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Abstract

Whole genome sequencing (WGS) holds great potential as a diagnostic test. However, the majority 

of patients currently undergoing WGS lack a molecular diagnosis, largely due to the vast number 

of undiscovered disease genes and our inability to assess the pathogenicity of most genomic 

variants. The CAGI SickKids challenges attempted to address this knowledge gap by assessing 

state-of-the-art methods for clinical phenotype prediction from genomes. CAGI4 and CAGI5 

participants were provided with WGS data and clinical descriptions of 25 and 24 undiagnosed 

patients from the SickKids Genome Clinic Project, respectively. Predictors were asked to identify 

primary and secondary causal variants. Additionally, for CAGI5, groups had to match each 

genome to one of three disorder categories (neurologic, ophthalmologic, connective), and 

separately to each patient. The performance of matching genomes to categories was no better than 

random but two groups performed significantly better than chance in matching genomes to 

patients. Two of the ten variants proposed by two groups in CAGI4 were deemed to be diagnostic, 

and several proposed pathogenic variants in CAGI5 are good candidates for phenotype expansion. 

We discuss implications for improving in silico assessment of genomic variants and identifying 

new disease genes.
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INTRODUCTION

Next generation sequencing (NGS) is a disruptive technology that provides more 

comprehensive tests and several fold higher diagnostic yields than conventional methods for 

diagnosing genetic disorders. Looking to the future, deploying NGS-based whole genome 

sequencing (WGS) as a first tier diagnostic test has the potential to revolutionize the 

diagnosis of genetic disorders, given that the diagnostic yield of WGS for children suspected 

of a Mendelian disorder currently averages over 40% and continues to increase with time 

(Clark et al., 2018; Scocchia et al., 2019). Nonetheless, the majority of patients who now 

undergo WGS after first-line genomic testing failed to yield an answer remain without a 

molecular diagnosis. This gap between the current performance of WGS and its ultimate 
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potential as a diagnostic test is primarily due to the large number of undiscovered disease 

genes and our inability to assess the pathogenicity of most genomic variants.

WGS identifies ~3.8 million variants in the average individual (Shen et al., 2013) with over 

650 million variants already cataloged in a small proportion of the world’s population 

(dbSNP Build 151, April 2018 release). Correctly assigning one or a few of these variants as 

the cause of disease in an individual suspected of a genetic disorder is a herculean task, in 

large part because the majority of rare and low frequency variants are of unknown clinical 

significance and non-coding variants are rarely classifiable (Giral, Landmesser, & Kratzer, 

2018; Gloss & Dinger, 2018; Zhu, Tazearslan, & Suh, 2017). Beyond the sheer numbers of 

variants, the complexity of this endeavor is compounded by locus heterogeneity, in which 

pathogenic variants in multiple genes can yield overlapping phenotypes. Furthermore, many 

genetic disorders are likely oligogenic or polygenic in nature (Jordan & Do, 2018; Kousi & 

Katsanis, 2015).

Bioinformatics-guided analysis of clinical WGS data is essential to overcome these 

challenges. While there have been significant improvements in the detection and 

classification of single nucleotide variants, copy number variants, and other structural 

variation from WGS data, there is a critical need to substantially improve the accuracy and 

efficiency of computer algorithms designed to predict a patient’s phenotype from their 

genotype and distinguish a phenotype’s causal variant(s) from millions of others. 

Overcoming the current limitations of WGS variant interpretation will not only improve 

clinical diagnosis, it also will advance our understanding of the etiology of genetic disorders 

and facilitate the development of better therapeutics, which will ultimately lessen the burden 

of genetic disease.

The Hospital for Sick Children’s (SickKids) Genome Clinic Project was designed to pilot 

the diagnostic and predictive use of whole genome sequencing (WGS) in children (Bowdin, 

Hayeems, Monfared, Cohn, & Meyn, 2016). The Project’s first cohort involved testing the 

performance of WGS vs. diagnostic chromosomal microarray in 100 children referred to 

clinical geneticists for suspected genetic disease. The second cohort compared WGS against 

targeted panel sequencing in 103 children seen in pediatric specialty clinics. The initial 

diagnostic rates for WGS were 38% for the microarray cohort and 43% for the targeted 

panel cohort.

Genome Clinic patients that remained undiagnosed after clinical assessment of their WGS 

data form useful cohorts for trialing novel approaches to molecular diagnosis and gene 

discovery. In that regard, The Genome Clinic Project collaborated with the Critical 

Assessment of Genome Interpretation (CAGI) to create open bioinformatics challenges for 

CAGI4 and CAGI5. The challenge cohorts consisted of patients for whom previous 

diagnostic assessment of their WGS data had yielded no causal variants. The bioinformatics 

teams who participated were provided with demographic information and clinical 

descriptions for each patient, as well as assembled WGS data with variant calling for each 

genome.
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The SickKids CAGI4 challenge involved 25 undiagnosed patients from the Genome Clinic 

microarray cohort (Stavropoulos et al., 2016). Bioinformatics teams were provided with 

linked WGS data and HPO-based clinical descriptions for each patient. The primary 

challenge task was to identify the causal genomic variant(s) responsible for the patient’s 

phenotype.

The SickKids CAGI5 challenge involved 24 undiagnosed patients from the Genome Clinic 

panel test cohort who were being evaluated for one of three disease categories: 

ophthalmologic disorders, neurologic disorders, or connective tissue disorders (Lionel et al., 

2018). Importantly, unlike CAGI4, the WGS data were not linked to specific patients. Teams 

had three primary tasks: a) match each genome to one of the three broad disease categories 

(ophthalmologic, neurologic, or connective tissue disease); b) match each genome to a 

specific patient’s clinical phenotype; and c) propose one or more causal variants that would 

explain the selected patient’s disease phenotype. In addition, teams were encouraged to 

submit variants they considered secondary findings (pathogenic disease-causing variants not 

related to the patient’s current phenotype). Variants from genomes assigned by the teams to 

the correct patient as potentially causative of the phenotype were assessed and classified 

according to the American College of Medical Genetics (ACMG) guidelines (Richards et al., 

2015). The results of the CAGI4 and CAGI5 challenges are presented here.

