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Evaluation of a deep learning system for the joint
automated detection of diabetic retinopathy and
age-related macular degeneration

Cristina Gonzalez-Gonzalo,">**@ Verénica Sanchez-Gutiérrez,” Paula Hernandez-Martinez,’

Inés Contreras,®@ Yara T. Lechanteur,* Artin Domanian,* Bram van Ginneken? and
Clara I. Sanchez'>>*

1A-eye Research Group, Radboud University Medical Center, Nijmegen, The Netherlands

"Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands

3Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
“Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands

>Department of Ophthalmology, University Hospital Ramén y Cajal, Ramén y Cajal Health Research Institute (IRYCIS), Madrid,
Spain

®Clinica Rementerfa, Madrid, Spain

ABSTRACT.

Purpose: To validate the performance of a commercially available, CE-certified deep learning (DL) system, RetCAD
v.1.3.0 (Thirona, Nijmegen, The Netherlands), for the joint automatic detection of diabetic retinopathy (DR) and age-
related macular degeneration (AMD) in colour fundus (CF) images on a dataset with mixed presence of eye diseases.
Methods: Evaluation of joint detection of referable DR and AMD was performed on a DR-AMD dataset with 600 images
acquired during routine clinical practice, containing referable and non-referable cases of both diseases. Each image was
graded for DR and AMD by an experienced ophthalmologist to establish the reference standard (RS), and by four
independent observers for comparison with human performance. Validation was furtherly assessed on Messidor (1200
images) for individual identification of referable DR, and the Age-Related Eye Disease Study (AREDS) dataset (133 821
images) for referable AMD, against the corresponding RS.

Results: Regarding joint validation on the DR-AMD dataset, the system achieved an area under the ROC curve (AUC) of
95.1% for detection of referable DR (SE = 90.1%, SP = 90.6%). For referable AMD, the AUC was 94.9%
(SE = 91.8%, SP = 87.5%). Average human performance for DR was SE = 61.5% and SP = 97.8%; for AMD,
SE = 76.5% and SP = 96.1%. Regarding detection of referable DR in Messidor, AUC was 97.5% (SE = 92.0%,
SP = 92.1%); for referable AMD in AREDS, AUC was 92.7% (SE = 85.8%, SP = 86.0%).

Conclusion: The validated system performs comparably to human experts at simultaneous detection of DR and AMD.
This shows that DL systems can facilitate access to joint screening of eye diseases and become a quick and reliable support
for ophthalmological experts.
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Introduction

Screening for eye diseases has become a
high-priority healthcare service to pre-
vent vision loss (Cunha-Vaz 1998;

Rowe et al. 2004). Due to its proven
efficiency, screening programmes based
on periodical examinations of the
retina have been increasingly imple-
mented worldwide (James et al. 2000;

Arun et al. 2003; Jones & Edwards
2010). Established protocols rely on
manual readings by highly specialized
workforce (Pinero 2013), failing to
meet the requirements of large-scale
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screening in high- and low-resource
countries (Harmon & Merritt 2009;
Shaw et al. 2010; Guariguata et al.
2014; Wong etal. 2014; United
Nations Department of Economic and
Social Affairs 2017). Furthermore,
cost-effectiveness remains to be the
main burden for establishing screening
programmes (Wormald 1999; Hernan-
dez et al. 2008; Karnon et al. 2008),
and different protocols are followed for
different diseases (AAO 2015, 2017),
which translates to a larger burden to
health systems and to the patient, that
needs to undergo several of them.
Nevertheless, exploiting the fact that
examination protocols of retinal dis-
eases rely mostly on the same principles
and actions, it becomes more efficient
to integrate them in one workflow
(Chan et al. 2015; Chew & Schachat
2015).

Diabetic retinopathy (DR) has
become a leading cause of preventable
blindness worldwide with an overall
prevalence of 35% among people with
diabetes, which affects 1 in every 11
adults (Yau et al. 2012; TAPB 2016;
IDF 2017). Age-related macular degen-
eration (AMD) is the most common
cause of blindness in developed coun-
tries, being 9% its worldwide preva-
lence (Wong et al. 2014). Up to 80% of
blindness cases caused by these diseases
are avoidable if detected early enough
to undergo treatment (Pascolini &
Mariotti 2012; WHO 2013). Neverthe-
less, their incidence is expected to
increase within the following decades,
due to population ageing and the
increasing prevalence of diabetes adults
(Yau et al. 2012; TAPB 2016; IDF
2017). Screening protocols for DR
have been established in several coun-
tries (NHS 2014; NOG 2017). Regard-
ing AMD, there is no established
screening protocol, but it will soon be
required (Jain et al. 2006; Ouyang
et al. 2013), since treatment options
are still limited, although under devel-
opment (Comer et al. 2004; Gehrs
et al. 2010; Zarbin & Rosenfeld 2010).

