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ABSTRACT: Drug discovery is a rigorous process that requires
billion dollars of investments and decades of research to bring a
molecule “from bench to a bedside”. While virtual docking can
significantly accelerate the process of drug discovery, it ultimately
lags the current rate of expansion of chemical databases that
already exceed billions of molecular records. This recent surge of
small molecules availability presents great drug discovery
opportunities, but also demands much faster screening protocols.
In order to address this challenge, we herein introduce Deep
Docking (DD), a novel deep learning platform that is suitable for
docking billions of molecular structures in a rapid, yet accurate
fashion. The DD approach utilizes quantitative structure−activity
relationship (QSAR) deep models trained on docking scores of subsets of a chemical library to approximate the docking outcome for
yet unprocessed entries and, therefore, to remove unfavorable molecules in an iterative manner. The use of DD methodology in
conjunction with the FRED docking program allowed rapid and accurate calculation of docking scores for 1.36 billion molecules
from the ZINC15 library against 12 prominent target proteins and demonstrated up to 100-fold data reduction and 6000-fold
enrichment of high scoring molecules (without notable loss of favorably docked entities). The DD protocol can readily be used in
conjunction with any docking program and was made publicly available.

■ INTRODUCTION

Drug discovery is an expensive and time-demanding process
that faces many challenges, including low hit discovery rates for
high-throughput screening, among many others.1,2 Methods of
computer-aided drug discovery (CADD) can significantly
speed up the pace of such screening and can drastically
improve hit rates.3 Molecular docking is routinely used to
process virtual libraries containing millions of molecular
structures against a variety of drug targets with known three-
dimensional structures.
Recent advancements in automated synthesis and surge of

available chemicals represent great opportunities for virtual
screening (VS) approaches in general and for docking in
particular, but also poses entirely novel challenges. For
instance, the widely used ZINC library has grown from
700 000 entries in 20054 to over 1.3 billion constituent
molecules in 2019,5 representing a remarkable 1000-fold
increase. There is still a global lack of experience in screening
such libraries, and the advantage of docking them versus
smaller collections is still matter of debate.6 However, few
recently published works seem to advocate for expanding VS to
ultralarge chemical libraries. In a recent groundbreaking study
by Lyu et al,7 authors reported docking of 170 million make-
on-demand molecular structures, showing that VS of such

databases enables the discovery of highly potent inhibitors as
well as novel chemical classes that are not present in routinely
screened in-stock libraries. Later, other docking studies
involving large collections of molecules led to similar
conclusions.9,10

Given the current state of docking programs and computa-
tional resources available to CADD scientists, one can stipulate
that modern docking campaigns can rarely exceed 0.1 billion
molecules and that the current chemical space remains largely
inaccessible to structure-based drug discovery. One common
approach to address this disparity is to filter large chemical
collections to manageable drug-, lead-, fragment-, and hit-like
subsets (among others) using precomputed physicochemical
parameters and drug-like criteria, such as molecular weight,
volume, octanol−water partition coefficient, polar surface area,
number or rotatable bonds, number of hydrogen bond donors
and acceptors, among many others.11 While this approach can
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effectively reduce an ultralarge docking database to manageable
subsets, many potentially useful compounds and novel or
unconventional chemotypes (notably emerging from such large
collections6) could be lost. In order to take a full advantage of
available and emerging “make-on-demand” chemicals, it is
essential to maximize the number of database entries tangibly
evaluated against a target of interest. It is also important to
note that a conventional docking workflow is remarkably
neglectful of negative results. A typical docking campaign relies
on completing a full docking run and selecting an extremely
narrow subset of favorably docked molecules (virtual hits) for
future evaluation. Thus, the vast majority of docking data
(both favorable and, especially unfavorable) is not being
utilized in any way or form, while it could represent a very
relevant, well-formatted, and content-rich input for machine
learning algorithms.
Previously, the possibility of predicting docking scores

through shallow quantitative structure−activity relationship
(QSAR) models has been explored by us (using 3D
“inductive” descriptors12) and others, using a support vector
machine or random forest along with conformal predictors.13,14

None of these methods, however, offer enough speed boost to
deal with billions of molecules, and such studies were thus
limited to a few millions of compounds at most. Deep learning
(DL), on the other hand, is particularly suited for large data set
processing,15 and the method is rapidly gaining interest in drug
discovery due to its superior performance compared to
traditional machine learning techniques.16−18 Thus, we
anticipate that the use of DL could unlock a full potential
and true synergy between docking and QSAR methodologies
and will take a full advantage of ultralarge docking database
data.

