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Purpose: To develop an automated pipeline based on convolutional neural networks 
to segment lumbar intervertebral discs and characterize their biochemical composi-
tion using voxel-based relaxometry, and establish local associations with clinical 
measures of disability, muscle changes, and other symptoms of lower back pain.
Methods: This work proposes a new methodology using MRI (n = 31, across the 
spectrum of disc degeneration) that combines deep learning–based segmentation, 
atlas-based registration, and statistical parametric mapping for voxel-based analysis 
of T1ρ and T2 relaxation time maps to characterize disc degeneration and its associ-
ated disability.
Results: Across degenerative grades, the segmentation algorithm produced accurate, 
high-confidence segmentations of the lumbar discs in two independent data sets. 
Manually and automatically extracted mean disc T1ρ and T2 relaxation times were in 
high agreement for all discs with minimal bias. On a voxel-by-voxel basis, imaging-
based degenerative grades were strongly negatively correlated with T1ρ and T2, par-
ticularly in the nucleus. Stratifying patients by disability grades revealed significant 
differences in the relaxation maps between minimal/moderate versus severe disabil-
ity: The average T1ρ relaxation maps from the minimal/moderate disability group 
showed clear annulus nucleus distinction with a visible midline, whereas the severe 
disability group had lower average T1ρ values with a homogeneous distribution.
Conclusion: This work presented a scalable pipeline for fast, automated assessment 
of disc relaxation times, and voxel-based relaxometry that overcomes limitations of 
current region of interest–based analysis methods and may enable greater insights 
and associations between disc degeneration, disability, and lower back pain.
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1  |   INTRODUCTION

Low back pain (LBP) is the leading cause of disability glob-
ally,1 with a 38%2 average lifetime prevalence. Treatments, 
lost wages, and reduced productivity cost the United States 
over $100 billion3 every year. Although LBP is widespread, 
its clinical presentation is complex and its pathophysiology 
is poorly understood.4 Identifying patients’ pain-generating 
structures and determining the appropriate treatment course 
remains a challenge5,6: Despite a 6-fold increase in Medicare 
expenditures on LBP treatments over 10 years, patient out-
comes have not improved. There is an urgent need for the 
discovery of noninvasive biomarkers that distinguish LBP 
phenotypes.

A common mechanism for developing LBP is interverte-
bral disc degeneration, which occurs when disc homeostasis 
is perturbed by injury or aging.7 A cascade of biochemical 
and microstructural changes take place, including loss of 
glycosaminoglycans, disorganization of annular collagen, 
and dehydration.8 These early-stage changes precede large-
scale morphological changes that are associated with pain 
and disability.9 Conventional MRI sequences and grading 
systems (Pfirrmann10/modified Pfirrmann11) are used to de-
termine the severity of disc degeneration through qualitative 
assessment of disc morphology and signal intensity of the 
nucleus and annulus. These methods are limited by moderate 
interrater reproducibility10 and broad binning of disc phe-
notypes.12 Quantitative MRI (qMRI) is a powerful tool that 
is capable of detecting local variations in disc composition; 
however, its use is limited by coarse, unreliable, and slow 
manual analyses methods.13-17

T1ρ mapping, or spin-lock imaging, is a qMRI sequence 
that probes slow interactions between bulk water and extra-
cellular matrix macromolecules by applying a continuous, 
low-frequency RF pulse. T2 mapping, or spin-spin imaging, 
is a quantitative sequence that is sensitive to hydrated colla-
gen and its orientation. These sequences create parametric 
maps that reflect the spatial distribution of biochemical com-
ponents within an imaged tissue. Both T1ρ and T2 relaxation 
times are strongly positively correlated with hydration and 
glycosaminoglycan content, and negatively correlated with 
clinical grades of disc degeneration in human intervertebral 
disc studies.13,18-23 For image analysis, the referenced studies 
calculate the average T1ρ and T2 relaxation times in the whole 
disc or within user-defined regions of interest (ROIs): ante-
rior annulus, posterior annulus, and nucleus. The averaging 
operation performed disregards potentially relevant infor-
mation about the local distribution of relaxation values, thus 
decreasing the method’s ability to capture subtle changes 
in biochemistry. In hip and knee cartilage studies,24,25 local 
analysis of T1ρ and T2 relaxation times revealed patterns 
that could differentiate between osteoarthritic patients and 
healthy patients, whereas these patterns were not detectable 

with ROI analysis. Additionally, variability in manual ROI 
placement introduces selection bias in the quantification of 
relaxation times and limits method scalability.

Although manual ROI methods are common for qMRI 
analysis, there is longstanding interest in the automation of 
tools for conventional MRI analysis. For example, interverte-
bral disc segmentation on sagittal T2-weighted images is tack-
led using computer vision methods including graph-cuts,26 
fuzzy clustering,14 shape modeling,27 and active contours.28 
Classical computer vision approaches have been moderately 
successful in small data sets of healthy patients; however, the 
handcrafted features they rely on do not generalize well to un-
seen data or sequences with highly anisotropic voxels. Spinal 
tissues vary in intensity, volume, shape, and position within 
the spine, whereas SNR depends on acquisition parameters. 
This data diversity presents multiple challenges to classical 
algorithm development. Recent advancements in convolu-
tional neural network architectures and training strategies 
have enabled the development of algorithms that can learn 
the general image features needed to accurately segment one 
or multiple spinal structures, even on small data sets.29,30

We therefore propose a new analysis pipeline to address 
current limitations in the sensitivity, reliability, and scal-
ability of quantitative imaging analysis. Unlike ROI-based  
approaches, our method combines deep-learning segmenta-
tion and atlas registration to perform analyses voxel-wise. 
Our method leverages a recently published convolutional 
neural network to segment the intervertebral disc and guide 
the registration. We hypothesize that a voxel-based relaxom-
etry approach will reveal localized differences in disc bio-
chemical composition among patients, while still correlating 
strongly with established measures of disc degeneration.