METHODS

Patient data

For CAGI5, the SickKids Genome Clinic project provided de-identified clinical phenotypic 

information and whole genome sequencing data for 24 cases that were selected from the 

SickKids Genome Clinic panel sequencing cohort. The 24 patients consisted of 13 girls and 

11 boys, ranging from 3 to 18 years in age. Sequencing and data analysis were performed as 

described in Lionel et al., 2018. These 24 cases remained unsolved after initial screening by 

the project’s clinical molecular geneticists for plausible coding, splicing, non-coding, and 

structural variants. The challenge cohort consisted of 6 patients with ophthalmologic 

disorders, 7 with neurologic disorders, and 11 with connective tissue disorders (Supporting 

Information). Predictors were provided with the phenotypic descriptions as shared with the 

diagnostic laboratory.

In CAGI4, the SickKids challenge involved 25 children with a wide range of suspected 

genetic disorders who were referred for clinical genome sequencing, but remained unsolved 

after initial screening. Phenotypic data were provided by the referring physicians and 

entered into Phenotips, a Human Phenotype Ontology-based database (Girdea et al., 2013). 

Detailed information and description of these cases is provided in Stavropoulos et al., 2016 

and Pal et al., 2017.

To model the clinical testing environment, phenotypic information was limited to that 

routinely obtained from clinicians prior to molecular testing, rather than from an iterative, 

genotype-driven assessment of the patient. The diversity of phenotypes in the dataset 

represents the range of clinical presentations typically seen in children referred for 

diagnostic evaluations in subspecialty clinics at SickKids. All patients in the CAGI cohorts 
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were consented for sharing of de-identified genomic and phenotypic data with external 

research projects. The original Genome Clinic project and data sharing with CAGI were 

approved by the Research Ethics Board at The Hospital for Sick Children (REB Protocol 

#1000037726).

CAGI5 SickKids challenge format

The CAGI5 SickKids challenge was divided into several tasks. First, teams had to match 

genomes to a broad phenotype category (ophthalmologic, neurologic, or connective tissue 

disorder). Second, genomes had to be matched to individual patients based on their clinical 

phenotype descriptions. In addition, teams could report primary variant(s) underlying each 

prediction (i.e., diagnostic variants) and secondary variants predicted to confer high risk of 

other disorders not present in the clinical phenotypic description.

Groups were required to provide a probability (0–1; 0 = no match, 1 = match) that a genome 

sequence matched a broad phenotype class as well as a probability that it belonged to a 

specific patient. Each predicted probability of a match included a standard deviation 

indicating confidence in the prediction. Organizers provided a template file, which had to be 

used for submission. Up to six distinct submissions were allowed from each group.

Bioinformatics groups: The CAGI5 SickKids challenge went live on the 

genomeinterpretation.org web site in December 2017 and submissions closed in April 2018. 

Seven bioinformatics groups provided a single submission, while one team (Group 6) 

provided two separate submissions. The CAGI4 SickKids challenge went live in December 

2015 and submissions closed in February 2016. Four groups participated in this challenge.

Assessment for CAGI5 challenge

Predicted broad phenotype categories and specific phenotype-genotype matches in each 

submission were assessed against the SickKids answer key. Firstly, assessors calculated the 

number of correct predictions for broad phenotype categories. Only the highest probability 

predictions were included in the assessment. If probabilities for two categories were equal 

and one of them was correct, it was scored as correct (giving full credit to ties). The number 

of matches with no credit to ties are also shown. For probability-based assessment, 

probabilities were normalized in each submission for each genome to sum to 1.0. Mean 

probability assigned by the submissions to the correct disease category provides an 

assessment of assigned probabilities not dependent on whether the highest probability 

predictions were correct. For each disease category, recall and precision were defined as 

TP/(TP+FN) and TP/(TP+FP), respectively. Of note, SID#1, 2, and 7 did not provide 

predictions for all genomes (8, 8, and 6 genomes not predicted, respectively) (Supp. Table 

S1).

In order to assess the statistical significance of the submissions, random predictions were 

simulated 10,000 times (Figure 1A and C). Each time, disease categories were assigned for 6 

‘ophthalmologic’, 7 ‘neurologic’ and 11 ‘connective’ purely based on their composition, i.e., 

the probabilities we assign a genome ‘ophthalmologic’, ‘neurologic’ and ‘connective’ are 

6/24, 7/24 and 11/24 respectively; then the numbers of both overall correct assignments and 
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correct assignments for each category were calculated. Moreover, in order to evaluate all the 

submitted predictions as a community, we also simulated the random predictions from a 

community containing 9 independent predictions (to match the number of submissions in 

this challenge) (Figure 1B). Specifically, each time we simulated the highest match number 

of 9 random predictions (as described above) and this process was conducted 10,000 times.

The second part of the challenge was to match the phenotype information given for each 

patient to the correct genome. Probabilities were normalized in each submission for each 

genome to sum to 1.0. Only the highest probabilities were considered in the assessment. If 

probabilities for two phenotype descriptions were equal and one of them was correct, it was 

scored as correct. This only affected SID#3, which had 1 match instead of 2 if ties were not 

taken into account. Equal probability for ≥5 phenotype descriptions including the correct 

one was not considered as a match. SID#2, 5, and 7 did not provide predictions for 12, 12, 

and 3 genomes, respectively. Similar to the broad disease category matching, the random 

number of genome-phenotype matches was inferred by in silico simulation. The distribution 

was calculated from 10,000 simulation runs. Each time, we assumed that the 24 genomes 

were ordered as G=G1, G2,..,G24; a prediction can be treated as a random rearrangement of 

the above orders: P= Ga1, Ga2,..,Ga24, a1,a2,..,a24 ∈{1,2,…,24}; then the number of matched 

genomes was recorded. As sex information, which can be accurately inferred from genomes, 

was listed in the phenotypes (11 males and 13 females), we simulated the number of 

genome-phenotype matches considering sex. This was conducted by summing the match 

numbers of two independent simulations, which were similar to the process described above, 

while 11 and 13 genomes were included in each simulation respectively. In addition, to 

evaluate all the submissions as a community, we also simulated the highest number of 

matches from 9 independent predictions.