■ RESULTS
In the current study, we have introduced the use of fast-
computed and target-independent QSAR descriptors (such as
2D molecular fingerprint), the use of iterative and fast random
sampling of the docking database, and, principally, the use of
DL to predict docking scores of yet unprocessed database
entries at each iteration step. As a result, DD achieves up to
100-fold reduction of an ultralarge docking database and up to
6000-fold enrichment for the top-ranked hits, while avoiding

Figure 1. Schematic of the DD pipeline. (Top) DD initialization: a small sample of molecules is randomly extracted from an ultralarge docking
database and docked to a target under consideration. The generated docking scores are then used to train a QSAR deep model. The created QSAR
solution is then used to predict docking outcome for the remainder of a database and to return predicted virtual hits required to start iteration 2.
(Bottom) DD screening: from iteration 2 onward, the deep model gets gradually improved by augmenting the training set with randomly sampled
QSAR-predicted virtual hits from the previous DD iteration (which also get selected for actual docking). The cycle is repeated for a predefined
number of iterations, after which DD returns top scoring molecules from a database. This final library can be postprocessed to remove residual low
scoring entities. Alternatively, steps 2−11 can be carried out until the convergence of an ultralarge docking database.
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significant loss of favorable virtual hits, as it will be discussed
below.
DD Pipeline. In its essence, the DD pipeline (Figure 1)

relies on the following consecutive steps:

(a) For each entry of an ultralarge docking database (such as
ZINC15), the standard set of ligand-based QSAR
descriptors (such as molecular fingerprints) is compu-
ted;

(b) A reasonably sized training subset is randomly sampled
from the database and docked into the target of interest
using conventional docking protocol(s);

(c) The generated docking scores of the training com-
pounds are then related to their 2D molecular
descriptors through a DL model; a docking score cutoff
(typically negative) is then used to divide training
compounds in virtual hits (scoring below the cutoff) and
nonhits (scoring above the cutoff);

(d) The resulting QSAR deep model (trained on empirical
docking scores) is then used to predict docking
outcomes of yet unprocessed entries of the database. A
predefined number of predicted virtual hits are then
randomly sampled and used for the training set
augmentation;

(e) Steps b−d are repeated iteratively until a predefined
number of iterations is reached, and/or processed
entries of an ultralarge docking database are converged.

In DD, the virtual hits recall (i.e., the percentage of actual
virtual hits that is retrieved from the database) is set implicitly
through a probability threshold which is selected to include
90% of the actual virtual hits in the validation set. Then, the
same threshold is applied to the independent test set, and the
recall of virtual hits is evaluated in order to assess model
generalizability. If recalls of the validation and test sets are
consistent with each other, the model is applied to all entries of
the database (more details can be found in the Methods).
Although the recall values could be endorsed explicitly by
using, for example, conformal predictors,14,19 we did not
observe significant differences in the resulting performance of
DD.
The scripts to run DD pipeline are publicly available in

GitHub, together with instructions on how to setup runs and a
few additional tools to facilitate automation on HPC clusters,
at https://github.com/vibudh2209/D2.
Ultra Large Docking Database Sampling. Selection of a

representative and balanced training set is a critical step of any
modeling workflow. In the context of sampling a chemical
space, a proper DD training set should effectively reflect
database’s chemical diversity. It could be expected that
enlarging the sampling size and preclustering the docking
base would ultimately improve or even converge the chemical
space coverage. On the other hand, it is currently not feasible
to cluster billions of chemical structures in any way or form,
and it has also been shown that preclustering large libraries
prior to docking can significantly lower the rank of active
chemotypes, thus hindering the discovery of new inhibitors or
activators.7 Moreover, biasing sampling toward molecules that
are highly ranked by DD as potential virtual hits could exclude
low ranked, yet true positive molecules from being selected for
model training; therefore we selected random sampling for all
DD iterations. Finally, the size of DD training set (e.g., the
amount of actual docking) would have a pivotal impact on a
computational runtime and should be carefully controlled.

