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ABSTRACT Empiric antibiotic prescribing can be supported by guidelines and/or lo-
cal antibiograms, but these have limitations. We sought to use data from a compre-
hensive electronic health record to use statistical learning to develop predictive
models for individual antibiotics that incorporate patient- and hospital-specific fac-
tors. This paper reports on the development and validation of these models with a
large retrospective cohort. This was a retrospective cohort study including hospital-
ized patients with positive urine cultures in the first 48 h of hospitalization at a
1,500-bed tertiary-care hospital over a 4.5-year period. All first urine cultures with
susceptibilities were included. Statistical learning techniques, including penalized lo-
gistic regression, were used to create predictive models for cefazolin, ceftriaxone,
ciprofloxacin, cefepime, and piperacillin-tazobactam. These were validated on a held-
out cohort. The final data set used for analysis included 6,366 patients. Final model
covariates included demographics, comorbidity score, recent antibiotic use, recent
antimicrobial resistance, and antibiotic allergies. Models had acceptable to good dis-
crimination in the training data set and acceptable performance in the validation
data set, with a point estimate for area under the receiver operating characteristic
curve (AUC) that ranged from 0.65 for ceftriaxone to 0.69 for cefazolin. All models
had excellent calibration. We used electronic health record data to create predictive
models to estimate antibiotic susceptibilities for urinary tract infections in hospital-
ized patients. Our models had acceptable performance in a held-out validation co-
hort.

KEYWORDS urinary tract infection, predictive models, antibiotic coverage, antibiotic
resistance

Prescribing antibiotics for a patient before the results of a clinical culture are
reported can be complex and challenging for clinicians. They must weigh the

severity of the patient’s presentation, patient-specific risk factors for adverse outcomes,
the likelihood of antibiotic resistance in the hospital and surrounding community, and
the risk to other hospitalized patients and society when a broad-spectrum antibiotic is
used. Several tools are available to help clinicians with empiric antibiotic prescribing,
including guidelines and antibiograms. However, each of these tools has drawbacks,
most notably that they do not provide recommendations personalized to the individual

Citation Hebert C, Gao Y, Rahman P, Dewart C,
Lustberg M, Pancholi P, Stevenson K, Shah NS,
Hade EM. 2020. Prediction of antibiotic
susceptibility for urinary tract infection in a
hospital setting. Antimicrob Agents
Chemother 64:e02236-19. https://doi.org/10
.1128/AAC.02236-19.

Copyright © 2020 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Courtney Hebert,
Courtney.Hebert@osumc.edu, or Erinn M.
Hade, erinn.hade@osumc.edu.

Received 24 November 2019
Returned for modification 1 February 2020
Accepted 29 March 2020

Accepted manuscript posted online 20
April 2020
Published

EPIDEMIOLOGY AND SURVEILLANCE

crossm

July 2020 Volume 64 Issue 7 e02236-19 aac.asm.org 1Antimicrobial Agents and Chemotherapy

23 June 2020

https://doi.org/10.1128/AAC.02236-19
https://doi.org/10.1128/AAC.02236-19
https://doi.org/10.1128/ASMCopyrightv2
mailto:Courtney.Hebert@osumc.edu
mailto:erinn.hade@osumc.edu
https://crossmark.crossref.org/dialog/?doi=10.1128/AAC.02236-19&domain=pdf&date_stamp=2020-4-20
https://aac.asm.org


patient. With the rise in adoption of electronic health records (EHR), we have the
opportunity to leverage this information to provide clinicians with decision support at
the point of care that incorporates critical data about the hospital environment,
patient-specific risks, and institutional priorities.

We showed previously how focusing on syndromic antibiograms rather than
organism-specific antibiograms may be useful for empiric prescribing (1). However, that
work was limited in its application, as it did not incorporate patient-specific risks or
recent clinical history. Here, we describe the use of patient-specific data from the EHR
to develop a series of models intended to predict the probability of susceptibility to
antibiotics commonly used for empiric treatment of community-onset urinary tract
infections in a hospital setting. In this work, for each antibiotic model, the infection was
determined to be “susceptible” to each antibiotic when all organisms that grew in the
urine culture were susceptible to the antibiotic in vitro or, in the case of no reported
laboratory data, were determined to be likely susceptible to that antibiotic by expert
guidance. These model predictions are intended to provide patient-, location
(hospital)-, and time (making use of recent data)-specific guidance for empiric antibiotic
prescribing.

