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Abstract

With the advent of rapid sequencing technologies, making sense of all the genomic variations that 

we see among us has been a major challenge. A plethora of algorithms and methods exist that try 

to address genome interpretation through genotype-phenotype linkage analysis or evaluating the 

loss of function/stability mutations in protein. Critical Assessment of Genome Interpretation 

(CAGI) offers an exceptional platform to blind-test all such algorithms and methods to assess their 

true ability. We take advantage of this opportunity to explore the use of molecular dynamics 

simulation as a tool to assess alteration of phenotype, loss of protein function, interaction and 

stability. The results show that coarse-grained dynamics based protein flexibility analysis on 34 

CHEK2 and 1719 CALM1 single mutants perform reasonably well for class-based predictions for 

phenotype alteration and two-thirds of the predicted scores return a correlation coefficient of 0.6 or 

more. When all-atom dynamics is used to predict altered stability due to mutations for Frataxin 

protein (8 cases), the predictions are comparable to the state-of-art methods. The competitive 

performance of our straightforward approach to phenotype interpretation contrasts with heavily 

trained machine learning approaches, and open new avenues to rationally improve genome 

interpretation.
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Introduction

With the advent of rapid sequencing technologies (Ekblom and Wolf, 2014), we have the 

advantage of studying a large amount of chromosomal and transcript sequences that shed 

light on the variations that we have in our genetic makeup. Among these, mutations that 

occur in the protein coding regions and alter the amino acid sequence are of prime interest as 

they may lead to loss of function due to loss of catalytic machinery (in case of enzymes), or 

alteration of stability, structure, dynamics, interaction, or localization. How these alterations 

affect the immediate spatiotemporal neighborhood of the protein in an organism and cascade 

to an externally observable phenotypic trait is an extremely challenging question to answer. 

Indeed, gene interactions observed as epistasis (Starr and Thornton, 2016), canalization 

(Sato and Siomi, 2010), robustness, or buffering (Hartman, et al., 2001) are known to 

complicate the translation of genotype to phenotype information. In addition, this paradigm 

excludes evaluation of complex traits that may arise due to additional contributions from 

non-coding variants (Boyle, et al., 2017).

Efforts over the past years have improved our understanding of the complexity of addressing 

a genotype-phenotype relation (Dowell, et al., 2010). The key lies in dissecting the role of 

conditionally essential and modifier genes in the phenotype trait development. The role of 

epistasis and genetic interactions are important in here for interpreting the trait(s) in their 

right context. Genome-wide association studies make an effort in this direction but are 

limited to estimating the genetic contributions to traits through statistical inference of a 
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genome-wide set of genetic variants. Wherever common variants appear to associate with 

common or related traits, they are often identified as potential signals (Reich and Lander, 

2001). A similar yet synthetic association can also happen through rare variants (Dickson, et 

al., 2010). Besides, structural (Collins, et al., 2017) and epigenetic variations (Carja, et al., 

2017), multiple alleles with additive effect or synergistic interaction add to the complexities 

that confront our understanding of phenotypic traits.

There is already a plethora of methods available that interpret genotypes for predicting 

alteration of traits. These methods can largely be grouped into sequence-, structure- and 

machine learning-based algorithms. The sequence-based algorithms attempt to analyze the 

alteration of the amino acid properties (Stone and Sidow, 2005), residue conservation 

through entropy measures (Reva, et al., 2007), position-specific scoring matrices (Ng and 

Henikoff, 2001), evolutionary trace (Katsonis and Lichtarge, 2017), scoring substitutions 

and indels in alignments (Choi, et al., 2012) to assess the fitness of a mutation, relying on 

evolutionary information. Structure-based approaches primarily target assessment of folding 

and stability effects on protein due to a mutation (Gromiha, 2007). The extent of alteration 

of the free energy upon mutation of the protein is used to predict its putative effect on the 

phenotype (George Priya Doss, et al., 2008). The machine learning methods use an 

assortment of features to train the classifiers using protein properties like sequence 

conservation, local sequence environment, secondary structure, structural disorder, solvent 

exposure, functional categorization and so on (Niroula and Vihinen, 2016). They are generic 

predictors that make phenotype predictions for missense variants in any protein. Their 

accuracy depends on the dataset(s) used to train the classifier.

It may be noted that it is entirely possible for a mutation to have a limited effect on the 

protein structure but alter molecular interactions. Incorporation of such interaction 

information into phenotype assessment pipeline enhance accuracy (Capriotti, et al., 2018). 

Similarly, alteration-of-localization information of the protein variant would also improve 

assessing the impact on phenotype (Park, et al., 2011).

A class of methods based on molecular dynamics (MD) simulation has also been used in 

which mean-square-fluctuation, radius of gyration, solvent accessibility has been analyzed 

for estimating variation with mutation (Sneha and Doss, 2016). In cases, where ligand 

binding plays an important role in protein function, its alteration due to mutation has also 

been widely studied as a measure of phenotypic alteration, especially in the context of MD 

embedded drug discovery (Gibbs, 2014). MD simulations are based on first principles where 

protein motions and forces acting on the atoms are determined by Newton’s laws of motion. 

This largely makes it devoid of biases arising out of prior information which makes it a very 

attractive tool for the rational understanding of alteration of a phenotype. However, MD 

simulations are computationally expensive and take a considerable amount of time to yield 

results. Due to this limitation, long timescale simulations are practically unfeasible for 

reproducing biological phenomena in the microsecond to the millisecond time interval. 