Automated screening solutions aim
to provide a scalable, sustainable and
high-quality approach to meet the
increasing demand, while reducing the
burden on highly trained professionals
and the associated costs. The introduc-
tion of deep learning (DL) has consti-
tuted a revolution in medical imaging
analysis (LeCun et al. 2015; Litjens
et al. 2017). Previous solutions for the

automatic analysis of retinal images
(Burlina et al. 2011; Abramoff et al.
2013) have been outperformed by DL
approaches (Raman et al. 2018; Sch-
midt-Erfurth et al. 2018). Several DL
systems for the automatic detection of
DR (Abramoff et al. 2016, 2018; Gul-
shan et al. 2016; Gargeya & Leng 2017)
and AMD (Burlina et al. 2017; Grass-
mann et al. 2018; Peng et al. 2018)
have showed performance close or even
superior to that achieved by human
graders. However, these systems per-
form independent analysis of each
disease, although these diseases can
coexist and a solution for joint detec-
tion would be beneficial (Chan et al.
2015; Chew & Schachat 2015; Ting
et al. 2017).

In this study, we present the valida-
tion of a commercially available, CE-
certified DL  software  package,
RetCAD v.1.3.0 (Thirona), that allows
for joint detection of referable DR and
AMD in colour fundus (CF) images.
The aim is to analyse the capability of a
DL system to simultaneously identify
both diseases and compare it with
human experts and the current state-
of-the-art methods, in order to deter-
mine the potential for automated joint
screening of eye diseases. As main
novel aspect of our work and in con-
trast to previous work on joint auto-
mated screening, such as Ting et al., we
perform the validation for joint detec-
tion of DR and AMD on one unique
dataset which includes simultaneously
referable and non-referable cases of
both diseases, so as to analyse how the
presence of each pathology influences
joint screening performance.

Materials and Methods

Evaluation data

The validation of the DL system was
first performed on a DR-AMD dataset,
which contains referable and non-refer-
able cases of DR and AMD, for the
joint detection of both diseases. Addi-
tional validation of individual detec-
tion of DR and AMD was assessed on
Messidor and the Age-Related Eye

Disecase Study (AREDS) dataset,
respectively.
The DR-AMD  dataset was

extracted from a set of images collected
in three different European medical
centres (Sweden, Denmark, Spain). In
total, 8871 images from more than

2000 patients were acquired during
routine clinical practice between
August 2011 and October 2016, with
a CR-2PlusAF fundus camera (Canon,
Tokyo, Japan), at 45-degree field of
view with an image resolution between
2376 x 1584 and 5184 x 3456 pixels.
No mydriasis was applied. Informed
written consent was obtained from all
patients at the medical centres and
images were anonymized prior to
transfer and use in this study, following
the tenets set forth in the Declaration
of Helsinki. The 8871 images went
through a human quality check,
regarding contrast, clarity and focus,
where 1757 images were excluded. The
remaining 7114 images went through a
preliminary grading, performed by an
observer with over 6 years of experi-
ence reading CF images. Images were
classified as referable AMD (1234
images), referable DR (393 images) or
control (5533 images), which indicates
non-referability for both DR and
AMD, although other diseases might
be present. Lastly, a random selection
of 600 images was performed, contain-
ing 325 controls, 134 referable AMD
cases and 144 referable DR cases (3
images with both referable AMD and
DR). These images belong to 288
different patients, with an average of
2.11 images and 1.18 visits per patient.
The 600 images define the DR-AMD
set used for validation of joint detec-
tion of DR and AMD. The remaining
gradable images were used for system
development, excluding those which
belonged to patients included in the
DR-AMD dataset. The diagram in
Fig. S1 summarizes the extraction of
the dataset.

Messidor is a publicly available col-
lection of macula-centred CF images
commonly used for performance com-
parison between automated DR detec-
tion systems. This dataset consists of
1200 images acquired by three different
ophthalmologic departments using a
3CCD camera on a Topcon TRC NW6
non-mydriatic retinography with a 45-
degree field of view, with an image
resolution of 1440 x 960, 2240 x 1488
or 2304 x 1536 pixels. A total of 800
images were acquired with pupil dila-
tion and 400 without dilation (Decen-
ciere et al. 2014; ADCIS, Messidor
dataset).

Age-Related Eye Disease Study
(AREDS) dataset is currently the
largest available set for AMD,
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previously used for the validation of
automated AMD detection. Age-
Related Eye Disease Study (AREDS)
was designed as a long-term prospec-
tive study of AMD development and
cataract in which patients were regu-
larly examined and followed up to
12 years (NEI, AREDS dbGaP Study
Accession). Institutional review board
approvals were obtained from each
clinical centre involved in the study,
and written informed consent was
obtained from each participant. The
AREDS dbGaP set includes digitalized
CF images. In 2014, over 134 000
macula-centred CF images from 4613
participants were added to the set. We
excluded images containing a lesion
which disqualified an eye from the
study, images considered as not grad-
able, and those which belong to eyes
that were not included in the study, as
mentioned in the AREDS dbGaP
guidelines (NEI, AREDS dbGaP Data
Tables). In total, 133 821 were used in
this study.