RESULTS

The final analysis data set included 6,366 patients after all exclusions (Fig. 1). Table 1
summarizes patient demographic and clinical characteristics, overall and by suscepti-
bility for each of the five antibiotics. Overall, the mean age in the cohort was 61.9
(standard deviation [SD], 17.8) with more female patients (67.1%) than male, and the
majority identified as being of white race (72.6%). A small proportion were documented
as being admitted from a nursing home (8.1%). The number of records that were
dropped due to missing susceptibility data preprocessing ranged from a low of 1 record
for cefazolin (0.02%) to a high of 320 records for ceftriaxone (5.0%). The percentages of
urine cultures susceptible to the antibiotics were as follows: cefazolin, 48.7% (3,100/
6,365); cefepime, 64.6% (4,100/6,359); ceftriaxone, 59.1% (3,575/6,046), ciprofloxacin,
48.1% (3,064/6,364); and piperacillin-tazobactam, 82.0% (5,219/6,363). To evaluate the
sensitivity of the rule order used to fill in susceptibility data that were not reported, we
randomly shuffled the rules 100 times and compared the filled-in data sets. At most,
3,519 of the 74,885 unreported outcomes (5%) were sensitive to the rule order.

Final model covariates, coefficients, areas under the receiver operating characteristic
curve (AUCs), and goodness-of-fit (GOF) tests are presented in Table 2. The penalized
regression models that included grouping for interaction effects and the penalized
models that allowed interaction terms without grouping of main effects returned
comparable or less favorable AUCs in the training/test data set compared to those with
only main effect terms and were considerably more complex. Final models included
only main effect terms. The AUCs of the models in the training cohort ranged from 68.3

FIG 1 Cohort development.
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TABLE 2 Final prediction model covariatesa

Category
Parameter

Value for:

Cefazolin
(0.63935)

Cefepime
(1.17828)

Ceftriaxone
(0.94419)

Ciprofloxacin
(0.43047)

Piperacillin-tazobactam
(2.18690)

Demographics Age 0.00019 0.01168
Age squared 0.00010 0.00007
Age cubed �0.00001 �0.00001 �0.00001 �0.00001
Sex: maleb �0.71695 �0.45621 �0.70641 �0.53074 �0.16150
History of smokingb 0.12988 0.08713
Race: blackb 0.30388 0.36458 0.36887 0.23907 0.01110
Race: otherb 0.29024 0.09832 0.22255 0.28785 �0.36885

Medical history Admission from
nursing homeb

�0.29785 �0.18948 �0.29092 �0.10103 �0.27365

1 ED visitb,c 0.30499 0.27674 0.18183 0.02006 0.29449
�2 ED visitsb,c 0.01528 0.44160
1 ED to inpatientb,c �0.08453 �0.22877 �0.08165 �0.05306 �0.29808
�2 ED to

inpatientb,c

�0.12733 �0.16352 �0.00564

1 inpatient visitb,c �0.22318 �0.20348 �0.21192 �0.21073
�2 inpatient

visitsb,c

0.00571 �0.11337

ICU location in first
24 hoursb

0.07366 0.11776 0.15119

Elixhauser score �0.01383 �0.01102 �0.01155 �0.00357 �0.00658

Antimicrobials in past
30 days

Sulfonamide �0.25820 �0.21812 �0.17295 �0.05543 �0.06770
Quinolone �0.51539 �0.65805 �0.53185 �1.29377 �0.61818
Cephalosporin �0.59423 �0.25652 �0.60599 �0.43066
Penicillin �0.11334 0.06402 �0.14594 �0.32084
Carbapenem �0.32128 �0.54253 �0.44776 �0.45540

Antimicrobials in past
30–90 days

Sulfonamide �0.19242 �0.18646 �0.19487 �0.14391 �0.19486
Quinolone �0.29001 �0.31754 �0.32479 �0.44247 �0.01208
Cephalosporin �0.12215 �0.11174 0.00980
Penicillin �0.08546 �0.05267 �0.30380
Carbapenem �0.14987 �0.30757 �0.16412

Resistant organisms in
past 6 months

MDRO �0.76878 �0.51511 �0.80317 �0.51611 �0.66253
MRSA 0.58438 0.44875 0.63166 0.45980
VRE 0.16156 0.04077 �0.00365
CephR Klebsiella �0.85975
ESBL 0.57457 0.22556
MDR Acinetobacter 0.67298 0.46587 0.56299