2  |   METHODS

An overview of the voxel-based relaxometry pipeline is shown 
in Figure 1 and consists of three parts: disc segmentation and 
registration, image fitting, and statistical analysis. Intervertebral 
discs are segmented automatically, after which the mask for 
each disc level is used as input into the registration algorithm. 
The goal of spatial registration is to find a mapping between 
the input disc mask and a template disc mask (i.e., to find a 
deformation field that, when applied to the input disc, will cre-
ate spatial correspondence between the input and the template). 
This deformation is applied to all images before fitting image 
intensities to calculate relaxation times. Once all subjects are 
registered to the same space, statistical analyses are performed 
at each voxel. Mask-guided registration was deemed necessary 
when intensity-guided registration failed to accurately register 
the discs, and image similarity metrics were unreliable indica-
tors of registration performance. Disc and vertebra vary in in-
tensity, volume, and positioning among subjects, making these 



1378  |      IRIONDO et al.

tissues ill-suited for intensity-based registration methods (fail-
ure mode in Supporting Information Figure S2).

The approach was developed and evaluated on lumbar spine 
MR T1ρ-weighted images from two studies (study A31 and 
study B32) in compliance with the institutional review board. 
Results from data set A and data set B are presented in the 
text, and color coding of the disc levels is carried throughout 
all of the figures. Data set A included 16 subjects (10 with doc-
umented LBP, 6 controls) scanned at a single time point. The 
study acquired a single-slice T1ρ map (2D fast spin echo) and 
T2-weighted images aiming to quantify the biochemical signa-
ture of symptomatic degenerative discs. Data set B consisted of 
15 patients with documented LBP scanned at baseline, with 4 
returning for a follow-up scan within a year. The study acquired 
multislice T1ρ/T2 maps (3D spoiled gradient echo), T2 weighted 
images, and paraspinal muscle fat-fraction maps with the goal 
of identifying MR biomarkers related to pain and disability. 
Demographic variables, clinical variables, and MR sequences 
for each data set are detailed in Table 1. Categorical variables 
in each data set are compared with Fisher’s exact test, while 
continuous variables are compared with two-sided t-tests.

2.1  |  Segmentation

Ground-truth masks for segmentation network training were 
generated by annotating lumbar discs L1L2-L5S1 on a single 

sagittal slice (data set A, fully manual) or multiple sagittal 
slices of the T1ρ sequence (data set B, 3D region growing 
algorithm with manual seeds and manual edits32) with an 
in-house spline-based annotation tool in MATLAB 2018a 
(MathWorks, Natick, MA). Throughput for manual annota-
tions was about 90 seconds per disc per slice (7.5 minutes 
per slice).

Data were split per subject, and a 5-fold cross-validation 
strategy was used to train five identical coarse-to-fine con-
text memory (CFCM) networks33 with a 80/20 (62 slices/18 
slices) train–test division, ensuring that data sets A and B 
were each represented in the splits. Image preprocessing, net-
work architecture, training, and hyperparameter details are 
found in Supporting Information Figure S1. Each image was 
loaded, and an adaptive histogram was equalized to enhance 
the appearance of local low-contrast tissues, then normal-
ized to zero mean and unit variance. Unique augmentations 
were produced every epoch, introducing enough variability 
to regularize network training. After training each of the five 
networks, inference was run on an independent test set and 
segmentations fed into the registration pipeline. To properly 
evaluate the network’s generalization capability, all segmen-
tation results presented herein were inferred using the single 
network that never trained on those subject’s slices. For fu-
ture applications of this pipeline on new T1ρ-weighted data, 
a five-network ensemble (logits averaging) would be recom-
mended for segmentation inference.

F I G U R E  1   Overview of segmentation (I), registration (I,II), fitting (II), and statistical analysis pipeline for lumbar intervertebral disc 
characterization with quantitative MRI (qMRI). Once optimized, one or multiple qMRI slices are fed into the 2D segmentation algorithm, after 
which a single mask or a stack of masks enter the registration procedure. Once deformation fields for each disc are found, they are applied to the 
various echoes of the qMRI sequence before mono-exponential fitting. For visualization purposes, the registered T1ρ relaxation map for subject 
A is rendered on a spine mesh in step III. If multiple qMRI sequences exist, such as T2 relaxation maps, the deformation fields found in step I 
are applied to additional sequences in step II. Details on network implementation are found in Supporting Information Figure S1. Abbreviations: 
CFCM, coarse-to-fine-context memory; LM, Levenberg-Marquardt; SGD, stochastic gradient descent; TSL, time spin lock
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The performance of the segmentation algorithm is eval-
uated per disc using semantic segmentation metrics (Dice 
overlap, mean surface distance, percent volume difference, 
sensitivity, and precision). The 2D version of the metrics 
is used to analyze single-segmented slices from data set A, 
while the 3D version analyzes stacks of segmented slices 
from data set B. To further evaluate segmentation perfor-
mance, mean disc T1ρ and T2 relaxation times are extracted 
using the manual segmentation and the inferred segmenta-
tion. Biomarker extraction accuracy on each disc is evalu-
ated by comparing manually and automatically extracted 
mean T1ρ and T2 values with Pearson correlation, a paired 
two-sided t-test for differences, and Bland-Altman analysis 
for bias. Segmentation performance and biomarker extraction 
are contextualized with radiological scores for degeneration 
Pfirrmann/modified Pfirrmann, scored on a 1 to 5 scale and 
a 1 to 8 scale in terms of increasing degeneration. To ex-
amine the effect of changing the segmentation algorithm, 
three U-Net variants were trained and evaluated as previously  
(results in Supporting Information Figures S7-S9).