Additionally, MD uses generalized potential energy functions that exclude electrostatic 

polarization effects. Also, since MD simulations reproduce equilibrium dynamics, the results 

are influenced by the starting energy minimized structure. The description of the explicit 

solvent environment in the simulations is still quite primitive. Despite these limitations, MD 
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still remains the best tool to sample conformational states and calculate thermodynamic and 

kinetic parameters of interest from first principles (Lindahl, 2015).

The CALM1 and CHEK2 proteins that we attempt to analyze in the CAGI challenge are 

dependent on alteration of protein conformation for their activity. For example, CALM1 

protein that senses and binds calcium across a wide concentration range through its two 

lobes is able to bind to target proteins through an allosterically controlled affinity, in which 

the target proteins modulate the conformation of CALM1 (Jensen, et al., 2018; Tidow and 

Nissen, 2013). This way the protein is able to interact with diverse targets and show a 

plethora of binding geometries. Similarly, the checkpoint kinase protein CHEK2 interacts 

with several proteins in its activated state in response to DNA damage or strand break in the 

cell. Investigation of CHEK2 phosphorylation of TP53 shows that this activation is 

allosterically controlled by a novel docking interaction with TP53 (Craig, et al., 2003), 

which also acts as a specificity inducing mechanism for Ser/Thr kinases in general (Biondi 

and Nebreda, 2003). These processes involve conformational alteration at the protein-protein 

docking site maximizing complementary interaction between the kinase and its substrate, 

thereby enhancing the interaction specificity. Therefore, probing the alteration of structural 

dynamics, which has key relevance to the function of both CALM1 and CHEK2 is very 

much pertinent to our present study.

In this paper, we introduce the use of coarse-grained MD as a tool for generic interpretation 

of loss-of-function upon mutation and extend the inference to predict alteration of a 

phenotype. This method is based on our previous work (Bhadra and Pal, 2014) which shows 

a proof of principle that fluctuations in the protein segments obtained from coarse-grained 

MD can be directly used to screen for molecular function. The full pipeline of the 

methodology based on the use of our handcrafted Coarse Grained Molecular Mechanics 

(CGMM) forcefield has been extensively tested (Bhadra and Pal, 2017) and also shown to 

improve protein function annotation (Das, et al., 2017). By participating in the Critical 

Assessment of Genome Interpretation 2018 (CAGI) for the first time, we have subjected our 

methodology to blind tests for assessing function alteration due to mutation. We have 

predicted for three test cases where a protein structural model was available or could be 

reliably built and we could rationalize the performance of our method. Because we use 

coarse-grained dynamics, side-chain modeling was not an issue for model preparation. For 

one case where more detailed information was necessary for interpretation, we have used 

all-atom dynamics using CHARMM27 (MacKerell, et al., 2000) forcefield. This has allowed 

us to explore the use of MD in assessing protein variants for phenotypic alterations in a 

reasonably comprehensive manner for which we believe the results are both insightful and 

encouraging.

Methods

The global overview of workflow followed in evaluating phenotype alterations due to 

variants of CALM1 and CHEK2 proteins, and stability alteration in Frataxin variants is 

given in Fig. 1. Common to all the workflows for individual proteins is the MD simulation 

step in coarse-grained and all-atom form. Before submitting the wild-type proteins and the 

variants for MD simulation, it was essential to prepare them for submission and each case 
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posed its own set of requirements. In each case, wherever required, the wild-type model was 

first built using the Modeller software (Fiser and Sali, 2003). Thereafter, the variant models 

were built using the wild-type model by altering the amino acid at the specific site in the 

tertiary structure.

Input Preparation

CHEK2.—We worked with the isoform 9 of the protein, which is of 586 amino acid length 

for which a complete structure is not available in the Protein Data Bank (PDB, http://

www.rcsb.org). Therefore, we took two templates from the PDB and created a single model 

by multi-chain modeling using Modeller. The templates with PDB identifier (ID): 3I6W and 

2CN5 had sequence identities of 99.7% and 99.3%, respectively, with the CHEK2 and 

corresponding templates segments 92–501, 208–504 span 92–547 segment of the CHEK2 

polypeptide sequence. The best structure spanning residues 92–586 with Discrete Optimized 

Protein Energy Score of −40091 was used for coarse-grained MD simulations. 39 residues at 

the C-terminal end of CHEK2 is modeled as a loop. For mutant cases located between 

residue positions 1–91, for which no tertiary structure was available, we performed a 

secondary structure prediction using YASPIN (Lin, et al., 2005) and identified the secondary 

structure at the mutation locations. Mutation located within the regular secondary structure 

segment, such as helix or sheet was deemed as damaging, while others were benign. E→Q 

mutation was treated as neutral for the segment. We worked on a total of 34 non-

synonymous Single Nucleotide Variants (SNVs) available from Genome Wide Association 

Studies on Latina population with 1000 breast cancer cases and 1000 ancestry-matched 

controls. Variants in the list were observed between 1–20 times.

CALM1.—It is a 149 amino acid length protein. The coordinates of the protein for the 

segment 5–149 was available from the PDB with ID: 3CLN, which was used for the MD 

simulations. The coordinate file had only one subunit, which was taken for the model 

building to fill in the missing coordinates in the N-terminal region. We had a data set of 1813 

SNVs to investigate for which at least three independent barcoded clones were represented, 

providing internal replicates of the experiment. The analysis is performed on 1719 SNVs 

because the remaining scores derived from the experiments had negative values 

corresponding to their trait. MD simulations were run on the wild-type protein and all the 

mutants except for the ones where the mutation was occurring at the metal binding residue 

location.