Phenotypic informational content scores for each patient were generated by PhenoTips from 

Monarch Initiative phenotypic profile analyses of the HPO terms contained in their supplied 

clinical description (Girdea et al., 2013). Correct genome-patient match scores were based 

on the number of highest probability matches for the correct genome with one match 

receiving one point.

Clinical assessment and classification of predicted variants—The proposed 

primary diagnostic and secondary variant(s) submitted by each group with correct genome 

patient matches were evaluated. Variants were classified as pathogenic, likely pathogenic, 

uncertain, likely benign, or benign according to ACMG diagnostic guidelines (Richards et 

al., 2015) by trained clinical genomic scientists. ACMG guidelines provide a framework for 

determining the level of evidence that a particular variant is a clinically actionable finding. 

The majority of information for variant classification was gleaned from VarSome (Kopanos 

et al., 2019). VarSome has links and information from the clinical variant curation database 

ClinVar (Landrum et al., 2018), the population database gnomAD (Karczewski et al., 2019), 

and references to relevant publications. The seventeen in silico predictions available in 

VarSome were also taken into consideration. The ACMG classification information in 

VarSome was not used to classify variants as they are generally not curated. Human Splicing 

Finder (Desmet et al., 2009) was used to determine the impact of variants on splicing.
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Prediction methods

A detailed description of the methods used for the challenge accompanied each submission 

file. A brief summary of each CAGI5 prediction method is provided here, and detailed 

descriptions as well as CAGI4 methods are included in Supporting Information.

Group 1: For phenotype matching, text mining for HPO terms (TPX software) was used, 

followed by manual QC. Gene prioritization was done by querying HANRD (Heterogeneous 

Association Network for Rare Diseases) and TPXRD (PubMed text mining) that give a set 

of ranked genes based on the input phenotype. Variant prioritization was achieved by using 

an in-house method (VPR). MAF (minor allele frequency), evolutionary conservation, in 

silico predictions, and ClinVar data were considered. Matching of genotypic to phenotypic 

case was done manually using the best possible intermediary disease.

Group 2: Group 2 used eDGAR (Babbi et al., 2017) that collects known associations 

among genes and diseases, and PhenPath (Babbi et al., 2019), which groups diseases in 

terms of HPO terms and OMIM classifications and provides associations among phenotypes 

and genes, were used. For variant prioritization, SNPs&GO and UniProt were utilized. Sex 

of patients was also used to guide and validate the matching.

Group 3: VCF files were analyzed using standard parameters, including variant quality, 

allele frequency, functional damage prediction and gene-phenotype associations, using a 

variety of tools and databases. Gender was considered in phenotype-genotype matches, but 

ethnic origin was not taken into account.

Group 4: Group 4 used a phenotype-weighted subjective scoring of phenotypic profile 

(HPO and dbNSFP databases) together with gender information to guide matching. African 

ethnicity was also checked. The reasoning for choosing the strategy of phenotype-weighted 

scoring was to extract the pathogenic genetic information relevant to a particular profile out 

from each of the genomes. MAF, reported and predicted pathogenicity were considered.

Group 5: Group 5 used an evolutionary action approach. In order to predict the disorder 

class for each individual, the predictors calculated the effect of the genetic variants on the 

fitness of each gene (evolutionary action). This fitness effect was used as the input of a 

diffusion process over a network of genes and diseases. The diffusion signal on each of the 

three disorder classes was used to calculate the probability of each genome to be linked to 

each disease. In order to match each individual’s genome to a clinical report, the predictors 

used again the diffusion process, and manual matching. Sex and ethnic origin information 

were also used.

Group 6: Group 6 provided 2 separate submissions based on two different approaches. 

Clinical notes were searched against a gene-phenotype database (Monarch initiative for 

submission 6.1 and eRAM for submission 6.2), and the genes were sorted by the highest 

number of matching terms. Prediction of sex and ethnic origin was implemented. For variant 

prioritization, MAF filtering of protein altering variants was performed.
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Group 7: Group 7 utilized Ingenuity Variant Analysis (QIAGEN), which utilizes curated 

content from the literature as well as external databases. Genes known to be associated with 

patients’ phenotypes were selected. Phred score, MAF and ACMG classification (pathogenic 

and likely pathogenic) were taken into account.

Group 8: To predict correspondence between phenotypes and genomes, group 8 used 

calculated scores for all genome-phenotype pairs and assigned the most likely connections 

using a bipartite matching algorithm. FunctionalFlow (Nabieva, Jim, Agarwal, Chazelle, & 

Singh, 2005) was used to predict risk genes with scores calibration based on the proportion 

of disease genes estimated by the AlphaMax algorithm (Jain, White, Trosset, & Radivojac, 

2016; Jain, White, & Radivojac, 2016). MutPred2 (Pejaver et al., 2017) and MutPred-LOF 

(Pagel et al., 2017) were used to assign pathogenicity scores to variants. The final scores 

were assigned by combining gene scores and variant scores. Sex and ethnic origin 

information were also considered.

RESULTS

CAGI5 SickKids Challenge

The CAGI5 SickKids challenge was primarily designed to test how well bioinformatics 

algorithms are able (1) to match 24 genomes to three broad phenotype categories, and (2) to 

match each of the 24 genomes to a specific patient based on typical phenotype information. 

Groups could also identify diagnostic variants that underlie the predictions as well as 

secondary variants conferring high risk of other diseases. VCF files containing WGS data 

(SNVs and indels) from 24 patients and 24 unlinked phenotype descriptions were provided. 