2.2  |  Registration

Inferred segmentations were registered to a lumbar disc 
atlas using Elastix,35 ElastixFromMatlab wrapper (National 
Center for Scientific Research/Riverside Research), and 
MATLAB 2018a. Segmentations were postprocessed, iden-
tifying connected components in 2D or 3D larger than 125 
voxels and labeling them in the inferior–superior direction 
(L5/S1 to L1/2). Registration was performed between the 
inferred disc mask and the atlas disc mask on a disc-by-disc 
basis. A healthy spine mask without gross morphological 
deformities was selected as the atlas to minimize registra-
tion artifacts (another healthy spine and a degenerated spine 
mask were tested as atlases in robustness experiments pre-
sented in Supporting Information Figures S10 and S11). 
Per disc, the mask is translated to align with the centroid of 
the atlas disc mask before the two-step registration. First, a 
four-resolution recursive pyramidal affine registration rig-
idly scales, rotates, and shears the disc mask, providing ini-
tialization for the second step. Then, a b-spline registration 
elastically deforms the disc segmentation, guided by mutual 
information with a rigidity penalty term to avoid large local 
deformations. The two-step registration maximizes the over-
lap between the inferred disc mask and the template disc 
mask while preserving the original topology of the inferred 
disc. The resulting 2D (data set A) and 3D (data set B) defor-
mation fields are applied to all T1ρ and T2 echoes, and a two-
parameter Levenberg-Marquardt mono-exponential fitting 
is performed voxel-wise to create parameter maps of T1ρ and 
T2 relaxation times in the registered space. B-spline registra-
tion parameters including final grid spacing (2), iterations 

(200), and rigidity penalty weight (0.77) were selected using 
Bayesian optimization, a method commonly used for hy-
perparameter tuning of machine-learning models. Bayesian 
optimization performs registration over many iterations, the 
choice of the next registration parameters informed by the 
performance of the previous parameters, which are evalu-
ated for all discs by calling the registration pipeline and 
treating the result of the objective function (Equation 1) as 
an observation.

where N is the total number of discs; DSC
i
 is the Dice overlap 

coefficient DSC
i
=

2∗TP

2∗TP+FP+FN
; and �(J)

i
 is the SD of the de-

terminant of the spatial Jacobian.
The determinant of the Jacobian of the deformation field 

is a pixel-wise description of volume changes: expansion  
(J > 1), compression (0 < J < 1), folding (J < 0), or constant 
volume (J = 1). Statistics computed across all pixels in the 
original disc space quantitatively describe the effect of reg-
istration. Per disc, Jacobian determinant values are centered 
around 1, with the SD describing the severity of local ex-
pansion and compression. Evaluations of the objective func-
tion guide the Bayesian optimizer, maximizing Dice overlap  
between the inferred disc mask and the atlas mask, while min-
imizing the SD of the determinant of the Jacobian across all 
registered discs for all subjects to find the optimal registration 
parameters. All resulting deformation fields and relaxation 
maps were checked to ensure that local topology and distri-
bution of relaxation values were preserved after registration.

2.3  |  Statistical analyses

Four types of voxel-wise statistics are performed on the 
registered T1ρ/T2 maps from each study. Only voxels meet-
ing threshold criteria (data set A [T1ρ < 250 ms], data set  
B [T1ρ < 200 ms, T2 < 150 ms]) are included. Missing data at 
the patient level (e.g., missing questionnaire) or at the disc level 
(e.g., missing Pfirrmann data) exclude patient maps from the  
analysis concerning those variables. Voxel-by-variable statis-
tics examine local associations between relaxation maps and 
measured outcomes with Pearson correlation or partial cor-
relation, with adjustments for age, gender, body mass index, 
and group assignment when relevant. Correlation coefficient 
maps and P-value maps are visualized. Voxel-by-group statis-
tics compare the average relaxation maps of subjects grouped 
by demographic or clinical variables (e.g., high disability,  
low disability) or by group assignment, unpaired t-test 
checking for significant differences between groups. The av-
erage map for each group and P-value map is visualized.  
Voxel-by-voxel statistics calculate within-subject voxel-wise 

(1)L =
1

N

N
∑

i= 1

(

1 − DSC
i
+ �(J)

i

)
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correlation between two relaxation maps (e.g., T1ρ, T2). 
These values are compared with Pearson correlation; cor-
relation coefficient maps and P-value maps are visualized. 
Voxel-by-time statistics are primarily for testing longitudinal 
changes in relaxation maps within subjects. Given the low 
number of follow-ups, statistical differences between base-
line and follow-up cannot be computed. In larger studies, 
longitudinal difference maps would be tested for association 
with changing clinical outcomes or for differences between 
groups in which baseline, follow-up, and difference relaxa-
tion maps are visualized. Correlation results for data set A are 
visualized as a single slice on a spine mesh, while correlation 
results for 3D volumetric data are visualized as two central 
slices on a spine mesh. All postprocessing and statistical tests 
were performed using Pingouin (0.2.6), SciPy (1.2.0), and 
StatsModels (0.9.0) using Python 3.6, with α < 0.05.

3  |   RESULTS

The data sets used for method development are similarly dis-
tributed in age, body mass index, and height (full description 
in Table 1). Significant differences exist in gender ratios, pro-
portion of LBP patients, Oswestry Disability Index scores, 
and degenerative grades (Pfirrmann 1: 12%, 2: 54%, 2.5: 8%, 
3: 24%, 3.5: 1%, and 4: 1% versus Modified Pfirrmann 1: 
8%, 2: 36%, 3: 23%, 4: 3%, 5: 1%, 6: 14%, 7: 10%, and 8: 
5%). When data sets A and B are combined, the final data 
set evenly samples the spectrum of morphologic and sympto-
matic intervertebral disk disease (IVDD).

Across data sets and degenerative grades, the CFCM net-
works produced accurate, high-confidence segmentations 
of the lumbar discs. Representative segmentations before 

thresholding probabilities at 0.5 are shown in Figure 2. 
Predicted probability maps show the network highest uncer-
tainty along disc boundaries, particularly at the anterior and 
posterior annulus-ligament interface. Per slice, automatic 
segmentation of all discs took 0.393 seconds, over 1000 
times faster than manual segmentation.