Frataxin.—It is a 210 amino acid long protein of which residues 81–210 represent the 

mature form. The coordinates for this segment (90–208) was available from the PDB with 

ID 1EKG, which was used for our calculations. The coordinate file had only one subunit, 

which was taken for model building to fill in the missing coordinates in the C-terminal 

region. We had information for 8 non-synonymous variants for which we had to predict 

alteration of protein stability with respect to the wild-type.

Molecular Dynamics Simulations

Coarse-grained.—We ran the coarse-grained MD simulation on the pseudo-atoms located 

at the Cα atom position of the protein structure for 1μs with CGMM forcefield (Bhadra and 
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Pal, 2014; Bhadra and Pal, 2017) at 300K temperature using Gromacs software Version 

4.6.5 (Van Der Spoel, et al., 2005). The pseudo-atom types supported by the CGMM 

forcefield is available at cgmm.itp (http://pallab.cds.iisc.ac.in/CGMM/

cgmm_download.php). The mass of each pseudo-atom is set to its corresponding accurate 

amino acid mass. To begin, we make the itp (include topology), gro (molecular structure in 

Gromacs format) and top (topology file) files using the utility script provided at the above 

URL. Potential energy functions in a tabulated format are also available here for use in the 

simulation run. The simulation medium is taken as a vacuum. The protein was subjected to 

steepest descent energy minimization to remove any overlapping contacts and reduce the 

maximum force in the system to 100kJ/mol/nm. This was followed by the equilibration step. 

For equilibration, canonical or NVT (constant number (N), volume (V), and temperature 

(T)) ensemble was used with Berendsen temperature coupling at 298K. Simulated annealing 

was used in the equilibration step for 70ps time interval. Then the unconstrained dynamics 

was run using a 2fs integration time step. Leapfrog method was used as the integrator 

algorithm. Structures during unconstrained dynamics simulation were recorded every 100ps 

time in the 1µs long simulation to give a total of 10,000 frames for analyses. Simulations 

were performed in a 64bit 2.7 GHz processor server and a typical CALM1 MD simulation 

took about 33 hrs in a single processor, while CHEK2 took about 76 hours. Multi-process 

jobs were avoided due to unstable behavior.

All-atom.—The MD simulations were run using Gromacs software Version 4.6.5 (Van Der 

Spoel, et al., 2005) with CHARMM27 (MacKerell, et al., 2000) as forcefield for 1ns at 300K 

temperature. In each case, we used a cubic box of a specific size with SPC/E (SPC216) 

water and centered the protein such that it left roughly 10Å distance to the edge of the box. 

Thereafter we neutralized the system and subjected it to steepest descent energy 

minimization to remove any overlapping contacts and reduce the maximum force in the 

system to 1000 kJ/mol/nm. This was followed by NVT equilibration, with a 2fs time step, 

using modified Berendsen thermostat with a total simulation time of 100ps under a 

temperature of 300K. Subsequently, the NPT (constant number (N), pressure (P), and 

temperature (T)) equilibration of 100ps using 2fs time step at 1atm was done using 

Parinello-Rahman pressure coupling. Structures during unconstrained dynamics simulation 

were recorded every 10ps to give a total of 101 frames for analyses.

Analyses and Scoring

Flexible Segments.—We obtain the flexible regions of the protein from the simulation 

trajectory using Root Mean Square Fluctuation (RMSF) estimated from all the frames. 

These RMSF values are then normalized using the formula [RMSFnorm = (RMSFobs – 

RMSFmean)/ σ(RMSF)], where σ = standard deviation of the observed RMSF values. For 

identifying segments that are flexible, we convert the real number values of RMSF for each 

residue in the frame into discrete symbols representing specific RMSF ranges. The detailed 

scheme is described in Bhadra et al. (Bhadra and Pal, 2014). The symbols L, I, H, and G 

correspond to normalized RMSF ranges of 0–1, 1–2, 2–3, and >3, respectively. On the basis 

of RMSFnorm profile and the criterion for a flexible region; i.e. the percentage occurrence of 

a symbol (L >35% or combined G, H and I >14%), we select the flexible regions of the 

structure.
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Correlation Coefficient.—Once the flexible regions of the protein are identified, we 

embark on matching the flexible regions of the wild-type and the variant to compute a 

Pearson correlation coefficient (PCC). For this, we first calculate a three‐dimensional (3D) 

unweighted Autocorrelation Vector (ACV) for individual flexible regions based on residues 

in each frame. The formula for calculating 3D ACV is (Bhadra and Pal, 2014):

3D ACV = v 1 , v 2 , …..v i ……v n

v i = Σj, kδ i PjPk wℎere δ i = 1 if i ≤ D < i + 1 dx
0 if i > D ≥ i + 1 dx

In here, Pj and Pk are the properties or weights associated with the atoms j and k, separated 

by a distance D = [(i+1) dx - (i) dx]. Note that in our case each atom is, in fact, a pseudo-

atom placed at the Cα atom position representing an amino acid in the polypeptide chain. 

The dimension of the 3D ACV is n, where n = dmax/dx; dmax being the distance between two 

farthest atoms in the concerned protein segment and dx is the step size, which is 2Å in our 

case. Each flexible segment yields an ACV, and these are compared for a pair of proteins to 

obtain a PCC value using 11 frames (each at 100 ns apart) available from the MD trajectory. 