Eight teams submitted predictions to this challenge (Table 1), with two distinct predictions 

from group 6.

Broad phenotype category matching

The first part of the CAGI5 SickKids challenge was to match 24 genomes to three broad 

phenotype categories: ophthalmologic (n=6), neurologic (n=7), or connective (n=11). 

Groups were allowed to give probabilities for one, two or all three categories for a given 

genome; however, it was noted in the challenge description that every genome sequence 

matches exactly one clinical phenotypic category. Table 2 shows which submissions 

provided the highest category probability to the correct genome. The highest probability was 

assigned to the correct genome only by 3.3 out of 9 submissions on average. Genome 81 had 

the correct category predicted in 8 out of 9 submission files, while genome 71 had the 

correct prediction in only one, SID#3 (Table 2). Intriguingly, connective tissue disorder was 

the correct category for both of these genomes.

The nine submissions reached an average accuracy of 37% when the category with the 

highest probability was considered (giving ties full credit). This accuracy weighted by the 

submitted probabilities was even lower (25%). SID#4 performed the best by assigning the 

correct category to 50% of the genomes (Tables 2, 3), whereas SID#5, 6.2 and 8 did not lag 

far behind by correctly predicting the broad phenotype category for 11 of the 24 (45.8%) 

genomes. SID#8 predicted the correct matches with a higher probability among the best-
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performing groups and overall had the highest mean probability (0.49) assigned to the 

correct disease category (Table 3). When giving no credit to ties, SID#4 and 8 both ranked 

first with 11 matches (Table 3) and the mean accuracy of all submissions was 33%. These 

aforementioned five submissions all considered gender and ethnic information to guide 

matching; however, the strategies used were rather different, from evolutionary action to 

phenotype-weighed subjective scoring of phenotypic profile (see Methods for details).

In order to evaluate the statistical significance of the submissions, we simulated 10,000 

random predictions based solely on the composition of disease categories (Figure 1A). A 

random prediction, on average, can correctly match 9 genomes (9/24=37.5%) to the 

corresponding category, and a submission would have to match at least 13 genomes to 

perform significantly better than random chance, as indicated by a p-value cutoff of 0.05. 

These results indicate that the submitted methods did not perform better than expected for 

random chance, as the average accuracy of the nine submissions was equal to the expected 

accuracy of a random prediction. There were equal numbers of submissions with accuracy 

higher or lower than 9, the median matches of random predictions, with none of the 

individual submissions performing significantly better than chance. Moreover, the 

simulation results showed that, the expected highest match number of nine random 

predictions was 12 (Figure 1B), the same as we observed here. Another strategy of a random 

prediction would be to give the highest prediction to the largest disease category (connective 

tissue), which would always result in an accuracy of 11 out of 24 (46%). Based on this, the 

average performance of the submissions was even lower than random chance.

Looking at the different disease categories, genomes belonging to the connective tissue 

category were the easiest to match with 47% of the genomes correctly assigned by all groups 

on average (Table 2). For ophthalmologic and neurologic disease categories, none of the 

groups performed significantly better than random. Only matching 4, 5, and >8 genomes for 

ophthalmologic, neurologic and connective tissue category respectively would achieve a p-

value less than 0.05 (Figure 1C). SID#6.2 achieved the highest recall (0.91) in the 

connective tissue category by matching 10 out of 11 genomes correctly (Figure 2). This 

result is statistically significant compared to random prediction (Figure 1C); however, the 

submission had rather low precision (0.43) for the same category and failed to match any eye 

category genomes. Overall, most submissions achieved low true positive rates as well as low 

positive predictive values in this part of the challenge (Figure 2).

Matching specific genomes to specific patients using phenotypic descriptions

The second part of the CAGI5 SickKids challenge was to use each patient’s phenotypic 

information to match the child to the correct genome. Groups provided as many probabilities 

as they wished, but only the highest probabilities were considered in the assessment 

(described in Methods). Table 4 shows which submissions provided the highest probability 

phenotype descriptions to the correct genome. On average only 1 out of 9 submissions made 

the correct genome to patient match (Table 2). Three genomes (7, 68, and 95) all had the 

most matches with the highest probability from three submissions, while 11 genomes (9, 18, 

30, 39, 57, 76, 79, 81, 91, 92 and 97) were not matched by any group. Contrary to the broad 

phenotype matching, the ophthalmologic category was the easiest to predict correctly here: 
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83% of genomes were matched by at least one submission, compared to 43–45% for other 

categories.

The nine submissions achieved a mean accuracy of 11% considering the highest probability 

predictions. If weighted by the submitted probabilities, the accuracy dropped to 7%. Groups 

1, 3, 4, 6, and 8 each predicted the phenotype description correctly for one genome that no 

other submission predicted (Table 2). The matches that groups 2, 5, and 7 predicted correctly 

were also assigned correctly by at least one other submission. Most of the groups considered 

gender based on their method descriptions; however, only three submissions (SID#3, 4, and 

8) made the accurate sex prediction for all 24 genomes (Supp. Table S2).

SID#8 ranked the first in this part of the challenge, having the highest number of matches to 

correct phenotype descriptions (6 genomes out of 24). As for the broad disease category 

predictions, this submission also assigned the highest mean probability (0.26) to the correct 

phenotype descriptions among the best-performing groups (Table 4). As noted previously, 

the groups did not perform better than chance for broad disease category matching, however 

two teams performed significantly better than chance for matching patients to genomes. 

10,000 random predictions were again simulated purely based on the number of genomes 

(Figure 3) to assess the significance of the submitted predictions. Sex of the patients was 

also included in the simulation. A random prediction was found on average to correctly 

match 2 genomes (2/24=8.3%) to the corresponding patient, which is slightly lower than the 

average of all groups (2.6 genomes) (Figure 3A). If a submission matched at least 5 

genomes, the performance would be significantly better than random chance (p-value 

≤0.05). The assessment shows that SID#4 and 8 performed significantly better than expected 

for random chance by matching 5 and 6 genomes to correct phenotype descriptions, 

respectively. Additionally, the simulation results revealed that, the expected highest match 

number of nine random predictions was 4, which is lower than the predictors achieved, 

although not statistically significant (Figure 3B).