Resistant organisms in
past 6–12 months

MDRO �0.97448 �0.61115 �1.02161 �0.10190 �1.09366
MRSA 1.13502 0.53233 1.04338 1.22636
VRE 0.17833 0.40149 �0.05931 0.52085

Antibiotic resistance
in past 6 months

Sulfonamide 0.25044 0.37538 0.31095 0.10899
Quinolone �0.31482 �0.17482 �0.34883 �1.49533 �0.40215
Cephalosporin �0.81174 �0.53988 �0.56341 �0.47589
Penicillin 0.35729 0.33486 0.40173 0.38544 0.23992
Carbapenem �0.05393 0.02238 �0.32193 0.07712

Documented
medication allergy

Penicillin �0.04274 �0.05982 �0.07149 �0.20527
Quinolone �0.56013 �0.28042 �0.43616
Sulfonamide �0.06064 0.01466 0.17357
Cephalosporin �0.14100 0.00746 �0.09309 �0.11350 �0.16364
Glycopeptide �0.24265 �0.37125 �0.27998 �0.13965
Aminoglycoside 0.25439 0.28761
Metronidazole 0.52051 0.32151 0.28773 0.06804
Carbapenem �1.22837

(Continued on next page)
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(95% confidence interval [CI], 66.8 to 69.8) for cefepime to 71.5 (95% CI, 70.1 to 72.9)
for cefazolin. They were generally similar, but lower, in the validation, with a range from
65.0 for cefepime to 69.1 for cefazolin. All final prediction models for each antibiotic
had modest to good discrimination with excellent model calibration.

Four patient risk profiles are provided as example results and to facilitate compar-
isons across antibiotics (Fig. 2). These four profiles were developed by the study team
based on common clinical scenarios, without knowledge of the resulting estimated
probability. These include an elderly male patient with a recent multidrug-resistant
organism; a young female patient with a history of recurrent urinary tract infection (UTI)
and penicillin allergy with recent ciprofloxacin use; an older female patient with
paraplegia, recurrent UTI, and chronic antibiotic use; and a young, healthy, female
patient recently exposed to trimethoprim-sulfamethoxazole. The estimated probabili-
ties of susceptibility for each of these patients are shown in Fig. 2, superimposed on the
distribution of estimated probabilities for each patient in the validation cohort.

DISCUSSION

We used statistical learning techniques to develop a series of predictive models to
estimate the probability of susceptibility for five commonly used antibiotics for UTI. In
order to develop these models, we created a robust data preprocessing algorithm
which included the use of a novel data completion framework to collect subject matter
expertise and a consensus meeting. Our models show acceptable performance in terms
of discrimination, with AUCs from 68.3 to 71.5 in the training/test data and lower but
comparable AUCs in the validation set (65.0 to 69.1). Although the validation had
modest AUC performance, the models show excellent calibration, as measured by GOF,
suggesting that our estimates closely agree with the actual outcomes in the group.

In prior research, the inclusion of local resistance data in predictive models has led
to more effective empiric treatment algorithms for multiple syndromes, including
pneumonia and sepsis (2, 3). Park and colleagues developed a risk-scoring system to
predict infection with potentially drug-resistant pathogens in cases of health care-
associated pneumonia (HCAP) (4). Compared to the established HCAP criteria for
predicting resistant infections, additional stratification by patient-specific risk factors
significantly improved diagnostic accuracy (4). Recent works specific to UTI have
included prior urine culture results to predict resistance and optimize empirical anti-
microbial therapy (5, 6).

Our models were optimized to predict the outcome of antibiotic susceptibility and
were not focused on investigating the impact of individual covariates on outcomes.
Nevertheless, there are several covariates that deserve discussion. Male sex was asso-
ciated with lower probability of susceptibility, which has been seen in previous studies
(7). Race was a significant predictor in all 5 models. This is likely a marker for factors that
are not well captured in EHR data and should not be interpreted as causative. Previous
inpatient hospitalizations, antibiotic use, and higher comorbidity scores strongly con-

TABLE 2 (Continued)

Category
Parameter

Value for:

Cefazolin
(0.63935)

Cefepime
(1.17828)

Ceftriaxone
(0.94419)