Evaluated using segmentation metrics (Table 2), the 
network produced segmentations with Dice overlap (Dice 
similarity score [DSC]) consistently above 0.85 and mean 
absolute surface distance (MSD) less than 1 pixel at all lev-
els, approaching the limit of image resolution. As a metric, 
DSC is sensitive to the size of the ground-truth structure, as 
a single pixel error will disproportionately lower DSC for a 
small disc compared with a large disc. The lowest perform-
ing disc segmentation was L5S1, which is the smallest, most 
likely to be degenerated and most challenging to manually 
segment. The highest performing disc was L3L4, which 
was usually the largest and always centered in the FOV. 
Volume difference (%VD), sensitivity (Sens), and precision 
(Prec) between ground truth and network segmentations 
revealed that the networks were biased toward moderate 
overestimation of disc volume in data set B (greater num-
ber of false-positive voxels), whereas data set A had slight 
overestimation and underestimation depending on the disc 
level. Comparing segmentation metrics against radiological 
grades of degeneration, the networks showed lower DSC 
performance in more degenerated discs, whereas MSD and 
%VD were invariant to degenerative grade, suggesting that 
lowered performance could be a result of the metric itself 
(Supporting Information Figure S3). Pooled lumbar spine 
metrics (n = 88, n = 92) were 0.904, 0.898 DSC; 0.936, 
0.236 MSD; +0.07, −3.52 %VD; 0.904, 0.913 Sens; and 
0.912, 0.888 Prec, respectively.

F I G U R E  2   Input qMRI slice, ground-truth mask, and predicted segmentation probabilities for 4 test subjects: 2 from data set A (left) and 
2 from data set B (right). The 2D-CFCM segmentation network demonstrates consistent performance in both T1ρ acquisition sequences, across 
grades of disc degeneration, and spinal morphology without off-target segmentation predictions. Probabilities are thresholded at 0.5 to create 
binary masks. Additional segmentation experiments were performed using U-Net architectures; segmentation results are presented in Supporting 
Information Figures S7-S9
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Manually and automatically extracted mean disc T1ρ and 
T2 relaxation times show strong, significant correlations 
at all disc levels (Table 3). All disc correlations for data set  
A T1ρ were r = 0.995, P = 7.4e-84, and bias = −0.74 ms 
(−4.35, 2.87); data set B T1ρ were r = 0.990, P = 4.1e-78, and 
bias = −0.01 ms (−4.36, 4.33); and T2 r = 0.984, P = 2.5e-70, 
and bias = 0.12 ms (−3.55, 3.79), with no trends evident in 
difference plots (Figure 3). Data set A showed more precise 
biomarker extraction with a slight bias toward overestimat-
ing relaxation times, particularly in L5S1. Data set B had less 
precise T1ρ biomarker extraction (as observed with the wider 
confidence intervals) but produced unbiased estimates of re-
laxation time. Correlations between manual and automatic T1ρ 
times in data set B were stronger than correlations between T2 
times, in all discs except L5S1. The T1ρ and T2 biomarker  
extraction accuracy did not change with increasing degener-
ative grade and remained within 5 ms of manually extracted 
values in all but two discs (Supporting Information Figure S4).

Qualitatively, the two-step registration approach success-
fully morphed the lumbar discs into the atlas space, preserv-
ing the spatial distribution of relaxation times in the nucleus 
and annulus as well as the total distribution of intensity val-
ues across the disc; the effect of registration is visualized in 
Figure 4. Performance was consistent across degenerative 
grades. Histogram plots of disc intensities show good agree-
ment between the values before and after registration, indi-
cating that deformations were applied smoothly throughout 
the disc, and disc regions are represented fairly. Disc bound-
aries, particularly the anterior and posterior disc–ligament in-
terface, showed the most variability in registration accuracy.

Example statistical parametric maps are visualized in 
Figures 5-7. Local patterns in relaxation-time maps show 
significant associations with radiological grading, as well 
as clinical measures of disability. Imaging-based Pfirrmann/
modified Pfirrmann degenerative grades were strongly neg-
atively correlated with the T1ρ maps in both data sets and 

T A B L E  2   Dice similarity score, mean absolute surface distance at disc boundary, percent volume difference, sensitivity, and precision results 
per disc for each data set (95% confidence intervals in parenthesis) 

  L5S1 L4L5 L3L4 L2L3 L1L2

Data set A          

DSC 0.871 (0.848, 0.893) 0.916 (0.907, 0.926) 0.932 (0.923, 0.941) 0.915 (0.903, 0.928) 0.883 (0.852, 0.913)

MSD 1.37 (0.976, 1.76) 0.836 (0.748, 0.923) 0.683 (0.596, 0.769) 0.820 (0.687, 0.953) 0.972 (0.716, 0.228)

%VD 2.60 (−6.03, 11.24) −1.91 (−7.23, 3.40) 0.51 (−3.10, 4.13) 1.19 (−3.18, 5.57) −2.28 (−11.7, 7.19)

Sens 0.858 (0.824, 0.893) 0.925 (0.902, 0.949) 0.930 (0.910, 0.950) 0.911 (0.883, 0.938) 0.894 (0.843, 0.945)

Prec 0.896 (0.85, 0.942) 0.913 (0.885, 0.941) 0.937 (0.918, 0.956) 0.924 (0.906, 0.943) 0.886 (0.841, 0.931)

Data set B          

DSC 0.877 (0.858, 0.897) 0.895 (0.877, 0.914) 0.913 (0.898, 0.928) 0.899 (0.875, 0.922) 0.901 (0.890, 0.912)

MSD 0.300 (0.205, 0.395) 0.265 (0.176, 0.354) 0.186 (0.153, 0.219) 0.215 (0.170, 0.260) 0.215 (0.173, 0.258)

%VD −1.70 (−8.04, 4.64) −2.95 (−9.87, 3.95) −5.25 (−10.5, −0.00) −4.78 (−10.4, 0.86) −2.71 (−7.81, 2.37)

Sens 0.886 (0.85, 0.921) 0.909 (0.875, 0.943) 0.937 (0.917, 0.957) 0.92 (0.891, 0.949) 0.914 (0.889, 0.939)

Prec 0.876 (0.846, 0.907) 0.89 (0.858, 0.923) 0.896 (0.866, 0.926) 0.884 (0.85, 0.918) 0.894 (0.869, 0.919)

Note: Performance results for additional segmentation experiments are found in Supporting Information Figures S7 and S8.
Abbreviations: DSC, Dice similarity score; MSD, mean absolute surface distance; Prec, precision; Sens, sensitivity; %VD, percent volume difference.