Grading

To establish the reference standard (RS)
in the DR-AMD dataset, the 600 images
were scored by stage of disease severity
for both DR and AMD by a certified
ophthalmologist with more than twelve
years of experience (IC). In the case of
DR, the grading is based on the Inter-
national Clinical Diabetic Retinopathy
(ICDR) severity scale, with stages 0 (no
DR), 1 (mild non-proliferative DR), 2
(moderate non-proliferative DR), 3
(severe non-proliferative DR) and 4
(proliferative  DR) (Wilkinson et al.
2003). For AMD, the grading protocol
is based on the AREDS system, with
stages 1 (no AMD), 2 (early AMD), 3
(intermediate AMD) and 4 (advanced
AMD; with presence of foveal geo-
graphic atrophy or choroidal neovascu-
larization) (AREDS Research Group
2001). The measuring grid often used as
part of the AREDS protocol was not
applied for grading the DR-AMD data-
set, taking into account lesions in the
whole image and not only those located
within the grid area.

For comparison with human perfor-
mance at joint detection of DR and
AMD, four independent observers also
provided a score for each disease. Two
of the graders were certified ophthal-
mologists with between 1 and 3 years of
experience (VS, PH) and the other two

graders were ophthalmology residents
in their last year of residency (YL, AD).

The gradings from the RS and the
independent observers were then
adjusted for the adaptation of the
detection of both diseases into two
separate binary classifications. In the
case of DR: non-referable DR (stage 0
or 1) and referable DR (stage 2, 3, or
4); for AMD: non-referable AMD
(stage 1 or 2) and referable AMD
(stage 3 or 4). Cases without both
referable DR and referable AMD are
referred to as controls from now on.
Note that this implies non-referability
for both DR and AMD, but other eye
diseases might be present.

The reference standard for Messidor
was made publicly available when the
dataset was originally published, with
the subsequent correction of the pub-
lished errata until the realization of this
study in 2018 (ADCIS, Messidor data-
set). Medical experts provided the
retinopathy grade for each image, con-
sisting of four distinct categories, from
0 to 3, ranging from normal to increas-
ing severity of DR. In order to trans-
late this RS into referable/non-
referable classification, images assigned
with DR stage 0 or 1 were considered
non-referable cases; those with DR
stage 2 or 3, referable. For human
performance  comparison, manual
annotations were performed by two
independent graders, a general oph-
thalmologist and a retinal specialist,
with 4 and 20 years of DR screening

experience, respectively, following the
same protocol as the RS (Sanchez et al.
2011).

The reference standard for the
AREDS dataset corresponds to the
publicly available grading in AREDS
dbGaP, which is based on the AREDS
severity scale for AMD described previ-
ously (AREDS Research Group 2001;
NEI, AREDS dbGaP Data Tables).
These scores were assigned to the images
by experts at US grading centres, being
consistent with the original AREDS
AMD categorization without consider-
ing visual acuity (NEI, AREDS Manual
of Operations Study Design). This RS
was then adapted following the men-
tioned procedure into referable and
non-referable cases for performing bin-
ary classification.

Table 1 summarizes distribution of
disease severity for DR and AMD in
the validation datasets regarding the
corresponding reference standard.

Automated grading approach

The DL system under validation uses
convolutional neural networks (CNN)
for the classification task of grading
(LeCun et al. 1998; Krizhevsky et al.
2012; Simonyan & Zisserman 2014;
Szegedy et al. 2015, 2017). Convolu-
tional neural networks (CNNs) are
organized in multiple layers with arti-
ficial neurons, which learn representa-
tions of the input data at increasing
levels of abstraction (Schmidt-Erfurth

Table 1. Disease severity distribution for DR and AMD in the validation datasets.

Disease
stage DR-AMD# Messidor® AREDS?
DR
NR 0 489 (81.5) 487 (81.2) 700 (58.3) 547 (45.6) — -
1 2(0.3) 153 (12.7) -
R 2 111 (18.5) 82 (13.6) 500 (41.7) 247 (20.6) - -
3 4(0.7) 253 (21.1) -
4 25 (4.2) _ ~
AMD
NR | 527 (87.8) 483 (80.5) — - 74 401 (55.6) 41 409 (30.9)
2 44 (7.3) - 32992 (24.7)
R 3 73 (12.2) 54 (9.0) - - 59 420 (44.4) 41 495 (31.0)
4 19 (4.2) - 17 925 (13.4)
Total images 600 (100) 1200 (100) 133 821 (100)

with available
grading, No.
(%)

AMD = age-related macular degeneration; DR, diabetic retinopathy; NR, non-referable; R,

referable.