For the CHEK2 case study, we use 11 × 11 = 121 PCC values from the ACVs for each pair 

of proteins where 50% of them must have a PCC of >0.90 and 25% must be >0.95 or 

Euclidean Distance ED = x − 50 2 + y − 25 2  value <15, to screen a match for similarity 

in function between the two proteins (in this case, wild-type and the mutant). For the 

CALM1 case study, we have relaxed the screening condition slightly to increase the 

coverage. The criteria to screen from 121 PCC values from the ACVs for each pair of 

proteins is accordingly relaxed to 50% must have a PCC of >0.80 and 25% must be >0.85 or 

ED value <15, to screen a match for similarity in function between the two proteins.

Probability score for CHEK2.—The filtered wild-type protein and the variant-pair are 

sent for a similarity score calculation defined as a ratio of the number of flexible regions in 

mutated protein (a) and wild-type (b): Similarity Score = a/b. It may be noted, that the 

Similarity score caters to comparing proteins through matching flexible protein segments 

that may contribute to similar function. However, mutations in the protein always have a 

context-based effect at a given site. If the mutation is in the ligand binding site of a protein, 

there is a higher chance of mutation being damaging to protein function. Consequently, one 

can prioritize the sites to investigate as per the question asked. In the context of CHEK2 

isoform 9 protein, which is a kinase protein, ATP binding activity is of the highest 

importance. Therefore, the mutations given for CHEK2 were classified to be near or far 

away from the ATP binding site. We found one segment (412–421) near this site which was 

flexible and could affect the ATP binding of the protein thereby altering or hindering its 

biological function. Since the mutations at different site alter the flexibility of protein 

segments of different sizes, while evaluating for effects of alteration of ATP binding, we 

chose only the common segment of 412–421 for all proteins for comparison. The premise 

used for evaluation was that higher the similarity of the variant protein to the wild-type, the 

lesser is its chance to be present in cancer patients. Some previous experimental values for 
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the effect of CHEK2 variants to be damaging or benign for cancer patients were already 

available from Calvez-Kelm et al. (Le Calvez-Kelm, et al., 2011) and Desrichard et al. 
(Desrichard, et al., 2011). Our scores calculated for the mutants were mapped to the 

identical cases reported in these papers (Table 1). This allowed us to segregate the range of 

the scores corresponding to benign, damaging, or neutral. The ranges were mapped to: <70 

Damaging, 70–80 Neutral, and >80 Benign for scores, and >0.5 Damaging, 0.5 Neutral, and 

<0.5 Benign for the corresponding probabilities.

Similarity Score for CALM1.—At first, the Similarity score is calculated in the same 

manner as in CHEK2 using the formula (Similarity Score = a/b) as above. For the metal 

binding residues, if upon mutation the covalent structure of the protein is getting changed, 

we did not run the simulation and directly inferred from the fact that if the metal is bound 

with a side chain of an amino acid and that side chain is getting changed; that is, upon the 

amino acid getting mutated, the metal will not be able to bind, and the whole structure will 

become unstable and dissimilar to wild-type.

Clustering and free energy calculation for Frataxin.—After finishing with all the 

MD simulations, we cluster the frames on the basis of their RMSF using the g_cluster 

command of the Gromacs utilities. The RMSF threshold is set such that we obtain only 2 

clusters. We assumed that the cluster which had the higher number of frames is the one 

having the more stable structures, while the one which had a lower number of structures is 

the one that is less stable. These two states were assumed to represent the folded and 

unfolded states, respectively for the purpose of our calculations. In the third step, we select 

one representative structure from the cluster that is closest to the cluster centroid and use it 

for free energy calculation using the g_mmpbsa (Kumari, et al., 2014) method. This method 

gives 3 types of energies: molecular mechanics potential energy, apolar and polar energy. 

The free energy is calculated by summing up all the three energies. The unfolding free 

energy is the difference between the unfolded and the folded state (ΔG). Correspondingly, 

we calculate another ΔG value by taking the variant protein. We estimate the ΔΔG by taking 

the difference between the variant ΔGs and wild-type.

Normalization of ΔΔG values.—Normalization is performed retrospectively from the 

available experimental information. This normalization step is necessary because the folded 

and the unfolded states assumed in our method are representative cases only, and an 

exhaustive unfolding simulation will be computationally expensive. We apply a simple linear 

transformation {Normalized ΔΔG = [(0.09 * predicted ΔΔG) – 1.5]} to the obtained values 

such that the predicted centroid value of the ΔΔGs coincides with the centroid of the 

experimental values. The predicted ΔΔG values used by us excludes the constant solvent 

contributions to the free energy value.

Prediction Performance Assessment

We use two types of evaluation metrics, one based on values and other categorical, namely 

the class prediction. For evaluating based on values, we use (i) PCC, (ii) Root Mean Square 

Error (RMSE), and (iii) Absolute Mean Error (MAE) with reference to the experimental 

data. PCC = cov(X,Y)/σxσy, where X and Y are the two variables between which we want to 
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compute the correlation coefficient. Cov is covariance between the variables and σ their 

standard deviation.

RMSE =
∑i = 1

N (Xi, pred − Xi, exp)2

N , where Xi,pred is predicted value at ith position and Xi,exp 

is experimental value at ith position and N is the total number of data points.

MAE =
∑i = 1

N Xi, pred − Xi, exp
N , where Xi,pred is predicted value at ith position and Xi,exp is 

experimental value at ith position and N is the total number of data points.

PCC is used to estimate the linear relationship between the prediction and experiments. 

RMSE is a measure indicating how close the predictions are to the experimental data points. 

MAE depicts the difference between the experimental and predicted values.