Effect of phenotype informational content on genome-patient matching

Diagnostic laboratories routinely use phenotypic descriptions provided by clinicians to guide 

their assessment of variants in patients undergoing exome and genome sequencing. In this 

regard, there is a general assumption that the more detailed the clinical description, the more 

useful it is in aiding molecular diagnosis. To see if this applied to the CAGI5 SickKids 

assessments, we examined the relationship between the informational content of a patient’s 

phenotypic description and the number of times they were matched to the correct genome. 

We found that there was a modest correlation (R2=0.478, p>0.05) between the informational 

content of the clinical descriptions and number of correct matches of genome to 

ophthalmologic patients (Figure 4). In contrast, for both neurologic and connective tissue 

patients, there was almost no correlation between the informational content of the 

phenotypic descriptions and the number of correct genome-patient matches (R2=0.042 and 

R2=0.029 respectively). Although the numbers of patients were small, these results suggest 

that rich phenotypic descriptions may aid genome-patient matching for specific categories of 

disease.
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Classification and evaluation of predicted diagnostic variants

The third part of the CAGI5 challenge was to submit variants predicted to be causative of the 

patient’s phenotype. The variants associated with the highest probability for the correct 

genome were evaluated and classified by trained clinical geneticists using the 2015 ACMG 

clinical interpretation guidelines (Richards et al., 2015). Consistent with these patients 

already having gone through a diagnostic laboratory assessment of their genomes (described 

in Methods) without finding any clearly causal variants, none of the variants proposed by the 

groups were deemed to meet clinical criteria for being returnable to the clinicians as the 

causal variants for the patients’ disorders. However, predicted variants classified as likely 

pathogenic and certain variants of unknown significance (VUS) could be included in a 

clinical report. These variants are discussed below with regards to the plausibility of their 

contributing to the patients’ phenotypes (Table 5). Predicted variants that were clinically 

classified as benign or likely benign are listed in Supp. Table S3.

Importantly, while one or more groups identified potential variant(s) in 13 out of 24 

genomes, none of the groups identified the same variant or gene as disease-causing in the 

same genome (Table 5 and Supp. Table S3.) In addition, while several candidate causal 

variants were associated with recessive disease, all proposed variants were heterozygous and 

no additional variants, excluding likely benign and benign variants, were nominated in the 

same genes. Of note, Group 5 did not participate in this part of the challenge and Group 2 

did not predict a variant for its correct patient-genome match (genome 95/patient C). The 

performance of each group based on the laboratory geneticist evaluation (Methods) is 

described below.

Group 1: Group 1 proposed the highest probability matches of patients and genomes for 71 

(L) and 67(M). The variant predicted for genome 71 could not be evaluated clinically as it is 

an intergenic variant that is not associated with any known gene or disease state. Group 1 

correctly classified genome 67 as having an ophthalmologic disorder and nominated a 

missense variant (c.776T>G, p.Pro406Leu) in the TYR gene as a potential causal variant. 

Pathogenic variants in this gene are known to be associated with a form of autosomal 

recessive oculocutaneous albinism (OCA type 1). The p.Pro406Leu variant has been 

reported in at least 5 homozygous and 7 compound heterozygous individuals with clinical 

features of OCA type 1 (ClinVar). In addition, while this variant has been identified in ~1% 

of the Finnish population (gnomAD, http://gnomAD.broadinstitute.org), it has been reported 

as pathogenic/likely pathogenic by multiple submissions in ClinVar (Variation ID: 3777). In 
vitro functional studies provide evidence that the p.Pro406Leu variant may impact protein 

function (Giebel et al., 1991; Spritz et al., 1997; Toyofuku, Wada, Spritz, & Hearing, 2001). 

Based on the above evidence, the laboratory geneticists classified this TYR variant as likely 

pathogenic.

However, while this variant is associated with an ophthalmologic phenotype, patient M’s 

phenotype of retinitis pigmentosa is not consistent with the current known phenotype 

spectrum of OCA type 1 or the biological function of gene product, tyrosinase. Additionally, 

as TYR-associated OCA is autosomal recessive, a single pathogenic TYR variant would not, 

by itself, be predicted to result in a disorder. Hence this variant would not be included in a 
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clinical report as a causative variant but could be considered reportable as a carrier variant. 

Of note, this gene has a pseudogene complicating accurate variant calling and requiring 

orthogonal testing modalities.

Group 3: Probability scores obtained by group 3’s method also yielded two genome patient 

matches: 68 (J), and 42 (O). The IFT140 gene proposed for patient O was a good fit for the 

patient’s phenotype of retinal dysfunction. However, the variant has a relatively high MAF 

(1.57% in the Finnish gnomAD cohort) yet is not a major cause of retinal disease in the 

Finns (Avela et al., 2018). It was classified therefore as benign.

The missense variant (c.887G>T, p.Arg296Leu) in LMNA identified for the neurologic 

patient J is very rare as it is not found in the gnomAD database nor described in the 

literature. It is predicted by multiple in silico algorithms to be damaging, but no functional 

evidence is available for this particular variant. Based on this, the variant was clinically 

classified as a VUS.

A structural analysis of the Arg296Leu variant, locates it in the coil 2 region of LMNA 

(residues 243–383). This substitution could potentially disrupt the intra-helical ion pair 

formation observed in intermediate filament coiled-coils, thereby leading to protein 

destabilization (Letai & Fuchs, 1995) and aggregation (Sylvius et al., 2008). Abnormal 

processing of LMNA can cause mitochondrial dysfunction (Bereziat et al., 2011), which was 

the working clinical hypothesis for patient J, and is thought to contribute to the variety of 

disease phenotypes observed in laminopathies (Sieprath et al., 2015). Additionally, lamin-

A/C is required for osteoblastogenesis and bone formation in vivo, organ development and 

tissue differentiation (Zuela, Bar, & Gruenbaum, 2012), and has emerged as a regulator of 

the immune response (Gonzalez-Granado et al., 2014). These observations support 

additional clinical assessment of this variant, and encourage further investigations in a 

research setting.