TReference standard for DR grading is ICDR (stages from 0 to 4).
?Reference standard for AMD grading is AREDS (stages from 1 to 4).
SReference standard for DR grading is Messidor (stages from 0 to 3).




et al. 2018). Convolution operations
act as feature detectors with adjustable
parameters called weights. During
training, the network is presented with
a large set of annotated images. For
each image, an output class label is
produced in a forward pass through the
network and a loss function is com-
puted to measure the error between the
output and the actual label. With the
aim of reducing the error, the weights
are adjusted by means of backpropa-
gation (LeCun et al. 2015). This pro-
cess is repeated with several passes over
the training data until the loss con-
verges.

RetCAD v.1.3.0 allows for joint
detection of referable DR and AMD
in CF images. Firstly, each input image
goes through a preprocessing stage that
generates a preprocessed RGB image
and a contrast-enhanced (CE) image.
The preprocessed RGB image is used
for an assessment of image quality.
Then, joint image-level detection of
DR and AMD is performed by means
of two ensembles based on three dif-
ferent state-of-the-art CNN

Original CF image

Preprocessing

architectures with multiple blocks of
convolutional layers followed by max-
pooling layers, including dense blocks
and depthwise separable convolutions
(Antony & Briiggemann 2015; Chollet
2017; Huang et al. 2017). Each ensem-
ble consists of six individual CNNs:
three CNNs use the preprocessed RGB
image as input; the other three CNNs,
the CE image. The final score for each
disease is obtained by averaging the
scores generated by the networks in
each ensemble. Each ensemble provides
one score between 0 and 100 which is
monotonically related to the likelihood
of presence of referable DR and AMD,
respectively. The diagram in Fig. |
illustrates the workflow of the system.
None of the images included in the
datasets used in this validation study
were used for training the system.

Evaluation design

To evaluate the performance of the
system at automated joint detection of
referable DR and AMD, we performed
several validation experiments on the

DR-AMD dataset. For detection of
referable DR, binary classification was
assessed between DR cases and the
joint set of controls and AMD cases
(DR vs. AMD + controls). A second
binary classification for DR was per-
formed between referable and only
control cases, in order to analyse the
influence of joint AMD cases in the
performance of the system (DR vs.
controls). The same procedure was
applied for detection of referable
AMD, assessing first a binary classifi-
cation between AMD cases and the
joint set of controls and DR cases
(AMD vs. DR + controls), and a sub-
sequent binary classification between
AMD and only control cases (AMD
vs. controls).

Regarding validation of individual
detection of referable DR and AMD,
binary classification was performed
between referable and non-referable
DR cases in Messidor, and between
referable and non-referable AMD cases
in the AREDS dataset.

The performance metrics used for
validation were sensitivity (SE) and

Quality
score

RGB image

CE image

RGB Image quality
assessment
e
4

Referable
DR score

Average
DR scores

~‘_—

Referable
AMD score

Average

> AMD scores 1
1

Fig. 1. Workflow of RetCAD v.1.3.0. Each CF input image goes first through a preprocessing stage that generates a preprocessed RGB image and a
CE image. The preprocessed RGB image is used for an assessment of image quality. Joint image-level detection of DR and AMD is performed by
means of two ensembles based on three different state-of-the-art CNN architectures (CNN 1, CNN 2, CNN 3), with multiple blocks of convolutional
layers followed by max-pooling layers, including dense blocks and depthwise separable convolutions (Antony & Briiggemann 2015; Chollet 2017;
Huang et al. 2017). Each ensemble consists of six individual CNNs: three CNNs use the preprocessed RGB image as input; the other three CNNss, the
CE image. The final score for each disease is obtained by averaging the scores generated by the networks in each ensemble. Each ensemble provides
one score between 0 and 100 which is monotonically related to the likelihood of presence of referable DR and AMD, respectively. AMD, Age-related
macular degeneration; CE, Contrast-enhanced; CF, Colour fundus; CNN, Convolutional neural network; DR, Diabetic retinopathy.
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Fig. 2. Receiver operating characteristic curves for joint detection of referable DR (A) and AMD
(B) in the DR-AMD dataset (600 images). Performance of RetCAD v.1.3.0 corresponds to the
blue curves (95% CI within grey area); the coloured circles, to the human observers. The black
circle indicates the SE and SP of RetCAD v.1.3.0 at its optimal operating point. For DR vs. AMD
+ controls (A), AUC was 95.1% (95% CI, 90.8%-98.2%), SE was 90.1% (95% CI, 85.2%—
96.8%) and SP was 90.6% (95% CI, 85.5%-96.7%). For AMD vs. DR + controls (B), AUC was
94.9% (95% CI, 90.9%-97.9%), SE was 91.8% (95% ClI, 84.6%-97.8%) and SP was 87.5% (95%
CI, 83.5%-93.9%). AMD, age-related macular degeneration; AUC, area under the receiver
operating characteristic curve; CI, confidence interval; DR, diabetic retinopathy; SE, sensitivity;