T A B L E  3   Comparison of manually and automatically extracted relaxation values with Pearson correlation coefficient rcoeff and bias 
measurement per disc for each data set (P-values, [95% confidence intervals])

  L5S1 L4L5 L3L4 L2L3 L1L2

Data set A          

T1ρ rcoeff 0.987 (P = 3.0e-13) 0.998 (P = 3.6e-20) 0.997 (P = 1.4e-20) 0.998 (P = 4.5e-20) 0.995 (P = 1.1e-14)

T1ρ bias (ms) −2.0 (−8.16, 4.07) −0.3 (−2.44, 1.74) −0.5 (−2.33, 1.21) 0.0 (−2.12, 1.99) −0.6 (−3.72, 2.34)

Data set B          

T1ρ rcoeff 0.969 (P = 4.3e-11) 0.991 (P = 3.7e-16) 0.990 (P = 5.1e-16) 0.993 (P = 3.5e-17) 0.988 (P = 2.6e-14)

T1ρ bias (ms) −0.4 (−4.92, 4.01) 0.03 (−4.50, 4.56) 0.0 (−4.41, 4.40) 0.41 (−3.31, 4.15) 0.06 (−4.83, 4.96)

T2 rcoeff 0.975 (P = 7.1e-12) 0.984 (P = 3.8e-14) 0.983 (P = 6.5e-14) 0.991 (P = 4.0e-16) 0.979 (P = 1.6e-12)

T2 bias (ms) −0.2 (−3.63, 3.23) −0.1 (3.86, 3.49) 0.18 (−3.55, 3.92) 0.68 (−2.48, 3.84) 0.10 (−4.18, 4.39)

Note: Biomarker results for additional segmentation experiments are found in Supporting Information Figures S7 and S8.
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with the T2 maps in data set B (Figure 5). Significant cor-
relations are localized to lumbar disc nucleus and inner  
annulus, with correlation strength and significance increas-
ing in data set A’s lower disc levels (L3-4 through L5S1), 
while associations remain consistent across disc levels in data 
set B. The T2 correlations were similar, yet not identically 
distributed, to the T1ρ correlations, with T1ρ showing stronger 

and more significant correlations around the superior and 
inferior portion of the nucleus. Comparing the correlations 
of T1ρ values estimated from the whole-disc ROI approach, 
data set A (Pearson r L1L2: −0.15, P = .60; L2L3: −0.458,  
P = .07; L3L4: −0.516, P = .04; L4L5: −0.741, P = .001; 
L5S1: −0.772, P = .0005), and data set B (L1L2: −0.670,  
P = .003; L2L3: −0.660, P = .003; L3L4: −0.715, P = .0008;  

F I G U R E  3   Correlation scatterplot for all discs and Bland-Altman plots with the 95% limits of agreement (LOAs) for each disc level for 
comparison of manually and automatically extracted T1ρ and T2 relaxation times. In data set A’s L5S1 T1ρ Bland-Altman plot, the lower LOA 
at −8.16 ms was omitted to maintain the same y-axis range between plots. Biomarker results for data set A are from a single T1ρ map slice (2D), 
whereas results from data set B are from a stack of T1ρ and T2 map slices (3D)
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L4L5: −0.732, P = .0008; L5S1: −0.671, P = .003), the 
proposed voxel-based method confirms ROI associations 
and recovers significant associations in disc subregions not 
identifiable with ROI methods. For example, in data set A’s 
L2L3 disc, Pfirrmann grades are weakly and insignificantly 

correlated with mean whole-disc T1ρ values, yet the vox-
el-based method reveals a moderate, positive correlation in 
the inferior region of the nucleus.

Interestingly, results with respect to disability mea-
sures varied between the two data sets (Figure 6). Data 

F I G U R E  4   Example T1ρ maps before and after registration and distribution of T1ρ relaxation values within the segmented disc before and 
after registration, from 4 test subjects. The registration process preserves spatial patterns in relaxation maps, with consistent performance across 
degenerative grades. Histograms show the density and a Gaussian kernel density estimate of T1ρ relaxation times within the segmented disc before 
and after registration. Similarity between histograms indicates that the deformation was smooth and even, preserving the relative proportion of 
nucleus and annulus T1ρ relaxation times. Additional registration experiments were performed with another healthy spine atlas and a degenerated 
spine atlas; example maps are presented in the top panel of Supporting Information Figures S10 and S11



      |  1385IRIONDO et al.

set A shows strong, negative correlations between T1ρ and 
Oswestry Disability Index scores, whereas data set B shows 
weak, positive correlations between the two, particularly in 
the nucleus–annulus transition region of L4L5. Data set B’s 
T2 correlation maps mostly mirror those of T1ρ (Supporting 
Information Figure S5); however, positive correlations seen 
in L4L5 are stronger and have significant voxels clustered 
in the posterior inner annulus. The trends in data sets A and 
B appear to be opposite; however, the association between 
Oswestry Disability Index and T1ρ is only consistent in data 
set A, in which negative correlations are stronger and pres-
ent across multiple lumbar disc levels, with the exception of 
L5S1, where no relationship is evident. Again, these trends 
support whole-disc T1ρ findings, with the advantage that 
the voxel-based method can recover the anatomical loca-
tion of significant associations: data set A (Pearson r L1L2: 
−0.800, P = .001; L2L3: −0.650, P = .016; L3L4: −0.620, 
P = .024; L4L5: −0.674, P = .011; L5S1: −0.231, P = .45) 
and data set B (L1L2: 0.152, P = .57; L2L3: 0.224, P = .39; 
L3L4: 0.415, P = .098; L4L5: 0.574, P = .02; L5S1: 0.314,  
P = .24). Further stratifying patients in data set A by Oswestry 
Disability Index (minimal/moderate vs. severe disability) and 
performing a group comparison shows significant differences 

between the relaxation maps. Average T1ρ relaxation maps 
from the minimal/moderate disability group showed clear an-
nulus–nucleus distinction with a visible midline, whereas the 
severe disability group had lower average T1ρ values with a 
homogeneous distribution. Relative to other discs, low and 
high disability groups in both data sets had low mean relax-
ation values for the L5S1 disc.