Of note, the nominated gene is associated with at least 10, mostly dominant, genetic 

disorders affecting multiple organ systems and the patient has a complex phenotype that 

includes retinal/corneal dystrophies, extreme short stature with normal BMI, myopathy with 

abnormal mitochondria, chronic renal failure, cerebellar abnormalities, and type 1 diabetes. 

While the patient’s phenotype does not directly overlap with one of the known LMNA 
syndromes, the phenotypic heterogeneity of LMNA variants suggests further research 

investigation might be fruitful. E.g., the parents and the patient’s similarly affected identical 

twin could be assessed to determine if the variant is de novo in the affected twins. If true, 

then the twins could undergo careful reverse phenotyping in order to more fully assess the 

potential involvement of this LMNA variant in the patient’s clinical presentation and the 

possible delineation of a novel LMNA-related syndrome.

Group 4 (ref to Pal et al CAGI5 predictor paper): The bioinformatics approach used 

by group 4 resulted in five correct genome to patient matches: 17 (H), 56(N), 93(F), 95(C), 

99(B) and yielded candidate variants for each (Table 5, Supp. Table S3). Of note, ethnicity 

was stated for three of the five cases. In all five cases, the correct phenotypic category was 

also selected and in four of five instances the variant was in a gene that could possibly fit 
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that category at the root level overlap of HPO terms. Two of the proposed variants were 

assessed as benign/likely benign and two were considered VUS.

Patient F was classified as having a connective tissue disorder and a novel missense variant 

(c.7028A>G, p.Gln2343Arg) in EP300 was identified as a potential disease causing variant. 

The amino acid glutamine at codon 2343 is conserved among species and the variant has not 

been previously reported in the general population (gnomAD). In silico analyses provide 

conflicting predictions of pathogenicity. While the rarity of the variant and its evolutionary 

conservation suggested possible pathogenicity, the variant was clinically classified as a VUS 

due to limited information and a lack of functional evidence. Additionally, pathogenic 

variants in EP300 are usually associated with Rubinstein-Taybi syndrome 1 (RSTS1, MIM# 

180849). While several of the root level HPO terms of the Rubinstein-Taybi phenotype 

overlap with the patient’s described phenotype, the patient lacks the intellectual disability 

seen in RSTS1 as well as its distinctive dysmorphic features (e.g., broad thumbs/toes, arched 

eyebrows, down-slanting palpebral fissures, and a convex nasal ridge with low hanging 

columella). Neither does the patient’s phenotype fit the other known EP300-associated 

syndrome: Menke-Hennekam syndrome 2 (Menke et al., 2018). Hence, it is unlikely that 

this variant would be considered as clinically reportable based on the current knowledge.

As this is a novel variant, it is possible that this patient represents a new EP300-related 

syndrome. While the evidence for this hypothesis is currently lacking, a plausible molecular 

argument can be made. The p.Gln2343Arg residue change in histone acetyltransferase p300 

(p300 HAT), the product of EP300, resides in the glutamine-rich (Q-rich) region of the C-

terminal transactivation domain of the molecule. This region shares similarities with the Q-

rich transcriptional activation domains found in a number of transcriptional activators 

(Kraus, Manning, & Kadonaga, 1999). Variable Q-rich repeats modulate transcription 

activity (Gemayel et al., 2015), so this variant may affect the transcriptional function of p300 

HAT. Furthermore, recent research indicates strong support for a role of p300 HATin 

autophagy regulation in connective tissue (Kang, Sun, & Zhang, 2019; Leung et al., 2017; 

Sacitharan, Lwin, Gharios, & Edwards, 2018), so mutations in this gene could be implicated 

in connective tissue disorders. This variant is therefore another potential candidate for 

further research.

Group 4 also identified an intronic variant in PIGT c.−8C>T as potentially disease causing 

for patient B. Splicing algorithms (Human Splice Finder, http://www.umd.be/HSF) predict 

that this alteration may disrupt splicing. The variant’s MAF is low enough to be plausibly 

pathogenic (0.0015% in gnomAD) but no additional information could be found for this 

variant. Consequently, due to insufficient evidence, this variant was clinically classified as a 

VUS. Again, this is a VUS in a gene that fits the correct phenotype category. In this regard, 

germ line sequence variants in this gene are associated with an autosomal recessive multiple 

congenital anomalies-hypotonia-seizures syndrome (MIM# 615398). However, like the 

EP300 case above, the patient’s described phenotype lacks many of the HPO terms 

associated with the known disorder, making it an unlikely clinical diagnosis. In addition, the 

lack of a second pathogenic PIGT variant further diminishes the likelihood of being 

causative of this recessive disorder.
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Group 6, SID#6.1 and 6.2: Both of group 6’s submissions matched one genome to the 

correct patient. However, the predicted disease causing variant for SID#6.1 was clinically 

classified as benign due to a 2.57% MAF. SID#6.2 correctly matched genome 78(V) and 

proposed candidate variants in four genes (MYO1E, COL9A2, COL9A1, GATA4) for this 

patient, who had a clinical diagnosis of hypermobility type Ehlers-Danlos syndrome. One of 

the diseases associated with COL9A1 and COL9A2, Stickler syndrome, has a phenotype 

that includes both ophthalmologic and connective tissue components, while the other 

disease, epiphyseal dysplasia, could be considered a pure connective tissue disorder. The 

potential variants identified in these two genes were classified as likely benign. Given that 

the MYO1E and GATA4 are associated with focal glomerulosclerosis and cardiac 

malformations respectively, they would not be considered likely candidate genes for this 

patient’s Ehlers-Danlos syndrome. In addition, because of lack of information, the deep 

intronic variant identified in MYO1E was clinically classified as likely benign.