SP, specificity.

specificity (SP), defined as the propor-
tions of cases considered referable and
non-referable, respectively, by both the
system and the reference standard. The
trade-off between both metrics was
furtherly observed by means of receiver
operating characteristic (ROC) analy-
sis. The optimal operating point of the
system was considered to be the best
trade-off between SE and SP, that is,
the point closest to the upper left
corner of the graph. For an overall
interpretation of the system’s ability to
discriminate between referable and
non-referable cases, the area under
the ROC curve (AUC) was computed.

Human performance was also evalu-
ated by computing sensitivity and
specificity from the gradings of each
observer and then included in the
corresponding ROC curve as operating
points.

Data bootstrapping was used to
assess statistical significance of the
obtained evaluation metrics (Efron &
Tibshirani 1993). Samples were boot-
strapped 1000 times to generate a
distribution of each evaluation metric,
obtaining the 2.5 and 97.5 percentiles
as 95% confidence intervals (CI).

In the wvalidation datasets where
gradings by independent observers

were available, that is, DR-AMD
dataset and Messidor, intergrader vari-
ability was measured by means of the
quadratic Cohen’s weighted kappa
coefficient (x), between gradings per
disease stage and the corresponding
reference standard (Hripcsak & Heitjan
2002).

Lastly, we performed an additional
experiment in order to validate the DL
system on data distributions similar to
the ones encountered in real screening
programmes, as well as to analyse the
changes in its performance for joint
detection of DR and AMD with mod-
ifications in disease prevalence. For this
purpose, we incremented the number of
non-referable cases in the DR-AMD
dataset, by including those cases from
the 7114 gradable images assessed as
controls in the preliminary grading and
not used for development of the sys-
tem. A total of 469 controls could be
added to the 600-images DR-AMD set.
This experimental dataset was consti-
tuted therefore by 1069 images: 134
referable AMD cases, 144 referable DR
cases and 794 controls, decreasing the
disease prevalence of DR to 10%, and
the prevalence of AMD to 7%. For
each disease separately, we varied the
proportion of positive cases in the
experimental set and simulate different
levels of prevalence. For the simulation
of lower DR prevalence, DR positive
cases were sequential and randomly
added, until reaching the original num-
ber of positive cases in the experimen-
tal set, keeping the number of AMD
cases and controls unmodified. For

Table 2. Diagnostic performance for joint detection of referable DR and AMD of RetCAD v.1.3.0 and observers compared with reference standard

in the DR-AMD dataset (600 images).

RetCAD Obs. 1 Obs. 2 Obs. 3 Obs. 4
DR R NR R NR R NR R NR R NR
RS

R 99 12 60 51 65 46 82 29 66 45

NR (AMD, C) 46 (8, 38) 443 7(1,6) 482 14 (4, 10) 475 14 (1, 13) 475 9(1,8) 480

SE (%) (95% CI)  90.1 (85.2-96.8) 54.1 (40.1-67.3) 58.6 (46.3-70.9) 73.9 (61.4-85.2) 59.5 (46.7-72.0)

SP (%) (95% CI)  90.6 (85.5-96.7) 98.6 (97.0-99.6) 97.1 (94.8-99.2) 97.1 (94.7-99.2) 98.2 (96.2-99.6)
AMD R NR R NR R NR R NR R NR
RS

R 66 7 60 13 41 32 62 11 60 13

NR (DR, C) 66 (16, 50) 461 26 (8, 18) 501 83,95 519 22(7,15) 505 26 (5, 21) 501

SE (%) (95% CI)
SP (%) (95% CI)

91.8 (84.6-97.8)
87.5 (83.5-93.9)

82.1 (69.0-93.8)
95.1 (92.2-97.5)

56.2 (39.5-71.8)
98.5 (96.9-99.6)

84.9 (72.5-96.0)
95.8 (93.1-98.1)

82.1 (69.7-93.5)
95.1 (92.2-97.5)

AMD = age-related macular degeneration; C, control; CI, confidence interval; DR, diabetic retinopathy; NR, non-referable; Obs., observer; R,
referable; RS, reference standard; SE, sensitivity; SP, specificity.
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simulating higher DR prevalence, until
reaching the prevalence in the DR-
AMD set, controls were sequential and
randomly excluded. The same process
was followed for analysing changes
with AMD prevalence. Since the eval-
uation metrics used in the other vali-
dation experiments (SE, SP, AUC) are
invariant to changes in disease preva-
lence (Zweig & Campbell 1993), we
have used the accuracy, the positive
predictive value (PPV) and the negative
predictive value (NPV), with the cor-
responding 95% CI, as performance
metrics for this validation.