To establish an optimal sampling of ZINC15 base, we
evaluated the relationship between the size of DD training set
and the corresponding means and standard deviations of the
test set recall values, reflecting the consistency of model’s
performance and its generalizability. For that, we evaluated 12
protein targets from four major drug-target families,20

including nuclear receptors represented by androgen receptor
(AR), estrogen receptor-alpha (ERα), and peroxisome
proliferator-activated receptor γ (PPARγ). Linases were
represented by calcium/calmodulin-dependent protein kinase
kinase 2 (CAMKK2), cyclin-dependent kinase 6 (CDK6), and
vascular endothelial growth factor receptor 2 (VEGFR2). G
protein-coupled receptors included adenosine A2A receptor
(ADORA2A), thromboxane A2 receptor (TBXA2R), and
angiotensin II receptor type 1 (AT1R). Ion channels were
represented by Nav1.7 sodium channel (Nav1.7), Gloeobacter
ligand-gated ion channel (GLIC), and gamma-aminobutyric
acid receptor type A (GABAA) (more details about the
selected targets are reported in Table S1). For all 12 studied
targets, we investigated the relationships between the sample
size and resulting mean test set recall values, which appear to
converge to 0.90 when the training set size ranges between
250 000 and 1 million molecules (Figure 2a). We also
observed that the standard deviations converge to 0 at about
1 million sample size (Figure 2b). Thus, we have set 1 million

Figure 2. Effect of training set sample size on model generalizability.
(a) Mean values for test set recalls computed using different sample
sizes. Values approach 0.90 for all targets, when the training set size is
within 250 000 and 1 million molecules. (b) Variations of standard
deviations (STD) approach 0, for a sample size of 1 million
molecules. We ran one iteration for each target and repeated
computations five times at each sampling size.
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molecules as the standard sampling for DD workflow (more
details can be found in the Methods).
Size Reduction of ZINC15 by DD Virtual Screening.

The main goal of DD methodology is to reduce an ultralarge
docking database of billions of entries to a manageable few-
million-molecules subset which yet encompasses the vast
majority of virtual hits. This final molecular subset can then be
normally docked into the target using one or several docking
programs or can be postprocessed with other VS means. The
DD method relies on iterative improvement of the deep neural
network (DNN) training by expanding its training set with
predicted hit molecules from each previous iteration, while the
deciding cutoff also gradually becomes more stringent. We
extensively evaluated the performance of this DD protocol by
screening all 1.36 billion molecules from ZINC15 against the
12 protein targets introduced above, using docking program
FRED.21 Notably, DD itself is not a docking engine, but a DL
score predictor to be used in conjunction with any docking
program to rapidly eliminate a priori unfavorable, “undockable”
molecular entities, and therefore drastically increase the speed
of actual docking.
To demonstrate the power of DD, we tested the pipeline

with a fixed set of parameters, such as number of iterations,
recall values, and others, in order to provide an objective
comparison between the 12 investigated systems. It is foreseen
that DD users may want to use different simulation parameters
than ours, which best suit their time and resource allocations:
for example, fewer iterations with more docking per iteration
and less DL cycles may be an optimal choice for computing
clusters with many CPUs and few GPUs, and vice versa.

For each target, we ran a total of 11 DD iterationsone
initial training step (requiring docking of 3 million entries to
build training, validation and test sets of 1 million each) and 10
consecutive iterative docking steps, each involving docking of 1
million molecules. Thus, for each target we practically docked
only 13 million molecular structures representing less than 1%
of the 1.36 billion entries of ZINC15. Figure 3a illustrates the
docking score cutoffs used to discern hits and nonhits at each
iteration. These values decreased in accordance with the
criterion used for defining virtual hits, that becomes more
stringent at each iteration (see Methods for details). The
majority of nonhits were removed during the first iteration for
all targets, while fewer molecules were discarded in successive
steps, as expected due to larger portions of unfavorable
compounds being present at the beginning of the runs. We
observed that the decrease rate and the number of hits
identified were target-dependent (Figure 3b). Another notable
observation from the analysis of the DD progression is that
training sets effectively improve after each iteration, since
docking scores of molecules added to training become more
negative (favorable) after each round of modeling (Figure 3c).
This observation marks progressively more confident perform-
ance of DD in recognizing and discarding low scoring
molecules, and consequently favorably augmenting of the
training set. Consequently, we anticipated that DD is likely to
improve the enrichment for virtual hits after each iteration, as
visible in Figure 3d, featuring enrichment values for the top
100 molecules ranked by the DNN models in the test sets. As
the data indicate, these values increased after each iteration for
all targets, also suggesting that model’s performance improves
every time the training set is augmented with molecules from