Ciprofloxacin
(0.43047)

Piperacillin-tazobactam
(2.18690)

Final model
characteristics

Goodness of fit
(P value)

0.25 0.09 0.22 0.11 0.20

AUC (95% CI):
training/test

71.5 (70.1–72.9) 68.3 (66.8–69.8) 71.3 (69.9–72.7) 69.5 (68.1–71.0) 69.9 (68.7–72.5)

AUC (95% CI):
validation

69.1 (66.3–72.1) 65.0 (61.8–68.1) 68.8 (65.9–71.7) 65.3 (62.3–68.3) 68.2 (64.1–72.4)

aValues in parentheses after the drug names are intercepts. Shading indicates covariates included in the model; bold indicates covariates associated with a decrease
in the odds of susceptibility to the antibiotic. ED, emergency department; ICU, intensive care unit; VRE, vancomycin-resistant Enterococcus; ESBL, extended-spectrum
beta-lactamase; CephR, cephalosporin resistant.

bReference groups: female sex, nonsmoker, white race, no admission from nursing home, no ED visits, no ED visits to inpatient visits, no inpatient visits, non-ICU stay.
cIn the past 90 days.
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tributed to a lower probability of susceptibility. A history of multidrug-resistant patho-
gens (MDRO) is associated with a decreased probability of susceptibility across all the
models. Counterintuitively, individual MDRO, such as methicillin-resistant Staphylococ-
cus aureus (MRSA), are associated with an increased probability in susceptibility in some
of the models. MDRO is a composite variable that includes individual MDRO such as
MRSA. When both the composite (MDRO) and individual (MRSA) variables are included
in the model, the effect of one is adjusted for the other, so interpretation becomes
difficult. These variables were kept in the model, as they were beneficial in model
prediction and calibration, but should not be interpreted alone.

Figure 2 demonstrates the impact of the models on 4 example patients. Patient A

FIG 2 Estimated susceptibility (coverage) probability for each antibiotic in the validation set with example cases. y/o, year old; M, male;
F, female; CHF, congestive heart failure; DM, diabetes; ESBL, extended-spectrum beta-lactamase; UTI, urinary tract infection; cipro,
ciprofloxacin; TMP/SMX, trimethoprim-sulfamethoxazole.
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was designed as a high-risk patient. He has a history of drug resistance, recent
broad-spectrum antibiotic exposure, and recent hospitalization. He has the lowest
probability of susceptibility for all antibiotics modeled. Patients B and C were designed
as medium-risk patients. For cefazolin, ceftriaxone, and cefepime, their estimated risks
are similar and fall between those of our high- and low-risk patients. Interestingly,
patient B, who has a penicillin allergy and was recently given ciprofloxacin, has a low
estimation of ciprofloxacin susceptibility but high estimation of piperacillin-tazobactam
susceptibility. This finding is consistent with our previous work focused on the associ-
ation of penicillin allergy with ciprofloxacin susceptibility (8). Finally, patient D was
designed as a low-risk patient and has a high probability of susceptibility to all
antibiotics tested. Other interesting findings from Fig. 2 include the distribution of risk
scores. The narrower spectrum antibiotics have a more uniform distribution, whereas
for broader-spectrum antibiotics, more patients had a higher estimated probability of
susceptibility. Despite cefepime and piperacillin-tazobactam generally having equiva-
lent susceptibility for Gram-negative pathogens, cefepime does not cover Enterococcus,
which was our second most common pathogen after Escherichia coli (see Table S4 in
the supplemental material).

Our study has several unique strengths. First, we focused on susceptibility to a
particular antibiotic of all urinary pathogens, not on modeling risk of a particular
organism or a multidrug-resistant organism. This better reflects the real-world decision-
making environment of a provider prescribing an empiric antibiotic. Next, we used a
reproducible method for filling in unreported susceptibility data using subject matter
experts. Our team developed an application which allows subject matter experts to
easily express human-understandable rules to quickly and transparently fill in unre-
ported data. These rules can be shared across institutions to replicate our assumptions
and methods without requiring sharing of data. Moreover, we utilized a careful model
selection process that included an iterative cross-validation step to optimize model
selection as well as a final validation step on a held-out cohort.