Results

For the 600 images in the DR-AMD
dataset, the ROC analysis correspond-
ing to DR vs. AMD + controls is
shown in Fig. 2A. The optimal oper-
ating point of RetCAD v.1.3.0 corre-
sponds to SE of 90.1% (95% CI,
84.29%-96.6%) and SP of 90.6%
(95% CI, 85.9%-97.0%), with AUC
of 95.1% (95% CI, 90.8%-98.2%).
Average observer SE and SP were
61.5% and 97.8%, respectively. Fig-
ure 2B shows the ROC curve and
optimal operating point by the DL
system regarding AMD vs. DR + con-
trols. SE was 91.8% (95% CI, 84.4%—
97.6%), SP was 87.5% (95% CI,
83.5%-97.9%), and AUC was 94.9%
95% CI, 90.9%-97.9%). Average
observer SE and SP were 76.5% and
96.1%, respectively. Table 2 summa-
rizes diagnostic performance of the
system and the human observers for
both validation experiments.
Regarding validation of DR vs.
controls on the DR-AMD dataset,
AUC was 95.6% (95% CI, 91.8%—
98.6%), SE was 91.7% (95% CI,
85.3%-98.0%) and SP was 90.9%

95% CI, 86.7%-96.7%). As for
AMD vs. controls, AUC was 95.2%
(95% CI, 91.0%-98.1%), SE was

88.6% (95% CI, 83.8%-100.0%) and
SP was 92.1% (95% CI, 84.3%-—
95.2%). The corresponding ROC anal-
ysis and distribution of both classifica-
tion results of RetCAD v.1.3.0 and the
observers can be found in Fig. S2 and
Table SI.

Intergrader disagreement in the DR-
AMD dataset is shown in Fig. 3, which
includes interrater heatmaps with
quadratic-weighted x scores among
the four observers and the reference
standard, for DR and AMD.

Regarding the performance valida-
tion of the system and external obser-
vers at detection of referable DR in
Messidor, the obtained results can be
found in Fig. 4A. The AUC was 97.5%
(95% CI, 96.3%-98.5%), SE was
92.0% (95% CI, 89.3%-97.2%) and
SP was 92.1% (95% CI, 88.6%-—
95.2%). Diagnostic performance by
the system and the two observers is
summarized in Table S2, while Fig. S3
shows the intergrader discrepancy
among observers and the reference
standard.

The results of the ROC analysis for
automated detection of referable AMD
in the AREDS dataset are shown in
Fig. 4B. For the 133 821 images, the
DL system reached 85.8% (95% CI,
84.6%-86.2%) for SE and 86.0% (95%
CI, 85.7%—87.4%) for SP. Area under
the ROC curve (AUC) was 92.7%

(95% CI, 92.5%-92.9%). The classifi-
cation results regarding the reference
standard can be found in Table S3.
Lastly, Figure 5 depicts the changes
in the performance (ACC, PPV, NPV)
of the DL system for joint DR and
AMD detection when the prevalence of
each disease is sequentially modified.

Discussion

In this study, we validated the perfor-
mance for joint detection of referable
DR and AMD of a commercially
available, CE-certified DL system,
RetCAD v.1.3.0 (Thirona) and com-
pared it with independent human
observers. The results in the DR-
AMD dataset show the system is able
to differentiate between the two dis-
eases, which is one of the main aspects
in joint detection, since the presence of

-0.78
Obs.4 0.84 0.81
-0.72
RS 0.82 1.00
-0.66
(A) Obs.1 Obs.2 Obs.3 Obs.4 RS
Obs.1 1.00 0.67 0.66 0.71 0.72 0.96
Obs.3 0.66 0.77 0.84
-0.78
Obs.4 0.71 1.00 0.69
-0.72
RS 0.72 0.76 0.77 0.69 1.00
-0.66
(B) Obs.1 Obs.2 Obs.3 Obs.4 RS