Receiver Operating Characteristic (ROC) curve is a graphical measurement for analyzing the 

classification ability of a method. It is a curve between True Positive Rate (TPR = TP ÷ 

Total Positives) and False Positive Rate (FPR = FP ÷ Total Negatives) at different thresholds 

(T). TP and FP are generated as part of the four measures that form the confusion matrix.

• True Positive (TP) are the cases where both predicted and experimental values 

are positive.

• True Negative (TN) are the cases where both predicted and experimental values 

are negative.

• False Positive (FP) are the cases where the experimental value is negative, but the 

method predicts it as positive.

• False Negative (FN) are the cases where the experimental value is positive, but 

the method predicts it as negative.

Thresholds (T) are the different cut-off values used for the demarcation of the predicted 

value into positive and negative class. ROC shows the trade-off between specificity (TPR) 

and sensitivity (FPR) of the method. The area under the ROC curve (AUC) is a measure of 

how well a binary classification method is performing.

For class-based evaluation, the following evaluation metrics are used: Accuracy and F1 

score.

Accuracy (Acc = (TP+TN)/(TP+TN+FP+FN)) is the fraction of predictions our model got 

right. It is measured by the number of correct predictions made divided by the total number 

of predictions made.

F1 score (F1 = 2 × Precision × Recall / (Precision + Recall)) is also a measure of the 

accuracy of the method but it uses precision and recall for the assessment. Precision (TP/ 

(TP+FP)) is defined as the fraction of correct positive prediction to the total positive 

prediction made, which indicates the relevancy of the method. Recall (TP/ (TP+FN)) is 

defined as the fraction of correct positive prediction and total positive cases.
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Class definitions for each challenge are as follows:

Frataxin: variants are divided into two classes based on threshold values, ΔΔG ≥ −2.0 (or 

−1.0) kcal/mol (class label 0, stable) and ΔΔG < −2.0 (or −1.0) kcal/mol (class label 1, 

unstable).

CHEK2 and CALM1: variants are also divided into two classes based on threshold values, 

probability ≤ 0.5 (class label 0) and probability > 0.5 (class label 1). In CHEK2, the class 

label 0 correspond to Benign, and class label 1 Cancerous. In CALM1, the class label 0 

correspond to Deleterious and class label 1 Benign. Although another class called “Neutral” 

was also given in CHEK2 experimental data, only one data point was available there and 

therefore it was not considered for defining an additional class. Moreover, it is somewhat 

arbitrary to put a specific threshold to distinguish a “Neutral” mutation from “Benign” or 

“Deleterious”.

Results

The submissions made for the CAGI challenge can be grouped into two parts, one where 

there is functional interpretation, and second where the interpretation is restricted to 

assessing loss-or-gain of stability due to a point mutation. Submissions for CHEK2 and 

CALM1 are for the former category and submission for Frataxin is for the latter. The results 

are reasonably good for all. Below we describe the results and attempt to analyze the 

performance of the method.

CHEK2.

Figure 2 shows the scatter diagram of predicted probability values for CHEK2 marked 

against each mutant case. The experimental values are available in the categorical form (red 

color represents cancerous, green the benign, and black the neutral mutations), where we 

have merged neutral class to benign, as it had only one data point. It can be seen from Figure 

2 that our method is able to discriminate between the mutants, and the Accuracy obtained is 

0.62 and the F1 score 0.71, which is a reasonable performance of precision and recall. The 

same obtained from a machine learning based tool Polyphen (Adzhubei, et al., 2013) is 

higher at 0.73 for Accuracy and 0.78 for the F1 score. In the region 1–91 with 4 mutations, 

we could predict only one correctly.

It may be noted that in the experimental data 24, 6, 2, 1, 1 mutants with 1, 2, 3, 4, 17 

replicate experiments, respectively were available for evaluation. Since a minimum of three 

replicates is necessary for confident interpretation, one can divide the analysis into two parts 

where we have sufficient data and otherwise. The former had only one case that showed all 

benign observations and the other two cases did not show unambiguous cancer or benign 

state. If we take this information into the background while calculating Accuracy of our 

predictions, in the 24 cases where only one replicate information is present, we could predict 

correctly in 14 cases (58% cases accurate; F1 score 0.68), for 6 cases with two replicates we 

predict 4 cases correctly (66% accurate, F1 score 0.8) and in 2 cases with three replicates we 

predict one correctly. For one case with 4 replicates, 2:2 were cancerous:benign. We have 

predicted a probability 0.46 for this case which is close to 0.5 ideally expected for the 

Garg and Pal Page 10

Hum Mutat. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Neutral case. For a single case where 17 replicates are present, we predict it correctly with a 

probability of 0.55.

If we look at the results in terms of a linear trend between predicted probabilities and 

observed occurrence values, the overall PCC is poor due to anti-correlating predictions on 

18% data (Table 2). Otherwise, for 82% of the data, we have a reasonable PCC of 0.47, 

which is improved to 0.73 for 68% of the data. The corresponding RMSE and MAE values 

are reasonable given the low number of replicates in the experiments, as outlined above. The 

performance of the method can also be seen from the ROC plot (Fig. 3A) showing an AUC 

of 0.77 for 75% of the data, consistent with the trends presented in Table 2.

CALM1.