Figure 3. DD performance statistics for 12 drug targets. (a) Variation of score cutoff values used for selecting virtual hits at each iteration. (b)
Variation of numbers of molecules predicted as virtual hits after each iteration. (c) Iterative improvement of docking score mean values for
randomly selected molecules used for training set augmentation. (d) Enrichment values calculated for 100 top ranked predicted virtual hits in test
set after each iteration.
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each previous DD iteration. Of note, the enrichment values
become strongly increased at last iteration, where the models
retrieved a very small portion (0.01%) of the top scoring
molecules of the database. Further indications of iterative
improvement of DNN models are provided by the area under
the curve receiver operating characteristics (AUC ROC) values
and full predicted database enrichment (FPDE) values,
presented in Table S3 for all iterations of the 12 studied
targets, as well as the precision of the models to identify high
scoring molecules, which improved at each iteration as well, as
expected (Figure S2).
Analysis of DD Performance. As indicated earlier, the

main objective of the DD methodology is to reduce an
ultralarge docking database to a highly enriched library of
molecules that can be processed using conventional docking
programs and computational resources. While studying 12
selected targets, we observed that the sizes of final, remaining
subsets ranged between 1% and 12% of the original ultralarge
docking database (Figure 4a). It is foreseen that these
remaining enriched and DNN-ranked libraries can then be
postprocessed to remove residual low scoring molecules.
Alternatively, DD can be carried out until the convergence of
an ultralarge docking database.
DD demonstrated its best performance for PPARγ protein,

where the database was reduced to 1% of its size. Thus,
considering docking required to train the model as well as to
postprocess the final subset, DD screening of ZINC15 against
this target requires docking of 50 times fewer molecules than
conventional VS. On the other hand, DD was least effective on

the GABAA target, where 12% of ZINC15 molecules were left
after the last iteration due to low precision of the model. These
results clearly suggest that, like any other computational tool,
DD shows performances that are target-dependent. Encourag-
ingly, the recall values were consistently transferred to the test
sets in all cases (see Table S3). We also compared the number
of molecules expected to be returned by DD at each iteration
based on the test sets with the number that was actually
returned when DD models were applied to ZINC15, observing
no significant differences (Figure S3). Taken together, these
results suggest that all underlying DL models were general-
izable in a consistent way. To further assess the overall DD
performance, we evaluated final FPDE values, which ranged
from 8 to 89, indicating that DD enriched final subsets with
high scoring molecules in a target-dependent way. As expected,
FPDE values matched the trends observed for the number of
DD predicted virtual hits (Figure 4b).
We also evaluated enrichment values for the top 10, 100, and

1000 predicted virtual hits identified in the test sets after the
final iteration, observing values ranging from 240 to 6000 as
demonstrated on Figure 4c. Such enrichments decreased
consistently in all cases when evaluating larger portions of top
ranked structures, thus suggesting that true hits are highly
concentrated at the top of the DD rank, and molecules at the
bottom of the rank are mostly false positives. It is important to
note that we have set stringent 0.90 recall values for our DD
runs to preserve the vast majority of virtual hits in the final
subset. However, one can lower such recall cutoff to sacrifice
the retention of virtual hits in a DD workflow, but to

Figure 4. Final data set sizes and enrichment values resulting from DD runs. (a) Total number of molecules predicted as virtual hits remaining after
the 11th DD iteration. Values are also reported in terms of percentage of ZINC15 entries that were retained (right vertical axis). (b) FPDE values
resulting from the last iterations of DD experiments. (c) Enrichment values for top 10, top 100, and top 1000 selected virtual hits (in the test sets).
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significantly reduce the number of unprocessed molecules
retained at the end, and to shorten the runtime.
To investigate the effect of decreasing the recall of virtual