Fig. 3. Intergrader disagreement in DR (A) and AMD (B) grading stages among independent
human observers and reference standard in the DR-AMD dataset (600 images). Interrater
heatmaps with quadratic Cohen’s weighted kappa coefficients comparing disease staging for DR
(A) and AMD (B) among the 4 independent human observers and the reference standard in the
DR-AMD dataset (600 images with referable DR, AMD and control cases). DR, diabetic
retinopathy; AMD, age-related macular degeneration; Obs., observer; RS, reference standard.
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other pathologies may affect the per-
formance of a DL system when detect-
ing a given disease (Li et al. 2018).
When identifying referable DR, false-
positive detections corresponded to
9.4% of the cases graded as non-
referable DR in the reference standard,
which can be divided into controls or
referable AMD cases, being the latter
the 17.4% of the cases wrongly classi-
fied as referable DR. Regarding false-
positive cases at detection of referable
AMD, 12.5% of non-referable AMD
cases were wrongly classified, from
which 24.2% were graded as referable
DR in the reference standard; for those
misclassified cases graded as control in
the reference, it was observed that
slightly more than half had early
AMD. Regarding false negatives in
DR detection, 10.8% referable cases
were missed by the system, all of them
graded as moderate non-proliferative
DR in the reference standard and
16.7% with simultaneous presence of
referable AMD (intermediate AMD).
In the case of AMD detection, 9.6% of
referable cases were missed, without
cases affected by DR, although less
than one third had intermediate AMD.
It can be observed, therefore, that for
both diseases most misclassifications
correspond to controls in the case of
false positives and lower intra-disease
scoring in the case of false negatives,
instead of corresponding to cases
affected by referable stages of the other

disease. Furthermore, the performance
of the system is not significantly altered
when individual disease detection is
assessed on the same dataset.

The outcome of the joint validation
also demonstrates the DL system per-
forms comparably to human experts.
RetCAD v.1.3.0 reaches lower speci-
ficity levels than human average, but
higher sensitivity for both DR and
AMD. This is particularly important
at automated screening settings, where
fewer referable cases must be missed
when the system is used for either
initial assessment or grading support.

Regarding intergrader variability,
greater disagreement was observed for
AMD, which might show the necessity
of establishing AMD screening proto-
cols as the ones already used for DR.
For DR, we observed relatively low
sensitivity scores for the observers
regarding the reference standard, since
many of the cases classified as stage 2
in the reference were graded by obser-
vers as stage 1. However, interobserver
scores are still relatively high. This
indicates graded stages are close, but
intermediate DR levels become prob-
lematic  for referable/non-referable
classification.

DL-based automated joint detection
was also assessed by Ting et al. (2017),
reaching lower AUC values at detec-
tion of referable DR and AMD,
although larger datasets were used for
validation and detection of glaucoma
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Fig. 4. Receiver operating characteristic curves for individual detection of referable DR in
Messidor (1200 images) (A) and referable AMD in the AREDS dataset (133 821 images) (B).
Performance of RetCAD v.1.3.0 corresponds to the blue curves (95% CI within grey area); the
coloured circles, to the human observers. The black circle indicates the SE and SP of RetCAD
v.1.3.0 at its optimal operating point. For individual detection of referable DR (A), AUC was
97.5% (95% CI, 96.3%-98.5%), SE was 92.0% (95% CI, 89.3%-97.2%) and SP was 92.1% (95%
CI, 88.6%-95.2%). For individual detection of referable AMD (B), AUC was 92.7% (95% CI,
92.5%-92.9%), SE was 85.8% (95% CI, 84.6%-86.2%) and SP was 86.0% (95% CI, 85.7%—
87.4%). AMD, age-related macular degeneration; AUC, area under the receiver operating
characteristic curve; CI, confidence interval, DR, diabetic retinopathy; SE, sensitivity; SP,

specificity.

was also evaluated. However, fewer
external observers were included and
different validation sets were used for
identification of DR and AMD, which
leaves the influence of each disease at
joint screening unclear.

Regarding the performance of the
DL system for joint DR and AMD
detection with changes in disease
prevalence, it can be observed for both
diseases that, for very low prevalence
levels, where only a few positive cases
are present, the system tends to detect
additional controls as positive (low
positive predictive value), whereas the
negative predictive value reaches its
maximum, indicating that a low num-
ber of referable cases remain unde-
tected. Greater variations can be
observed in the PPV, which reaches
higher values as prevalence increases,
than in the NPV and the accuracy,
which maintain high and relatively
constant values.

Validation of individual detection of
referable DR in Messidor shows excep-
tional performance by RetCAD
v.1.3.0, also comparable to human
experts. Intermediate DR stages are
generally more difficult to identify
(97.6% of false negatives belong to
stage 2 and 92.7% of false positives
belong to stage 1), as noted previously
with the human observers in the DR-
AMD dataset. Nevertheless, detection
errors are kept remarkably low.

Previous DL approaches for DR
detection have been reported in Messi-
dor-2 (LaTIM 2011) with optimal per-
formances. Since there is no publicly
available image-based reference stan-
dard for this extension of Messidor, we
reported on the original set to allow for
further comparison. Gulshan et al.
(2016) used their own reference stan-
dard for Messidor-2, whereas patient-
based reference standard was made
available and applied by Abramoff
et al. (2013, 2016) (University of Towa
Health Care). We used this RS for
additional validation in Messidor-2
(see Appendix S1, Figure S4 and
Table S4).