Figure 4 shows the distribution of predicted and experimental classification values of 

CALM1. The distribution is shown in 2 parts, “All” (Fig. 4 A–B) and “Excluding Zeros” 

(Fig. 4 C–D). We submitted all the data to the CAGI5 competition as was mandated, even 

though we could not perform MD simulations for all, and therefore not able to make 

predictions for those cases (reported “Zero” as their value). These cases have been removed 

from our evaluation to show the actual performance of the method. Distribution of 

experimental and predicted values are better aligned after removing “Zero” entries. When 

we take the difference between the predicted and observed data points in “All” and 

“Excluding Zeros” cases, we see that we have the highest bars close to zero, indicating good 

prediction for a large number of cases (Fig. 4 E–F). A closer look at Table 2 reveals that 

about 20% and 15% of the predictions in “All” and “Excluding Zeros” dataset are anti-

correlating due to which the overall PCC for the results are poor. Otherwise, for about two-

thirds of all the data, we get a reasonable PCC of around 0.6. The corresponding RMSE and 

MAE values are within 0.22 and 0.18, respectively. Together with these observations and the 

bell-shaped nature of the distribution observed in Fig. 4 E–F, one can argue that our 

method’s performance is reasonably good. These performance trends are also reflected from 

the ROC plots (Fig. 3 B–C).

If we evaluate based on Deleterious and Benign classes using the F1 score, then we get a 

value of 0.72 (All) and 0.84 (excluding Zeros). The accuracy of the method is 0.59 (All), 

which improves to 0.73 when we exclude the “Zero” cases. If we compare our results to a 

popular phenotype classifier like Polyphen then it gives a lower Accuracy of 0.52 (All) and 

0.49 (excluding Zeros). The F1 scores are 0.66 (All) and 0.63 (excluding Zeros).

Frataxin.

Figure 5 and Table 3 shows the comparison between the experimental and predicted values 

of ΔΔG. On the basis of experimental results, values are divided into two parts, unstable and 

stable at the threshold of ΔΔG = −2.0 kcal/mole or −1.0 kcal/mol. Lesser the ΔΔG value, 

lesser stable is the mutant. In the graph, stable mutations are shown in green while unstable 

mutations are shown in red. As shown in the graph, our method is able to distinguish 

between stable and unstable mutations. We are predicting for 3 stable mutations and 3 

unstable mutations correctly at the threshold of ΔΔG > −2.0 kcal/mol. While at the threshold 

ΔΔG > −1.0 kcal/mol, we are predicting correct classes for 5 out of 8 variants (Table 3).
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Using value-based analysis, PCC between predicted and experimental data is found to be 

0.6, with RMSE and MAE being 3.52 and 2.89, respectively, showing the closeness between 

the predicted and experimental values (Table 3). A comparative evaluation using the Fold-X 

server (Schymkowitz, et al., 2005) returned PCC: 0.77, RMSE: 2.24, MAE: 1.62. The same 

values for I-mutant server (Capriotti, et al., 2005) are PCC: 0.76, RMSE: 3.13, MAE: 2.24. 

On performing classification-based analysis using a threshold of −1.0 kcal/mol, Accuracy 

for our method was found to be 0.63 and F1 score 0.67 showing good precision and recall. A 

similar analysis at threshold −2.0 kcal/mol shows Accuracy 0.75 and F1 score 0.75, 

indicating improved precision and recall. The Accuracy given by Fold-X and I-mutant were 

0.75 and 0.63, respectively for classification threshold of ΔΔG > −1.0 kcal/mol, and 0.63 and 

0.63 for threshold ΔΔG > −2.0 kcal/mol. The F1 score for Fold-X and I-mutant were 0.8 and 

0.57 for threshold ΔΔG > −1.0 kcal/mol, and 0.57 and 0.57 for threshold ΔΔG > −2.0 kcal/

mol.

Discussion

It is the first time “Protein Flexibility” has been used as a primary predictor in a CAGI 

challenge for blind tests. Our approach demonstrates the straightforward use of MD 

simulation to understand the alteration of phenotype or protein stability. These are linked to 

protein function which in turn is intimately linked to protein flexibility. Function requires 

interaction with another molecule, which in turn requires the protein to be able to change its 

conformation. This rearrangement could be of various degrees; however, a perturbation that 

changes the flexibility affects how this rearrangement is realized, therefore directly affecting 

the function. MD in our case is simply a tool to estimate this flexibility and its alteration due 

to mutation. If one were to look at previous attempts of estimating alteration of function, 

protein feature based studies have used measures like hydrophobic burial (or burial of 

charge), backbone strain, overpacking, secondary structure and electrostatic interactions 

(Teng, et al., 2008). All these features are tied to protein conformational dynamics in varying 

degrees and likely to get perturbed in case of a mutation. Consistent with this underlying 

concept we explore the use of MD in studying phenotypic alteration. The basic premise 

exploits the fact that any alteration of the protein that changes its dynamics such that it can 

perturb the function and/or interaction is likely to have phenotypic consequences.

Conformational flexibility has been previously used by existing pathogenic variant callers as 

one of the many other features (Ancien, et al., 2018; Pejaver, et al., 2017). B-Factor values 

of atomic coordinates in crystal structures (Sun, et al., 2019), NMR order parameters 

(Torchia, 2015) or fluctuation calculated from an alignment of multiple X-ray structures or 