There are several limitations to this study. Approximately half of the susceptibility
data in the final data set were filled in by subject matter experts rather than tested
directly in the clinical laboratory. This raises the concern that the filled-in data could be
incorrect. However, our data-preprocessing algorithm is similar to the process that most
infectious diseases providers perform when they review culture results. They “fill in” the
data that are not visible based on their knowledge of the organisms. In addition, we
asked our experts to rank the rules as low/medium and high confidence: 80% of cells
were filled in with rules marked as high, and only 3% with rules marked as low. We used
subject matter experts instead of a simple literature or guideline review, because some
decisions depended upon subjective interpretation of the likelihood of antibiotic
effectiveness. Organism susceptibility decisions require consideration of a specific
infection, including the body site, other susceptibility information on the same culture,
and local resistance patterns. Attendings infectious disease physicians make these
determinations on a daily basis, and we sought to formalize that decision making. A
strength of our approach to data processing is that susceptibility decisions can be
made locally and incorporated into data sets before modeling. A second limitation is
the retrospective nature of our EHR data set. When extracting data on covariates, we
validated these variables with a random subset chart review. However, given the size
of our data set and the number of variables, some misclassification is possible. We
identified a UTI as one in which the urine culture is positive and the patient has a
diagnosis for UTI during that hospitalization. Because of this, we could have included
patients that did not have a symptomatic UTI. However, our goal in this work is to
improve on the traditional antibiogram, which is based on positive culture rather than
disease status. It is reasonable to assume that clinical factors and prior microbiology
data will predict antibiotic resistance of organisms that colonize the bladder as well as
those that cause symptomatic UTI, so misclassification should not affect our findings.
These models do not determine whether the patient should receive antibacterials;
rather, they provide information to clinicians as to what antibacterials are likely to cover
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the organism in the urine. Finally, we are limited to the records on prior antibiotic use,
resistance, and hospitalization associated with an encounter at our institution.

These models are the first to be presented from a larger project focused on
developing tools to improve empiric antibiotic prescribing for providers and antibiotic
stewardship programs. In order for these models to be clinically useful, further knowl-
edge must be incorporated for them to work as clinical decision support tools. We are
testing a process which will order antibiotic preferences based on predicted suscepti-
bility, breadth, and adverse side effects (9). In addition, our models could be used to
risk-stratify patients who would benefit from costly diagnostic tests (e.g., molecular
diagnostic tests [10]).

Conclusion. In this study, we developed a robust set of models for prediction of
antibiotic susceptibility for UTI in hospitalized patients. Our models performed well in
a held-out validation cohort. The models make use of innovations to develop repro-
ducible data pathways aimed at better leveraging complex clinical data on infectious
diseases.

MATERIALS AND METHODS
Setting and population. This study was performed at a 1,500-bed academic, tertiary-care medical

center located in the midwestern United States. All data were extracted from the information warehouse.
The study was approved by the Institutional Review Board at The Ohio State University.

Cohort development. The cohort included all adult patients who were admitted to an acute-care
unit from 1 November 2011 through 1 July 2016, who had a positive urine culture in the first 48 h of
admission, and who were discharged with a diagnosis of urinary tract infection. Only the first culture was
included. Organisms that were not tested for susceptibility by the clinical laboratory were excluded
(3,806 organisms; see Table S1 in the supplemental material), except for organisms for which suscepti-
bility is routinely assumed (e.g., group B Streptococcus is susceptible to penicillin) and so not routinely
checked. Based on subject matter expert feedback, organisms were excluded if they were not considered
highly pathogenic and had very low colony counts.

Predictors and outcomes. Variables collected from EHR data included demographics, comorbidities,
smoking history, recent antibiotic use and allergies, antibiotic resistance from recent culture data, and
recent health care and nursing home exposure (Table 1; also, see Table S2).

Five antibiotics— cefazolin, ceftriaxone, ciprofloxacin, cefepime, and piperacillin-tazobactam—were
chosen for investigation based on a formal survey of our antibiotics stewardship team (9). For each of the
five antibiotics of interest, a binary outcome of susceptible or resistant was determined. The infection was
considered to be susceptible if all organisms that grew in culture were susceptible or assumed to be
susceptible to that antibiotic. We did not model trimethoprim-sulfamethoxazole, fosfomycin, or nitro-
furantoin, because in our experience these are not common empiric recommendations for patients being
admitted to the hospital with UTI.