hits, we ran DD for two systems, namely, PPARγ and GABAA
(the best and worst targets in terms of number of molecules
remained unprocessed after 11 DD iterations as described
above), using recall values of 0.75 and 0.60. Encouragingly, the
number of remaining entries significantly decreased in both
cases compared to DD runs with 0.90 recall (Figure 5a). For
the PPARγ system, the size of ZINC15 was scaled down 800
times at 0.75 recall, and 2300 times at 0.60. Similarly, we
observed a 66- and 654-fold size reduction using recalls of 0.75
and 0.60 respectively, for the GABAA target. Importantly, the
enrichment of the molecular subsets increased noticeably when
lower recalls were used, reaching up to 1450 for FPDE values
and again clearly indicating that density of virtual hits rapidly
decreases as we move away from the top of the DNN rank
(Figure 5b). Thus, the recall value can be chosen according to
the needed speed boost or computational resources available
to the user in order to further reduce the amount of docking
and/or postprocessing required at the end of DD runs.
Overall, the above analysis indicates that the DD procedure

can effectively discard most of unqualified molecules in a ultra
large docking database, without losing more than a predefined
percentage of virtual hits. In our opinion, this makes DD
methodology an efficient mean for conducting large-scale VS
campaigns involving billions of small molecule structures, and a
valid alternative to brute force approaches demanding large
amounts of computational resources.
DD Virtual Screening and Active Ligands. We also

investigated how DD method deals with active ligands that are
present in ultralarge docking databases. For five of the
investigated systems, namely, AR, ERα, PPARγ, VEGFR2,
and ADORA2A, the Database of Useful Decoys: Enhanced22

(DUD-E) provided sets of confirmed active ligands (details
about the data sets are reported in Table S2) that we docked to

their respective targets together with 1 million of random
compounds from ZINC15 (considered as inactive molecules).
Docking performances of FRED were variable across targets,
with AUC ROC values ranging from 0.52 to 0.91 (Figure 6a).
In parallel, we evaluated how DD ranks of compounds
(evaluated at 0.90 recall) correlated with their docking scores,
in particular, with their distance from the score cutoff used to
define virtual hits and nonhits in the last iteration, using
random samples of 1 million ZINC15 molecules docked to
each target (Figure 6b). DD appears to clearly bias final sets
toward high docking scores, and since active ligands score
better than inactives based on AUC values, we expected active
ligands to be discarded at lower rates than inactive molecules.
Thus, we plotted the rank of active ligands against their score
distance from the virtual hit cutoff (Figure 6c). As expected,
DD worked particularly well for systems with many high
scoring actives and good AUC values, such as AR and ERα, for
which all active, top scoring ligands were retained. Interest-
ingly, DD retained also a significantly large amount of active
ligands with nonhits scores for all targets, at about 10-fold
higher rates than remaining ZINC15 nonhits.
Then, we calculated the enrichment factors (EFs) for active

compounds on top 100 000, 1 000 000, and 10 000 000 ranked
molecules, for the fivr systems. Not surprisingly, the highest
values were observed for AR and ERα, for which EFs for the
top 100 000 molecules were encouragingly high, 660 for AR
and 477 for ERα, and consistently decreased by evaluating
larger portion of top scoring molecules (Figure 6d). For the
other three systems, a clear trend for enrichments was not
observed when different sizes were considered. Nevertheless,
all the considered subsets of molecules were enriched with
active ligands, showing EFs of at least six. Thus, selecting a
subset of top ranked DD molecules seems to be a valid
alternative to lowering the recall value in order to limit the
amount of final docking, when limited computational resources
are available. Furthermore, EFs calculated over all DD hits

Figure 5. DD size reduction power depends on recall values. (a) Final number of molecule (in logarithmic scale) predicted as virtual hits by DD
and (b) FPDE values obtained for PPARγ and GABAA systems by varying the virtual hit recall values.
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ranged between 11 and 14 for all systems. Thus, DD not only
enables extraction of controlled portions of virtual hits from an
ultralarge docking database, but also enriches final subsets with
active hit molecules. Remarkably, this unexpected DD feature
of retaining actives regardless of their scores resulted in
enrichment also for targets showing near-to-random docking
performance, such as the ADORA2A system.