NMR derived ensembles allows straightforward estimates on flexibility. Conformational 

flexibility estimated through MD has also been used as one of the many features in 

predicting for effects of a missense mutation (Ponzoni and Bahar, 2018), but not in a direct 

manner as us. We look at altered flexibility; therefore, if any protein segment, including non-

flexible segment, if altered in flexibility, those effects are accounted for. The approach is 

powerful as it does not rely on any evolutionary information and can be obtained from first 

principles such that its application can be done on novel proteins with no or limited 

homology information. The minimum requirement is only the availability of a structural 

model of the protein in consideration.
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The importance of the protein in the functional network is another key aspect to judge the 

extent of the downstream cascading effects that it might produce to alter a phenotype. In 

general, one can expect the alteration of essential proteins, including those forming hub and 

bridge to maximally affect the phenotype, provided the function/interaction is truly altered 

by the mutation. Any mutation that does not alter interaction or function owing to their 

remote location from the site of activity, will have limited or no bearing on the alteration of 

phenotypes. However, it is possible that such mutations that globally destabilize proteins, 

especially those occurring in protein core, may alter function although they may be remote 

from the actual functional site (Yue, et al., 2005). This primarily affects the protein’s overall 

fitness (i.e., the ability to do its function) owing to lowered free energy (i.e., stability) due to 

mutation (Tokuriki and Tawfik, 2009). However, increase in the stability could also be a 

cause of disease, even though the protein’s fitness is not altered (Chiang, et al., 2016; Li, et 

al., 2004). Therefore, approaches that assess both global and local features to estimate 

protein properties stand a better chance to correctly predict altered phenotypes. Protein 

flexibility used as a measure by us to screen for altered phenotypes in this study appears to 

encapsulate features that are both global and local in nature.

Looking specifically at our application on CHEK2, we already know it to be a key hub 

protein regulating the G2/M cell-cycle checkpoint and maintaining the genome integrity, 

forms a functional linkage clique with a host of other important proteins like ATM, ATR, 

CDC25C/CDC25A, MRE11A, RAD50, H2AFX TP53BP1, TP53, and BRCA1 (Szklarczyk, 

et al., 2015). Since the phenotype to evaluate in CAGI challenge is cancer and the CHEK2 is 

a kinase, we focussed on screening the alteration of dynamics around the ATP binding site 

(412–421), as phosphorylation is known to be one of the most important activities in cancer 

pathway. This allowed us to avoid evaluating other parts of this large 586 length protein that 

may have limited or no consequence for the phenotype alteration in question. 

Understandably, a better knowledge of the parts of the protein that has a contribution to 

phenotype alteration would allow us to improve the results. Notwithstanding, the present 

results are reasonable, based on a simple rational premise compared to the heavily trained 

state-of-the-art machine learning methods, like Polyphen, whose results are only marginally 

superior to ours. This fact is further corroborated from predictions for CALM1, also a hub 

protein, and shown to be a rescue phenotype, suggesting its important role in cell viability. 

In this case, our predictions are superior to Polyphen, and it can be rationalized to the 

measure of flexibility-based similarity that we use to assess the phenotype alteration here. 

The improved performance can be attributed to using all parts of the protein for score 

estimation, as we found all protein segments to be involved in some activity or the other with 

relevance to cell viability. This contrasts with the focussed assessment we make for CHEK2, 

although it vindicates our presumption that alteration of the ATP binding site has a key 

consequence for cancer pathogenesis.

One of the key steps of our methodology common to both CHEK2 and CALM1 phenotype 

prediction is finding the Correlation Coefficient. This step is based on comparing frames 

from the MD trajectory using 3D ACV. Currently, we implement unweighted 3D ACV for 

finding matches. This means that we only evaluate the alteration of the flexibility of a 

protein segment ignoring its chemical consequences. If we use weighted 3D ACV, the 
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alteration of the flexibility information will incorporate chemical consequences alongside, 

which is more relevant for phenotype alteration assessment.

Protein-protein interaction required for signaling, recognition, and transport events are key 

activities contributing to a phenotype. Similarly, protein-ligand binding is a key activity that 

could also be the principal contributor to a phenotype. However, one can counter that 

probing protein conformational dynamics is not the same as probing its interaction and vice 

versa. A closer look reveals that the conformational dynamics of a protein directly affects its 

interaction potential. For example, the fluctuation of the protein molecule during dynamics 

alters its atomic packing, and with a mutation, this packing is also altered and may affect 

protein-protein interaction when such a site is in the mutation neighborhood (Naganathan, 

2019). Conformational dynamics is also known to alter the hydration shell of a protein, and 

water hydration is known to play a key role in binding thermodynamics of protein 

complexes (Chong and Ham, 2017). Similarly, conformation dynamics can affect ligand 

binding affinity when the opening/closing of the binding groove gets altered by mutation 

(Seo, et al., 2014). By checking for the alteration of flexibility between wild-type and 

mutant using MD, we implicitly check for alteration of protein-protein and protein-ligand 

binding activity. Since protein-protein and protein-ligand interaction are context specific and 

spatiotemporal in nature, it is practically not feasible to gather knowledge over all such 

interactions possible in a cell. Alteration of flexibility assessed through MD simulations 

could provide an alternative way to quantitatively judge how such interactions may be 

affected thereby altering a phenotype.

Looking at the Frataxin predictions, we can clearly see that our method performs equally 

well compared to others, although being simplistic in approach. All-atom simulation using 

CHARMM27 forcefield was appropriate compared to coarse-grained MD because CGMM 

forcefield lacks electrostatics-based nonbonded potential functions essential for the method 

used by us to estimate free energy change. Moreover, the use of the all-atom model ensures 

more sensitive computation of free energies compared to the pseudo-atom based coarse-

grained model. It can be argued that the free energy change estimates can be further 

improved if we had performed more sampling of states by increasing the simulation time to 

microseconds. A key challenge, however, is the normalization of the free energy estimates, 

such that it is comparable to the experimental values. More research is needed in this 

direction through the improvement of forcefield parameters.