Data preprocessing. Patient urine culture data were collected into one file such that each row
represented a unique organism that grew during an infection episode. Any susceptibility information
that was tested in vitro in the laboratory was included in this data set in the form of the clinical
laboratory’s susceptibility interpretation, consisting of R (resistant), S (susceptible), or I (intermediate). All
susceptibilities interpreted by the lab as I were considered R for our purposes. However, for each
organism, susceptibilities are reported for only a subset of antibiotics based on guidelines and institu-
tional preference, resulting in a sparse data set for cohort susceptibility information. To address
unreported susceptibility information, we engaged subject matter experts to create an analysis-ready
filled-in data set, using ICARUS, a data completion framework that allows experts to apply rules to the
data set in real time (11). Three members of the study team (C. Hebert, M. Lustberg, and P. Pancholi) used
ICARUS to fill in unreported data via rules (e.g., “Cefazolin does not cover Enterococcus”), which were then
semiautomatically consolidated and reviewed at a consensus meeting. During this meeting, the experts
reviewed the rules that were found to have conflicting effects on the data set (i.e., one rule would fill in
R and one S for the same cell). Through a round-table discussion, a final rule was agreed upon.

Some rules were dependent on each other, and hence, the order in which they were applied affects
the final filled-in data. In our application, the order was assigned by subject matter experts. To test the
robustness of rule ordering, we randomly shuffled the rules 100 times and compared the filled-in data
sets. Major rules used to fill in the data for relevant antibiotics can be found in Table S3 in the
supplemental material.

After data completion rules were applied, the data set was collapsed across infection episodes such
that there was one row per episode. If a urine culture had only one organism that resulted, there was no
need to collapse, and this record remain unchanged. To collapse rows where a patient had more than
one organism grow in culture, we applied the following logic:

1. If any organism was resistant to the antibiotic, the culture was resistant in the final collapsed
record.

2. If all organisms were susceptible to an antibiotic, the culture was susceptible in the final collapsed
record.
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3. If there were remaining missing data and all other organisms in culture were susceptible, the
culture had unknown susceptibility and was not included in the modeling.

Statistical methods. Using the most recent hospitalization for each patient, a multistage statistical
learning approach was taken to develop each antibiotic susceptibility model. Model selection and initial
performance of multivariable models were evaluated in a large training set, an 80% random sample of
the full UTI data set. The remaining 20% was used for model validation. Several functional forms of
continuous covariates were included for age (a linear, squared, and cubed term). In all models, age was
centered at the mean value of the cohort.

In the training/test set, predictive models for susceptibility of each antibiotic were developed using
penalized logistic regression methods incorporating 10-fold cross-validation (CV). All patient character-
istics retrieved from the EHR (Table 1; also, see Table S2) were included as potential covariates. Modeling
allowed for inclusion of any pairwise interactions, except in cases where these interactions had sparse
cells counts (n � 10) and varied functional forms of continuous covariates. Three penalized logistic
regression methods were used for model selection and regularization: smoothly clipped absolute
deviation (SCAD) (12), minimax concave penalty (MCP) (13), and least absolute shrinkage and selection
operator (LASSO) (14). Tenfold CV was repeated 100 times, and the distributions of the model area under
the receiver operating characteristic curve (AUC), penalization parameter, and number and frequency of
predictors were summarized (15, 16). Once the optimal penalization parameter was chosen across the
100 CV iterations, this penalization was used in each method for model selection. In addition, penalized
logistic regression models which considered grouped variables for interaction terms were fitted in each
cross-validation fold. In these grouped methods, each predefined group contained two main effects and
their interaction (17, 18).

Model calibration was assessed by a modified Hosmer-Lemeshow goodness-of-fit (GOF) test on each
of the models (19). Final model selection was based on the model discrimination (AUC), number of
predictors, model calibration (GOF), and model AUC variability across the 100 CV iterations. Better models
were considered those with higher overall AUC, lower AUC variability, acceptable GOF, and fewer
predictors.

In the remaining 20% of data, the best model found at the training/test stage was evaluated. Model
prediction accuracy was assessed by the AUC and 95% confidence interval, as estimated from a logistic
regression model with each final training/test model risk score as the predictor. Each antibiotic risk score
was calculated as the linear combination of the model coefficients from penalized regression models
from the training/test stage with the data from the validation cohort.

All analyses were performed using R software and associated packages (20) (https://www.Rproject
.org/).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.3 MB.
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