Finally, T1ρ maps and T2 maps were highly and signifi-
cantly positively correlated, as observed with whole-disc 
ROI analysis (Pearson r from 0.954 to 0.989, with P < 1e-10) 
(Figure 7). However, voxel-by-voxel analysis suggests that 
correlation strength between T1ρ and T2 relaxation values is 
localized: The anterior annulus and near-endplate regions 
show weaker correlations than the rest of the disc space, for 
all lumbar discs. Additionally, correlation values in the center 
of the disc are heterogeneous, suggesting that the relationship 
between T1ρ and T2 values fluctuates throughout the disc.

4  |   DISCUSSION

We have demonstrated that the novel pipeline proposed 
for qMRI analysis of intervertebral discs is feasible and 

F I G U R E  5   Voxel-wise associations between T1ρ and T2 maps and Pfirrmann/modified Pfirrmann grading. Single-slice Pearson correlation 
with 5-point Pfirrmann grade for data set A (left) and two central slice correlation with 8-point modified Pfirrmann grade for data set B (right), 
each shown with corresponding P-value map. Voxel-wise associations for additional registration experiments are presented in the bottom panel of 
Supporting Information Figures S10 and S11



1386  |      IRIONDO et al.

addresses the limitations of conventional analysis methods. 
The intervertebral disc is a challenging tissue to analyze, due 
to its deformable structure, lack of anatomical landmarks, 
and variations in image intensity.

By integrating a convolutional neural network for seg-
mentation into our atlas-based registration pipeline, we de-
veloped a fast, robust, and scalable solution to analyze local 
patterns in intervertebral disc qMRI.

Merging data sets A and B was necessary for the devel-
opment of a robust analysis pipeline. Together, the data sets 
sample the full morphologic and symptomatic IVDD spec-
trum, including a range of degenerative grades and patient- 
reported outcomes such as pain and disability. Similarity in T1ρ  
image contrast and image prescription enabled the merging of 
these data sets for 2D-segmentation method development and 
validation. However, differences in acquisition parameters 

F I G U R E  6   (Top) Voxel-wise associations between T1ρ maps and Oswestry Disability Index (ODI) scores. (Bottom) Voxel-by-group 
analysis, mean relaxation T1ρ maps, and P-values for minimal/moderate (0-40 ODI score) and severe disability (> 40 ODI score) groups. The T2 
results for data set B are presented in Supporting Information Figure S5

F I G U R E  7   Voxel-wise associations in data set B between T1ρ and T2 maps, with Pearson correlation r map displayed from 0.5 to 1, and  
P-value map from P = 0 to P = .005
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(spin-lock pulse duration, spin-lock frequency, and voxel 
size) prevented joint registration and statistical analysis of 
relaxation maps. Given the limited sample size of each data 
set, the appearance of common trends in T1ρ correlation maps 
demonstrated face validity of our analysis pipeline. Trends 
in T2 correlation maps were similar but not identical to T1ρ 
maps, demonstrating the feasibility of integrating multiple, 
potentially complementary qMRI sequences into the analysis 
pipeline.

Our training strategy helped the CFCM segmentation net-
work learn to reliably segment image slices even with limited 
training data. The network was prevented from overfitting by 
aggressively augmenting every training iteration, using large 
batch sizes with batch normalization, no hyperparameter 
tuning, and creating data splits by subject. Both contrast and 
geometric augmentations were chosen to introduce diversity 
into the images, as disc shape, position, intensity, and texture 
vary widely between data sets. The choice of network was 
key in achieving high performance: The memory mechanism 
in the CFCM learns how to best fuse features to combine 
local and global context, and had fewer spurious segmenta-
tion predictions compared with U-Net.33 State-of-the-art disc 
segmentation performance in the T2 2015 challenge and the 
IVD3M 2018 challenge are Dice scores of 0.918 and 0.907, 
respectively. We believe the performance of our segmenta-
tion network is competitive with and more generalizable than 
other published disc segmentation methods, although a direct 
comparison is not possible due to differences in data sets and 
annotation methods. Data sets provided by disc segmentation 
challenges29,30 have more training data (576 segmented slices 
from 8 subjects in IVD3M) but are only trained on images 
from volunteers with healthy discs.

There are several reasons why the segmentation perfor-
mance in our data set decreased in discs with severe IVDD. 
First, manual segmentations are less reliable; loss of nucleus 
glycosaminoglycans, annular collagen, and dehydration lead 
to a decrease in disc volume. In turn, these changes are re-
flected in shorter tissue relaxation times and lower disc 
signal intensity on the T1ρ-weighted images, obscuring the 
boundary at the interface of the annulus and spinal ligaments, 
which compounds with partial-volume artifacts on edge 
slices. Second, there are fewer training examples of severely 
degenerated discs, and many degenerative phenotypes exist. 
Healthy discs are often surrounded by normal presenting anat-
omy, while severe IVDD is associated with fattier vertebral 
bone marrow, narrowed spinal canal, and even signal voids 
due to the vacuum phenomena.36 Finally, Dice coefficient 
and percent volume difference are sensitive to segmented tis-
sue size, and given the smaller disc volume in severe IVDD, 
single pixel errors disproportionately affected these results.

Our results demonstrate that errors in disc segmenta-
tion were not propagated to errors in biomarker extraction. 
Segmentation is performed on the first echo of the mapping 

sequence, and relaxation times are calculated from the mo-
no-exponential fit of all acquired echoes. Errors by the seg-
mentation network represent a small fraction of the total disc 
area, thereby not significantly skewing the mean. Error pixels 
may also contain intensity values that do not have high enough 
SNR for mono-exponential fitting or produce relaxation values 
outside of a feasible range, neither of which are included in the 
calculation of mean relaxation times. Even in the worst-per-
forming disc (L5S1 in data set A), the mean disc T1ρ errors 
ranged from −8 ms to 4 ms. Calculation of mean disc relaxation 
times from automatic segmentations is an intermediate output 
to validate the segmentation portion of the pipeline. However, 
our automatic segmentation method is a viable alternative to 
ROI-based analysis, as it is significantly faster (0.393 seconds/
slice compared with our 7.5-minute/slice manual, 12-second/
slice average for submissions to the T2 disc segmentation chal-
lenge30) and more reliable than manual segmentation.