Conclusion

We described new applications of MD based prediction of altered phenotypes of CHEK2 

and CALM1 protein and presented an estimate of altered free energy on mutation for 

Frataxin protein. The results are competitive to the existing methods, despite being 

simplistic and straight forward in nature. The CAGI challenge has offered a unique 

opportunity to consider further ideas to improve our method through the lessons learned 

from this edition of the challenge and to better assess protein variations. The mechanism(s) 

relating stability-flexibility-function/interaction-phenotype is complex and our goal is to 

understand this further.
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Figure 1. 
A global overview of the workflow for the Molecular Dynamics based calculation of 

phenotype alterations due to CHEK2 and CALM1 protein variants, and stability alteration 

interpretation of the Frataxin protein variants. Calculation of Flexible Segments and 

Correlation Coefficients are the common steps shared between CHEK2 and CALM1 protein 

for analyses post MD simulation.
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Figure 2. 
Scatter plot showing various probability values predicted for different mutants of CHEK2. 

The color code represents the various classes of data points; viz, Red=Cancer, 

Black=Neutral, Green=Benign. A predicted value of 1 means Cancerous, 0.5 means Neutral 

and 0 means Benign. Only one data point is present in the Neutral class and therefore 

merged with the Benign class for performance evaluation of our method.
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Figure 3. 
ROC curves for predictions made on CHEK2 (A) and CALM1 (B-C) variants. There are 

four curves (solid, dash, dot, dot-dash) in each plot corresponding to top 25%, 50%, 75%, 

and 100% of the MAE-sorted data. The area under the curve for each curve is indicated in 

square brackets [].
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Figure 4. 
Comparison of the distributions of CALM1 predictions with its experimental data based on 

probability. Two sets of diagrams are given, one in which all data points are included “All” 

(A-B) and other in which “Zero” (C-D) data points are excluded. “Zero” data points 

correspond to no prediction cases. The difference between the data points in (A) and (C) are 

given in (E), and the difference in data points in (B) and (D) are given in (F), as histograms.
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Figure 5. 
Graph showing the linear correlation between the Frataxin normalized ΔΔG values predicted 

by our method and compared to their experimental values. Data points greater than −1.0 

kcal/mol are marked in green and others in red. Ideal predictions would be along the 

diagonal line.
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Table 1.

Available classification of CHEK2 mutant phenotypes used in our study for defining the ranges of similarity 

scores and probability values

Mutation Reference result* Our Similarity Score Our Probability Score Our Result

p.L555V Benign 81.25 0.4 Benign

p.I491S Benign 87.5 0.3 Benign

p.I200T Benign 63.15 0.6 Damaging

p.I491V I491S is Benign 100 0.0 Benign

p.I264V I264M is Possibly Damaging 68.42 0.6 Damaging

p.R562L Possibly Damaging 57.89 0.6 Damaging

p.D481Y Possibly Damaging 57.89 0.6 Damaging

p.E282K Possibly Damaging 73.68 0.5 Neutral

p.R223C Possibly Damaging 100 0.0 Benign

p.R180Q Possibly Damaging 47.36 0.7 Damaging

p.P527L Possibly Damaging 0 1.0 Damaging

p.T519M Possibly Damaging 68.4 0.7 Damaging

p.R389H Possibly Damaging 0 1.0 Damaging

p.R160G Possibly Damaging 87.5 0.3 Benign

*
Calvez-Kelm et al. (Le Calvez-Kelm, et al., 2011) and Desrichard et al. (Desrichard, et al., 2011)
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Table 2.

Performance of our method shown on partitioned and complete data

|ScorePredicted - ScoreExpt.| PCC Data (%) RMSE MAE

CHEK2 (34 cases)

1. ≤0.25 0.98 20.5 0.11 0.07

2. ≤0.50 0.73 67.6 0.34 0.29

3. ≤0.75 0.47 82 0.42 0.36

4. ≤1.00 0.02 100 0.54 0.45

CALM1- ALL (1719 cases)

1. ≤0.25 0.79 50 0.14 0.12

2. ≤0.50 0.58 67.1 0.22 0.18

3. ≤0.75 0.32 80.6 0.33 0.25

4. ≤1.00 −0.024 100 0.49 0.38

CALM1- Excluding Zeros (1274 cases)

1. ≤0.25 0.59 65.3 0.14 0.12

2. ≤0.50 0.33 85 0.21 0.17

3. ≤0.75 0.09 97.3 0.3 0.23

4. ≤1.00 0.03 100 0.32 0.245

Frataxin (8 cases)*

1. ≤1.75 1 25 0.67 0.65

2. ≤3.25 0.9 62.5 1.65 1.49

3. ≤4.875 0.83 75 2.11 1.84

4. ≤6.5 0.6 100 3.52 2.89

*
Scores for Frataxin are ΔΔG values
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Table 3.

Classification of Frataxin stability values

Variant ΔΔG (Exp.) ΔΔG (Raw) ΔΔG (Norm.) Class 1
†

Exp
Class 1

†

Pred.
Class 2

‡

Exp.
Class 2

‡

Pred.

1. D104G 0.26 −2.5 −1.7 0 0 0 1

2. A107V 0.22 28.1 1.02 0 0 0 0

3. F109L −2.65 49.8 3.0 1 0 1 0

4. Y123S −4.48 38.3 1.9 1 0 1 0

5. S161L −3.44 −47.7 −5.8 1 1 1 1

6. W173C −9.54 −68.8 −7.7 1 1 1 1

7. S181F −2.04 −11.6 −2.5 1 1 1 1

8. S202F −0.69 49.1 2.9 0 0 0 0

A threshold of −2.0 kcal/mol† and −1.0 kcal/mol‡ is used to create classes. Label 0 means mutant is stable and 1 otherwise.
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