic, is one
such narrow-spectrum agent and is already available in most Asia-Pacific countries;
however, it is mainly used in cases of recurrent CDI due to its high cost. All isolates in
this collection were susceptible to fidaxomicin, with MIC50 values of 0.125 mg/liter and
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a geometric mean MIC of 0.10 mg/liter (Table 1). Another novel, small-molecule anti-
microbial agent, ridinilazole, shows similar highly potent narrow-spectrum activity for C.
difficile (33) and is currently in phase III clinical trials (34).

Cumulative resistance scores varied across countries included in the study (Fig. S1).
While scores were high for the Southeast Asian countries of Malaysia (8.00), Vietnam
(4.21), Philippines (4.11), and Indonesia (3.85), few isolates were collected for these
countries, which means that their scores could be overestimated. However, there was
a general trend correlating higher cumulative resistance score with decreasing gross
domestic product (GDP) per capita (Fig. S2), with higher-income countries such as
Singapore and Australia showing lower cumulative resistance scores than lower-income
countries like Thailand and China. This reflects findings reported by Collignon et al.,
who showed an inverse correlation between aggregate antimicrobial resistance and
GDP per capita (35). The same study also found positive correlations of higher aggre-
gate antimicrobial resistance with higher temperatures and poorer infrastructure,
features which generally apply to Southeast Asian countries which lie close to the
equator.

There were some limitations to the study, the primary limitation being the low
numbers of isolates collected from some study countries, particularly Indonesia, Ma-
laysia, Vietnam, and Philippines, as mentioned before (17). This was due to poor
recruitment numbers in these countries, mainly due to late study commencement after
delays in receiving ethics approvals to conduct the study. The study was also performed
in India, but due to government restrictions isolates could not be collected and sent
overseas, so we were unable to investigate the molecular epidemiology and antimi-
crobial susceptibility profiles for C. difficile in India in this instance. Furthermore, the
diagnostic assay for CDI varied across sites and countries, which may have led to some
inconsistencies in identification of CDI cases for recruitment. Notwithstanding these
limitations, we collected a significant number of C. difficile isolates, allowing a broad
comparison of the molecular epidemiology and antimicrobial susceptibility profiles for
the 12 study countries.

In conclusion, the susceptibility of C. difficile to various antimicrobial agents varied
highly by strain type and by country across the Asia-Pacific region. C. difficile RTs 369
and QX 239 showed high MICs, and all were resistant to clindamycin, moxifloxacin, and
erythromycin. Other common strains in Asia, including the predominant strain RT 017,
were resistant to many antimicrobials, which likely facilitated their proliferation in the

TABLE 2 Study isolate collection by ribotype and country or regiona

Ribotype

No. of isolates (%)

AUS CHN, HKG IDN, MYS, PHL JPN KOR SGP TWN THA VNM Total

RT 017 0 9 (18.0) 8 (47.1) 1 (2.2) 13 (14.6) 1 (4.5) 10 (11.4) 19 (50.0) 7 (50.0) 68 (16.4)
RT 014/020 13 (26.0) 4 (8.0) 0 1 (2.2) 6 (6.7) 6 (2.7) 8 (9.1) 7 (18.4) 0 45 (10.9)
RT 018 2 (4.0) 1 (2.0) 0 0 38 (42.7) 0 0 0 0 41 (9.9)
RT 002 3 (6.0) 1 (2.0) 0 12 (26.1) 1 (1.1) 1 (4.5) 20 (22.7) 0 0 38 (9.2)
RT 012 1 (2.0) 6 (12.0) 0 0 2 (2.2) 3 (13.6) 6 (6.8) 2 (5.3) 0 20 (4.8)
RT 369 0 4 (8.0) 0 11 (23.9) 1 (1.1) 0 1 (1.1) 0 0 17 (4.1)
QX 239 0 0 0 15 (32.6) 0 0 0 0 0 15 (3.6)
QX 032 0 1 (2.0) 0 0 3 (3.4) 0 10 (11.4) 1 (2.6) 0 15 (3.6)
RT 001 0 5 (10.0) 1 (5.9) 0 1 (1.1) 1 (4.5) 4 (4.5) 1 (2.6) 0 13 (3.1)
RT 106 1 (2.0) 1 (2.0) 0 1 (2.2) 1 (1.1) 0 8 (9.1) 0 0 12 (2.9)
RT 046 0 2 (4.0) 1 (5.9) 0 4 (4.5) 0 3 (3.4) 0 1 (7.1) 11 (2.7)
RT 056 5 (10.0) 1 (2.0) 0 0 0 0 1 (1.1) 0 0 7 (1.7)
RT 070 3 (6.0) 0 1 (5.9) 0 2 (2.2) 0 0 0 0 6 (1.4)
RT 027 0 1 (2.0) 2 (11.8) 0 0 0 0 0 0 3 (0.7)
RT 078 0 0 0 0 1 (1.1) 0 1 (1.1) 0 0 2 (0.5)
Other 22 (44.0) 14 (28.0) 4 (23.5) 5 (10.9) 16 (18.0) 10 (45.5) 16 (18.1) 8 (21.1) 6 (42.9) 101 (24.4)