The automatic segmentation network provides masks 
that are necessary to guide registration. Mutual informa-
tion-guided atlas registration is successful in other tissues, but 
intensity-based methods fail to register intervertebral discs 
(Supporting Information Figure S2). We hypothesize that this 
issue arises with cases of severe degeneration, in which in-
tensity signals from normal presenting anatomy are absent. 
The disc mask allows for good initialization of the registra-
tion algorithm and calculation of overlap metrics for Bayesian 
optimization of registration parameters. Our proposed objec-
tive function is designed to maximize registration accuracy 
while preventing significant deformations that would perturb 
the local distribution of relaxation values. This highlights the 
flexibility of our proposed pipeline, with automatic parameter 
tuning for application to other data sets or different atlases.

Local distribution of relaxation values was preserved 
throughout the registration procedure, even with alternate 
segmentation methods and atlas selection, thus demonstrat-
ing the success of the full analysis pipeline. Recent studies 
have recognized the limitations of coarse ROI methods and 
have attempted to address this problem with smaller ROIs in-
creasing the time, complexity, and bias introduced. In a group 
of healthy discs, our method’s average relaxation maps show 
distinctive regions corresponding to the annulus, nucleus, 
and disc midline; the patterns recovered in a fully data-driven 
manner without introducing user bias. Additionally, our vox-
el-based method showed greater sensitivity to small, signif-
icant associations within the disc such as that were washed 
out with whole-disc ROI averaging. Our proposed statisti-
cal parametric mapping method still performs an averaging 
procedure, on a voxel scale. This will show common trends 
within the studied group, but it is not ideal for the identifi-
cation of focal lesions.37 High-intensity zones, for example, 
would only be identified if they co-localized for a large group 
of patients. In voxel-by-group analysis, the maximum and SD 
maps could potentially identify these clusters.
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Different physiological loading demands explain varia-
tions in geometry, biochemical, and microstructural compo-
sition between disc levels. A level-specific atlas was used for 
registration, as it is inappropriate to pool relaxometry results 
from all discs. Relationships between relaxation values at 
different disc levels may reveal important associations with 
clinical outcomes. Additionally, the strength of the relation-
ship between T1ρ and T2 relaxation times was highly spatially 
dependent, indicating that each of these biomarkers may re-
veal differences in local biochemistry, which are observed in 
human disc specimens.38

The limitations of this work are discussed in two parts: the 
pipeline and data set. As a pipeline, segmentation network 
training and registration optimization impose upfront com-
putational and time costs. However, once these sections have 
been optimized to the target task, processing time is faster 
than manual ROI analysis methods. As for the data set, one 
or two 8-mm sagittal qMRI slices do not fully capture bio-
chemical composition of the intervertebral disc. Both data set 
A and data set B reported that SNR prevented the acquisition 
of thinner slices, although recent developments may address 
this limitation.

Finally, low sample size prevented meaningful inter-
pretation of associations with patient-reported outcomes. 
Associations between T1ρ and disability were strongly neg-
ative and significant in data set A, yet were not visible in 
data set B, indicating that the studies were underpowered. 
Similarly, associations with muscle data extracted from 
data set B did not reach statistical significance (Supporting 
Information Figure S6). A greater sample size is necessary 
to power proper statistical analysis, adjusting for multiple 
comparisons and demographic/clinical confounders, and to 
enable feature extraction for IVDD characterization.

Image statistics can be defined in voxels, clusters, or 
peaks. Voxel-wise inference examines whether the t-statistic  
(or F-statistic) is within a predefined threshold at each 
voxel, to reject the null hypothesis at that voxel (high spa-
tial specificity). Cluster-wise inference defines a t-statistic  
threshold and minimum cluster size, to reject the null  
hypothesis of the whole cluster, indicating that activity is 
somewhere within the cluster (high sensitivity, low spatial 
specificity). Peak-wise inference identifies local maxima in 
t-statistics greater than a predefined threshold (high spatial 
specificity). To correct inferences for multiplicity, correc-
tions on P-values with familywise error rate (Bonferroni 
correction, random field theory) and false discovery rate 
controlled the procedures.

There are several promising applications of our analysis 
method. Broadly, the main motivation of this work was to 
develop an automatic pipeline for lumbar intervertebral disc 
characterization, creating a fast, reliable, and robust tool to 
aid mechanistic disease research of IVDD. Applied to a larger 
clinical imaging data set, our approach could be used for 

LBP phenotyping: selecting patient cohorts for clinical trials, 
matching patients to effective treatments, or tracking treat-
ment effects over time. ReSPINE, a randomized clinical trial 
for mesenchymal stem cell therapy for IVDD, is underway in 
Europe, and qMRI will be acquired over four time points. Our 
proposed pipeline could provide automatic, reliable process-
ing of qMRI to follow subtle changes in spine biochemistry 
through statistical parametric mapping. Finally, there is value 
for researchers validating new quantitative pulse sequences or 
compressed-sensing schemes, to reliably compare the voxel- 
based patterns extracted by both methods. Application to 
other registration tasks and data sets is straightforward, given 
the flexibility of our method.