Group 7: Group 7 proposed two candidate variants for a single ophthalmologic patient 

(7/X), whose phenotype included bilateral retinal hamartomas, nystagmus and severe 

myopia: a missense alteration in PROM1 (c.776T>G, p.Met259Arg) and a benign 5’UTR 

variant in GNAQ. Sequence variants in PROM1 have been associated with autosomal 

recessive retinitis pigmentosa (MIM# 612095) and autosomal dominant Stargardt disease 

(MIM# 603786). Of note, the amino acid methionine at codon 259 is not well conserved 

among species but this variant is novel, as it has not been previously observed in the general 

population (gnomAD) and in silico models predict the variant to be damaging. Based on this 

limited information and lack of functional evidence, the variant was clinically classified as a 

VUS. Importantly, because hamartomas have yet to be associated with PROM1 variants, 

PROM1 would not be considered a high priority candidate for assessment as a disease gene.

Group 8: The computational algorithms used by group 8 to match genomes to patients 

yielded six matches: 7(X), 56(N), 68(J), 93(F), 99(B), 102(A). However, all of the variants 

predicted to be associated with the patient phenotypes were classified as benign or likely 

benign, again, primarily due to high allele frequencies in the general population. In four 

matches, the selected variants fell in genes that could be considered to match the phenotype 

category; 56(N) TNXB connective, 68(J) ATM neurologic, 99(B) SLC25A22 neurologic, 

and 102(A) COL5A2 connective. In addition, for all but 68(J), the proposed disease gene 

could plausibly explain the patient’s phenotype, particularly if one allowed for some 

phenotypic expansion.

Variants of interest not matched to the correct patient

During the clinical assessment of the nominated variants it became clear that matching 

genomes to patients based on the information in the phenotype descriptions was difficult at 

best. Therefore we examined the highest probability incorrectly matched variants and 

evaluated the ones identified in more than one submission for a given genome. Only variants 

classified as VUS or above were considered. This yielded a number of interesting variants 

discussed below (Table 6).
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A rare missense VUS (c.602C>T, p.Thr201Met) in IMPDH1 was identified by groups 2, 3, 

4, and 8 in genome 97 and 67, although this variant was not present in the VCF file of 

genome 67. IMPDH1 is associated with autosomal dominant retinitis pigmentosa (MIM 

#180105) which is consistent with retinitis pigmentosa found in patient M. This variant was 

incorrectly attributed to other patients (O, W, and C) all of which had eye phenotypes that 

could be considered overlapping with retinitis pigmentosa. However, the p.Thr201Met is 

found in six heterozygous individuals in gnomAD. This number of supposed healthy adult 

individuals in gnomAD would exclude most variants from clinical consideration in the case 

of a highly penetrant autosomal dominant disease such as retinitis pigmentosa indicating that 

if by chance this variant is pathogenic, other factors must be at play.

For genome 78, a missense variant in the COL1A2 gene (c.2122C>T, p.Arg708Trp) was 

identified as a potential candidate in SID# 3, 4, and 6.1. The correct patient match for 

genome 78 is patient V, who has hypermobility type Ehlers-Danlos syndrome, and variants 

in COL1A2 are associated with autosomal dominant Ehlers-Danlos syndrome (MIM# 

120160). Ehlers-Danlos syndrome was also the primary phenotype for patients S and Q to 

which this genome was incorrectly attributed. The amino acid arginine at codon 708 is 

highly conserved among species and most in silico algorithms predict the variant to be 

damaging. This particular variant has been observed in the general population at a frequency 

of 0.0012% (gnomAD) and was clinically classified as a variant of uncertain significance 

(VUS) in agreement with ClinVar. As a VUS, this variant might be included in a clinical 

report depending on how the population frequency and penetrance of disease are considered 

by the individual diagnostic laboratory, but would provide little impetus for clinical action. 

Hypermobility type Ehlers-Danlos syndrome is likely an under-reported phenotype and 

variable phenotypic presentation may be dependent on many factors, which means that three 

heterozygous individuals in gnomAD should definitely not exclude this variant as a possible 

cause of disease. However, it would be difficult to resolve the VUS status of the variant 

without additional evidence from functional, case/control, or segregation studies.

Group 6 selected a SKI missense variant (c.1268C>T, p.Pro423Leu) in both submissions for 

genome 9. This variant was clinically assessed to be a VUS, mainly due to limited 

information. Pathogenic alterations in SKI cause Shprintzen-Goldberg syndrome, a severe, 

congenital, mainly connective tissue disorder. Patient W, who is the correct match for 

genome 9, has an ophthalmologic phenotype rather than Shprintzen-Goldberg syndrome. 

While the penetrance of Shprintzen-Goldberg syndrome due to SKI alterations is not known, 

most SKI alterations are de novo (Greally, 1993), which is consistent with it being a severe 

dominant congenital disorder. Consequently, the presence of two heterozygous carriers of 

this variant in gnomAD casts serious doubts that this alteration could cause Shprintzen-

Goldberg syndrome. This variant was incorrectly attributed to patient V, a child with 

primarily an Ehlers-Danlos syndrome phenotype, but with other features that could have 

been consistent with Shprintzen-Goldberg syndrome had this variant belonged to patient V.

Usher syndrome is an autosomal recessive disease characterized by retinitis pigmentosa and 

sensorineural hearing loss. Usher syndrome 1B is caused by pathogenic alterations in 

MYO7A, which account for over half of all Usher syndrome cases (Lentz & Keats, 1993). 