Total 50 (100.0) 50 (100.0) 17 (100.0) 46 (100.0) 89 (100.0) 22 (100.0) 88 (100.0) 38 (100.0) 14 (100.0) 414 (100.0)
aAbbreviations: AUS, Australia; CHN, China; HKG, Hong Kong; IDN, Indonesia; MYS, Malaysia; PHL, Philippines; JPN, Japan; KOR, Republic of Korea; SGP, Singapore; TWN,
Taiwan; THA, Thailand; VNM, Vietnam.
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Asia-Pacific region. Elevated MICs, including possible reduced susceptibility to vanco-
mycin, were recorded for several C. difficile strains. Ongoing surveillance of C. difficile
and its resistance profiles is clearly warranted in the Asia-Pacific region.

MATERIALS AND METHODS
Study isolate collection. We recently published a study of C. difficile in the Asia-Pacific region (17).

Briefly, 600 patients with CDI diagnosed by toxin enzyme immunoassay (EIA), tcdB PCR, toxigenic culture
or cell culture cytotoxicity neutralization assay provided consent to participate in a prospective obser-
vational study of CDI, which was conducted at 40 hospital sites in Australia, China, Hong Kong, India,
Indonesia, Japan, Malaysia, Philippines, Singapore, Republic of Korea, Taiwan, Thailand, and Vietnam from
March 2014 to January 2015. Diarrheal stool samples were collected from all participants, sent to a central
processing laboratory (LSI Medience, Tokyo, Japan, and/or PathWest Laboratory Medicine, Perth, Aus-
tralia), and cultured for C. difficile. As previously described, PCR ribotyping was performed on all
recovered isolates (n � 414 [Table 2]) (17). Isolates from India were not included in the collection due to
government restriction. Seventy-nine ribotypes were represented in the isolate collection.

Antimicrobial susceptibility testing. Antimicrobial susceptibility testing was performed using the
agar dilution method according to the guidelines of the Clinical and Laboratory Standards Institute (36).
All culture was performed at 35°C in an anaerobic chamber (A3; Don Whitley Scientific Ltd., Shipley, West
Yorkshire, United Kingdom) in an atmosphere containing 80% nitrogen, 10% hydrogen, and 10% carbon
dioxide at 75% relative humidity. A 0.5 McFarland suspension was prepared in prereduced saline (0.85%)
from colonies of 48-h blood agar cultures of test C. difficile and control strains (Bacteroides fragilis ATCC
25285, Bacteroides thetaiotaomicron ATCC 29741, Eubacterium lentum ATCC 43055, and C. difficile ATCC
700057).

A 52-pin inoculum replicator was used to apply approximately 1 to 2 �l of each inoculum onto each
test plate (brucella agar supplemented with hemin [5 �g/ml], vitamin K1 [1 �g/ml], and laked sheep
blood [5%, vol/vol], incorporated with various concentrations of antimicrobial agents). Test antimicrobial
agents were fidaxomicin, vancomycin, metronidazole, rifaximin, clindamycin, erythromycin, amoxicillin-
clavulanate, and moxifloxacin. MICs were recorded following 48 h of anaerobic incubation of test plates,
and resistance was determined according to recommended clinical breakpoints or epidemiological
cutoffs (Table 3). For isolates with MICs of �2 mg/liter for vancomycin, Etests (bioMérieux, Marcy l’Etoile,
France) were performed to confirm vancomycin susceptibility.

Resistance rates, MIC50s, MIC90s, and geometric mean MICs were calculated. Cumulative resistance
scores were calculated as described by Freeman et al. (37), where isolates were assigned scores
determined by their result of susceptible (score of 0), intermediate (score of 1), or fully resistant (score
of 2) to each antimicrobial. Scores were summed for all antimicrobials for each isolate and then grouped
by country, and mean cumulative resistance scores were calculated for each country.

Ethics approval. Ethics approval to conduct the observational CDI study was obtained from relevant
human research ethics committees at each individual study site.
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SUPPLEMENTAL FILE 1, PDF file, 0.4 MB.
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