The results of individual detection of
referable AMD in the AREDS dataset
show that, as with DR, misclassifica-
tions shift towards intermediate stages
(86.0% of false positives belong to
cases graded as AMD stage 2 in the
reference standard, whereas 67.1% of
false negatives belong to stage 3).
RetCAD v.1.3.0 performs at a good
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Fig. 5. Performance of RetCAD v.1.3.0 for joint detection of DR and AMD with changes in disease prevalence: accuracy (A), positive predictive value
(B), and negative predictive value (C). For each disease separately, we varied the proportion of positive cases and simulate different levels of prevalence in
an experimental set constituted by the 600 images in the DR-AMD dataset and 469 additional controls (cases from the 7114 gradable images assessed as
controlsin the preliminary grading and not used for development of the system). This experimental dataset was constituted therefore by 1069 images, with
a prevalence of DR of 10%, and a prevalence of AMD of 7%. AMD, age-related macular degeneration; DR, diabetic retinopathy.

level, considering the images in this set
are digitized analog photographs. Bur-
lina et al. (2017) also reported on DL-
based referable AMD detection in the
whole AREDS dataset, using the
set also for training, which might
explain better performance.

Limitations and future work

Although the output score of the val-
idated DL system for DR and AMD is
related to the presence of each disease,

there is no clear cut-off for disease
staging, which could be especially ben-
eficial for easier identification of inter-
mediate stages, since they tend to be
more ambiguous to diagnose.

In terms of general robustness for
clinical use, in a recent study (Abram-
off et al. 2018) where the FDA autho-
rized the first DL system for automated
DR detection to be used by healthcare
providers, the FDA preestablished
superiority end-points (85% and
82.5% for sensitivity and specificity,

respectively) to be reached by the
system in order to be considered robust
enough for clinical use. All the sensi-
tivity and specificity values achieved by
the CE-certified, commercially avail-
able system under validation at detec-
tion of DR and AMD in the different
validation datasets are higher than the
FDA wvalues preestablished for the
mentioned study. However, a prospec-
tive evaluation needs to be performed
to correctly evaluate the system’s per-
formance in real clinical settings.
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This validation shows the capacity
of a commercially available DL system
to assess joint detection of DR and
AMD. However, future integration of
automated detection of other eye dis-
eases that might coexist, such as glau-
coma and cataracts, might increase
usability and support at screening set-
tings.

Additionally, integrating  other
imaging modalities such as optical
coherence tomography could provide
valuable information for diagnosis.
However, due to cost-effectiveness and
easier adaptation in telemedicine (Cua-
dros & Bresnick 2009), CF imaging
facilitates screening of eye diseases,
especially in developing countries.

With respect to this study, the
human observers were professional
ophthalmologists or ophthalmologists
in training, who are used to clinical
working settings and tasks, where the
prevalence of disease and manual grad-
ing tasks differ from those of real
screening settings. Besides, for evalua-
tion of joint detection performance,
one DR-AMD set of 600 images from
288 patients was used. In this dataset,
patients might contain images from
different visits, and in some cases,
several images from the same visit.
Future studies on automated joint
screening would benefit from more
and larger validation datasets, with
more subjects and increased intersub-
ject variability, which would allow to
analyse the effect of higher patient and
imaging diversity on the performance
of automated approaches. Addition-
ally, these datasets would be even more
beneficial by including graded cases
with different severity levels for DR,
AMD and additional eye diseases.

In conclusion, this validation study
shows the capability of a commercially
available, CE-certified DL system to
assess simultaneous detection of DR
and AMD with performance compara-
ble to human experts. This demon-
strates that an automated solution for
joint detection would be beneficial at
screening settings, since eye diseases
can coexist and examination protocols
rely on the same principles and actions,
while reducing subjectivity due to inter-
observer disagreement. This also shows
that DL systems can facilitate access to
screening of eye diseases, both in high-
and low-resource areas, and become a
quick and reliable support for ophthal-
mological experts.
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teristic curves for individual detection
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AMD dataset.

Figure S3. Interrater disagreement in
DR grading stages among independent
human observers and reference stan-
dard in Messidor (1200 images).
Figure S4. Receiver operating charac-
teristic curve for individual detection of
referable DR in Messidor-2 (874 sub-
jects).

Table S1. Diagnostic performance for
individual detection of referable DR
and AMD of RetCAD v.1.3.0 and
observers compared with reference
standard in the DR-AMD dataset.
Table S2. Diagnostic performance for
individual detection of referable DR of
RetCAD v.1.3.0 and observers com-
pared with reference standard in Mes-
sidor (1200 images).

Table S3. Diagnostic performance for
individual detection of referable AMD
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reference standard in the AREDS
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Table S4. Diagnostic performance for
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Appendix S1. Validation of individ-
ual detection of referable DR in
Messidor-2.
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