■ DISCUSSION

With the increasing automation of synthetic procedures, the
focus of modern drug discovery campaigns will be shifting
toward screening of increasingly larger molecular libraries
consisting of billions of chemical structures. To reinforce such

opportunity, docking protocols demonstrate improved per-
formance on larger make-on-demand databases, effectively
yielding novel, diverse, and nontraditional chemotypes for drug
discovery endeavors.7 It could be noted, however, that most of
time and resources invested in modern docking campaigns are
spent on processing unfavorable molecular structures, while
the emerging “negative” data are also not being utilized in any
way or form.
Hence, to keep the pace with an ever-expanding chemical

Big Data space and to fully utilize results generated by docking
programs “on a fly”, we have developed the Deep Docking
protocol DD, a DNN-based method for processing large
chemical libraries with conventional computational and
software resources. The method relies on iterative docking of

Figure 6. (a) ROC curves for FRED docking of active ligands to five targets. Actives were mixed with 1 million of randomly sampled ZINC15
molecules. AUC value for each target is reported in brackets. (b) DD rank (logarithmic scale) versus distance of scores from cutoff values of
random samples of 1 million ZINC15 compounds docked to the five targets. (c) DD rank (logarithmic scale) versus distance from score cutoff for
active ligands. Kept (recalled) ligands are represented with yellow dots, discarded ligands are represented with blue dots. (d) Enrichment factor
(EF, logarithmic scale) of active ligands when top 100 000, 1 000 000, 10 000 000, and all DD hits are considered.
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a small portion of a parental ultralarge docking database (such
as ZINC15) using a docking program of choice and utilizes
generated scores (both favorable and unfavorable) to train
ligand-based QSAR models. These models then enable
approximation of the docking outcome for unprocessed
database entries. Importantly, DL allows the use of simple
2D protein-independent descriptors such as Morgan finger-
prints to capture the docking scores. We have demonstrated
that such approach can yield a manageably small subset of a
database, highly enriched with favorably “dockable” molecular
structures.
We proved the power of DD by screening all 1.36 billion

entries of ZINC15 against 12 prominent drug targets, where
the original ultralarge docking database was significantly
reduced while retrieving a controlled, high portion of favorably
docked molecules. At the same time, most of low scoring
molecules were removed without investing time and resources
in them, and the generated ZINC subsets were highly enriched
in potential virtual hits. Notably, screening an ultralarge
docking database using DD requires docking up to 50 times
fewer molecules compared to conventional docking, while
losing only about 10% of virtual hits. We also showed that DD
can further shrink an ultralarge docking database to a few
hundreds of thousands of molecules while still retrieving a
significant part (60%) of top scoring hits. Moreover, DD
appears to enrich final subsets with active ligands, even when
only small portions of top ranked molecules are considered.
This unexpected result suggests that true binders carry on
certain chemical features that are complementary to the
binding pocket and that the model is able to capture such
features through the QSAR descriptors.

■ CONCLUSION

In the current work, we introduced the use of deep learning in
structure-based drug discovery in a novel way. The developed
Deep Docking approach utilizes QSAR models trained on
actual docking scores of a small subset of a molecular database
to predict docking scores for the rest. Such approach, being
used in an iterative manner (with predefined recall parameters)
allows significant savings of docking runtime, without notable
loss of potentially “dockable” entities or active ligands. The use
of Deep Docking circumvents computational limits of large-
scale docking campaigns and makes billion-entries molecular
databases accessible even with limited computational resour-
ces.
Collectively, our results strongly advocate the use of deep

learning for exploration of continuously expanding chemical
space in search for new therapeutics.

■ METHODS

QSAR Descriptors. SMILES of 1.36 billion molecular
structures were downloaded from ZINC15.5 Morgan finger-
prints with a size of 1024 bits and a radius of 2 were generated
using the RDKit package.23

Protein Targets. The X-ray structures of AR,24 ERα,25

PPARγ,26 CAMKK2,27 CDK6,28 VEGFR2,29 ADORA2A,30

TBXA2R,31 AT1R,32 Nav1.7,33 GLIC,34 and GABAA35

containing cocrystallized ligands were extracted from the
Protein Data Bank (PDB).36 Details about the selected target
structures are summarized in Table S1.
Molecular Docking. PDB structures were optimized using

the Protein Preparation Wizard module from the Schrödinger

suite,37 and docking grids were prepared using the MakeR-
eceptor utility from OpenEye.38 SMILES were processed using
QUACPAC8 in order to generate dominant tautomer and
ionization states at pH 7.4. The OMEGA’s pose module39,40

was used to generate multiple 3D optimal conformers for
FRED docking. Docking simulations were carried out using
FRED program and Chemgauss4 scoring function from
OpenEye.21

Database Sampling. The optimal number of molecules
required for the training set was determined by running one
DD iteration for each target, using different sizes for training,
validation, and test set (10 000, 20 000, 40 000, 80 000,
160 000, 320 000, 640 000, and 1 million molecules). For
each sample size, computations were repeated five independent
times. The optimal sampling size was then chosen by
evaluating means and standard deviations of recall values in
the test sets for all targets.