5  |   CONCLUSIONS

This work proposes a novel methodology that combines deep 
learning–based segmentation, atlas-based registration, and sta-
tistical parametric mapping for automatic analysis of quantita-
tive spine imaging, addressing current methods’ issues with 
sensitivity, reliability, and scalability. Evaluation of the seg-
mentation method demonstrates that performance is robust and 
shows excellent agreement with manual methods of biomarker 
extraction across the spectrum of morphologic and sympto-
matic IVDD. Despite the limited data available for method de-
velopment, the voxel-based relaxometry pipeline reveals local 
trends in disc qMRI values, which were significantly associ-
ated with clinical measures of degeneration and disability in 
two independent data sets. Future research directions include 
applying the proposed framework on larger spine qMRI data 
sets to investigate LBP phenotypes for pathophysiological re-
search, clinical cohort selection, and treatment monitoring.
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FIGURE S1 Ground-truth segmentations were saved as 256 ×  
256 binary masks (one 2D mask per slice). The final data 
set for network training included 38 scans from 31 unique 
patients, with a total of 80 segmented slices. A 2D coarse-
to-fine context memory (CFCM) segmentation network 
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(Tensorflow 1.4, Python 3.6) was trained end-to-end using  
full image slices (256 × 256) as a single-channel input. The 
CFCM network replaces the decoding path in a classic encoder- 
decoder with a convolutional long-short-term-memory unit 
that serves as a memory mechanism to fuse different fea-
ture scales and receptive fields, while the encoding path is a 
ResNet34. Aggressive online augmentations were applied to 
every batch: rotation (in-plane: −20 to 20º), elastic deforma-
tions (1 to 3 points, σ 6 to 12), and localized Gaussian bright-
ening (image intensity scaled with Gaussian kernel σ 3, with 
−100 to 100 x,y shift). Images underwent adaptive histogram 
equalization (sklearn v. 0.15, kernel size = 32, clip limit = 
0.01, histogram bins = 256) and zero mean, unit variance 
normalization. Xavier initialization was used for network 
weights, trained for 8000 epochs with Dice loss,34 batch size 
= 20, and Adam optimizer (learning rate 1e-6, epsilon 1e-8) 
on a single Nvidia TitanX GPU, saving the last checkpoint 
for inference on the test set
FIGURE S2 Example failure mode in image-guided registra-
tion: unsuccessful disc localization and boundary registration: 
original image before registration (left), image after inten-
sity-based registration with atlas segmentation contours in 
white (middle), image after proposed disc-by-disc mask-based 
registration with atlas segmentation contours in pink (right)
FIGURE S3 Dice similarity score (DSC), mean absolute 
surface distance (MSD) at disc boundary, and percent vol-
ume difference results for each data set, color-coded by disc. 
Segmentation performance is plotted against Pfirrmann and 
modified Pfirrmann radiological grades
FIGURE S4 Comparison of manually and automatically ex-
tracted T1ρ, T2 relaxation values for each data set, color-coded 
by disc. Biomarker extraction performance plotted against 
Pfirrmann and modified Pfirrmann radiological grades
FIGURE S5 (Top) Voxel-wise associations between T2 maps 
and Oswestry Disability Index (ODI) scores. (Bottom) Voxel-
by-group analysis, mean relaxation T2 maps, and P-values  
for minimal/moderate (0-40 ODI score) and severe disability 
(> 40 ODI score) groups
FIGURE S6 Voxel-wise associations between T1ρ maps 
and paraspinal muscle (psoas, multifidus, erector spinae) fat 
fraction for data set B. Fat fraction calculated using manual 
segmentations of each muscle group, using decomposed fat 
and water images fat/(fat + water), averaged across the whole 
muscle
FIGURE S7 Segmentation and biomarker extraction perfor-
mance for UNet architecture with 64 base filters. Connected 
component threshold was increased to 200 voxels (from 125 
voxels) to remove spurious segmentation predictions, after 
which, automatic disc labeling was successful. With postpro-
cessing, segmentation performance and biomarker extraction 
was comparable to CFCM network. In data set A, the network 
consistently underestimated disc volume, whereas disc vol-
ume was overestimated in data set B

FIGURE S8 Segmentation and biomarker extraction per-
formance for UNet architecture with 32 base filters. Again, 
connected component threshold was increased to 200 voxels 
(from 125 voxels) to remove spurious segmentation predic-
tions, after which, automatic disc labeling was successful. 
With postprocessing, segmentation performance and bio-
marker extraction was slightly lower than CFCM and U-Net 
with 64 base filters. When evaluated on the whole pipeline, 
patterns extracted in correlation maps match those in Figure 5
FIGURE S9 Qualitative segmentation performance for 
U-Net architecture with 16 base filters (limited expressive 
capacity). Large, off-target segmentation predictions, most 
located near L5S1, led to the failure of an automatic disc la-
beling process. As a result, disc-by-disc segmentation perfor-
mance and biomarker extraction could not be computed
FIGURE S10 Registration results using a different healthy 
spine atlas mask (I). Panel II shows example T1ρ maps before 
and after registration (same example maps as Figure 4). Local 
patterns in relaxation times are preserved throughout the disc 
and the relative proportions of nucleus/annulus relaxation val-
ues are maintained. Histograms show the density and a gaussian 
kernel density estimate of T1ρ relaxation times within the seg-
mented disc before and after registration. Distributions are sim-
ilar in all but example 3, where a signal void region decreases 
the proportion of voxels in the 60-80ms relaxation range. 
Panel III shows voxel by variable correlations with Pfirrmann/
Modified Pfirrmann grades, showing similar associations and 
significance patterns to Figure 5 for Dataset A and B
FIGURE S11 I, Registration results using a degenerated spine 
atlas mask. II, Example T1ρ maps before and after registration 
(same example maps as Figure 4). Registration performance 
is affected by the narrow disc height of the atlas: Examples 
1 and 3 undergo significant compression during registration, 
upper and lower disc boundaries are not well registered, and 
the center of the disc loses spatial resolution. Additionally, 
registered discs did not expand to fill the posterior region of 
the atlas disc (many levels of the atlas contained a disc pro-
trusion). III, Voxel-by-variable correlations with Pfirrmann/
modified Pfirrmann grades. Despite the limitations in regis-
tration, similar (albeit compressed) associations and signif-
icance patterns appear in the nucleus (Figure 5); however, 
significant patterns also appear in the highly unreliable disc 
protrusion on disc L5S1 of data set B, so results should be 
interpreted in the context of registration performance
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