DD Workflow. Initial training, validation, and test sets used
for the DL model consisted of 1 million molecules each that
were randomly sampled from ZINC15 during the first DD
iteration. Each set was docked to the target of interest and then
divided into virtual hits and nonhits based on the generated
docking scores. The score cutoff used to determine the class of
molecules was determined in order to split the validation in 1%
top scoring molecules (virtual hits) and 99% nonhits.
Molecules of each set with docking scores equal or more
favorable than the cutoff value were assigned to the virtual hit
class, while remaining molecules were assigned to the nonhit
class. The DNN model was trained using classes and molecular
descriptors of the processed entries and then used to predict
virtual hits and unqualified molecules from the whole ZINC15
based on molecular descriptors. From the second iteration
onward, the training set was expanded with 1 million molecules
randomly sampled from hits predicted in the previous
iteration, while validation and test sets remained unchanged
for all the length of the DD run. The score cutoff was gradually
decreased (corresponding to higher predicted target affinity)
after each iteration to keep selecting better compounds. This
reduction was done by linearly lowering the percentage of top
scoring molecules in the validation set assigned to the virtual
hit class from 1% in the first iteration to 0.01% in the last one.
A linear variation of the score cutoff was chosen in order to
avoid large variations in initial iterations, which could restrict
the model to comprehensively explore chemical classes. Thus,
the cutoff value in iteration 2 corresponded to the highest
(worst) docking score of the top 0.9% ranked compounds, in
iteration 3 it corresponded to the highest docking score of top
0.8% compounds, and so on.

Evaluation Metrics. All evaluation metrics were calculated
on the test sets. Precision was calculated as

precision
TP

TP FP
=

+ (1)

where TP (true positives) were virtual hits correctly predicted
by the DNN, and FP (false positives) were actual nonhits that
were incorrectly classified as virtual hits by the DNN.
Recall was calculated as

recall
TP

TP FN
=

+ (2)

where FN (false negatives) were virtual hits incorrectly
discarded by the DNN.
Enrichment values were calculated as
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Ntop enrichment
TP

TP
N

N

top

random
=

|
| (3)

with TP|top N as the number of TP found within the top N
ranked molecules by the DNN, and TP|random N as the number
of TP found within N randomly sampled molecules. N was set
to values equal to 10, 100, and 1000.
FPDE was calculated as the ratio between precision (eq 1)

and random precision:

random precision
TP

total molecules
database

database
=

|
| (4)

Deep Learning. The Keras Python library41 was used for
building and training feed-forward DNN models.42 Model
hyperparameters were set as the number of hidden layers and
neurons, dropout frequency, as well as oversampling of the
minority class and class weights, in order to deal with highly
imbalanced data sets (1−0.01% of virtual hits). A lower
threshold value was established for the DNN probabilities
(indicating the likelihood of molecules of being virtual hits)
and used as criterion to assign molecules to the virtual hit class
upon prediction. The threshold was chosen each time in order
to retrieve 90% of the actual virtual hits (i.e., top scoring
molecules) of the validation set. Model selection was
performed by running a basic grid search to identify the set
of hyperparameters providing the highest FPDE value in the
test set. The best model was then applied to all ZINC15
entries in order to predict virtual hits and nonhits.
Active Ligands. Active compounds were obtained from

the DUD-E repository for available targets.22 If not already
present in ZINC15, SMILES and relative Morgan fingerprints
of compounds were calculated and added to it. The molecules
were prepared and docked to the respective targets as
previously described. Enrichment factors after top N
molecules,43 ranked by DD probability of virtual hit-likeness,
were calculated as

( )
EF

actives

actives

N

N
database mol database

=
|

| | (5)

with actives|N being the number of active ligands found in top
N molecules, actives|database the total number of active ligands,
and mol|database the database size.
Hardware. We used a 6 Intel(R) Xeon(R) Silver 4116

CPU @ 2.10 GHz (a total of 60 cores) for docking and 4
Nvidia Tesla V100 GPUs with 32 GB memory for DNN model
training and inference.
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receiver operating characteristics; FPDE, full predicted data-
base enrichment; PDB, Protein Data Bank; TP, true positives;
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