SID#1 and 6.2 selected a p.Asp1387Asn MYO7A alteration for genome 95, which belongs 
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to patient C and was clinically classified as VUS due to lack of information. Interestingly, 

patient C has vision problems that could be consistent with Usher syndrome and also had 

hearing issues and speech delay, but the hearing issues have reportedly resolved. While 

patient C has some possible phenotype overlap with Usher syndrome the MYO7A variant 

would only account for one allele and a second candidate variant was not identified in C’s 

genome for this recessive disorder. Hence, this variant is unlikely to be causative. Of note, 

this variant was incorrectly attributed to two other retinitis pigmentosa patients, H and M, 

neither of whose phenotypic descriptions included hearing issues.

Group 6 selected a loss of function alteration (c.343C>T, p.Arg115Ter) in CEP152 in both 

submissions for genome 39. As a loss of function alteration, the p.Arg115Ter alteration was 

clinically classified as pathogenic and loss of function alterations in CEP152 cause two 

autosomal recessive syndromes: primary microcephaly 9 and Seckel syndrome 5 (MIM# 

613529). Patient P, the patient associated with genome 39, has a neurological phenotype and 

the known CEP152 related diseases encompass neurological phenotypes, so the gene is 

plausible for the broad neurologic category, but patient’s overall clinical picture does not 

overlap well with the two diseases associated with CEP152. Patient P’s primary phenotype, 

epileptic encephalopathy, is not a feature of either primary microcephaly 9 and Seckel 

syndrome 5. In addition, patient P does not have severe microcephaly, a constant feature of 

the known CEP152-associated disorders and a second disease-causing CEP152 allele was 

not identified. The CEP152 variant was incorrectly attributed to patients K and R. Patient K 

was considered to belong to the connective tissue category and has little if any phenotype 

correlation with CEP152 related diseases. Patient R belonged to the neurologic category 

with some limited phenotype correlation with CEP152 related diseases. However, neither 

patient K nor R have severe microcephaly.

For both submissions, group 6 identified a missense variant (c.2981A>G, p.Gln994Arg) in 

the KIF7 gene for genome 79. Genome 79 belongs to patient K, who has a clinical diagnosis 

of Ehlers-Danlos syndrome and possibly ADHD (attention-deficit/hyperactivity disorder). 

There are two 2 homozygous individuals in gnomAD and MAF’s for this variant range as 

high as 1/320, casting doubt on its ability to cause any disease. In addition, the disorders 

associated with KIF7 are not consistent with patient K’s phenotype. However, due to 

conflicting information, it was classified as a VUS (ClinVar variation ID: 194572). Of note, 

this variant was incorrectly attributed to patient F, most likely because F’s neurological 

findings (seizures and hearing impairment, motor delay) and Ehlers-Danlos syndrome 

characteristics partially overlap with those seen in KIF7-associated disorders.

Group 3 and 4 predicted a FLNA missense variant (c.7136A>G, p.Tyr2379Cys) for genome 

21 but incorrectly attributed this genome to patient V and T respectively. The p.Tyr2379Cys 

alteration is listed in VarSome, but was not found in any other control or disease database 

that was searched. Patient G, the matching patient for genome 21, is a female with infantile 

epileptic encephalopathy and global developmental delay. As with LMNA, FLNA variants 

are associated with a broad range of diverse phenotypes (MIM# 300017). The FLNA 
phenotype with the best phenotype correlation with patient P is periventricular heterotopia 1, 

an X-linked dominant disorder, which is associated with refractory seizures (MIM# 300049). 

However, MRI abnormalities reported in patient G (delayed myelination and thin corpus 
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callosum) are not consistent with reported brain abnormalities in periventricular heterotopia 

1. In addition, the majority of FLNA variants associated with periventricular heterotopia are 

LOF variants, not missense variants. Patient V and T both were considered to belong to the 

connective tissue category due to a clinical suspicion of Ehlers-Danlos syndrome, but also 

had histories of developmental delays/learning disabilities. Because this combination of 

features is suggestive of case reports of FLNA variants causing an Ehlers-Danlos/

periventricular heterotopia phenotype, it likely drove the misattribution of genome 21 to 

patients V and T.

Secondary variants

Three groups (1, 4 and 7) submitted secondary predictive variants that confer high risks for 

other diseases whose phenotypes were not reported in the clinical descriptions (see Supp. 

Table S4). 35 distinct variants were submitted, 8 of which were clinically classified as 

pathogenic, 4 as likely pathogenic, 16 VUS, 4 likely benign, and 3 benign alterations. 

Overall, the variants chosen as secondary findings were much more likely to be truly 

pathogenic than the predicted primary diagnostic variants. This task was also easier as it did 

not require any genotype-phenotype matching; however, secondary variants do require a 

higher burden of proof for inclusion in a clinical report. Only variants that provide strong 

evidence that a person will develop a disease are reported, thus VUS alterations are not 

reported clinically. Of the eight pathogenic variants, seven are associated with autosomal 

recessive disorders and would only be considered as clinically reportable as heterozygous 

carrier variants. A pathogenic variant in G6PD was identified but would not be reported by 

all clinical laboratories, as it is a low penetrance gene and it causes favism, a very mild 

disorder.

Only one alteration represented a clearly reportable clinical finding, a MSH2 splice 

alteration reported several times in ClinVar as a likely pathogenic variant, predicted by 

SID#1 and 4 in genome 91 and by SID#4 also in genome 81. Of note, this variant is absent 

from gnomAD and is not a common pathogenic MSH2 variant, yet it was present in 2/24 

CAGI5 patients. Such a coincidence raises the possibility of sequencing artifacts requiring 

Sanger verification, particularly since this was a one base pair insertion. If verified by 

confirmatory clinical sequencing, this c.942+2delT alteration would confer a high risk of 

Lynch syndrome and its associated cancers (MIM# 12434).

CAGI4 SickKids challenge - solely variant prediction

The CAGI4 SickKids challenge took place in 2016 and focused on identifying diagnostic 

variants and predictive secondary variants in unsolved cases, without the need for genome to 

phenotype matching. This challenge involved 25 children with a wide range of suspected 

genetic disorders who were referred for clinical genome sequencing, but remained unsolved 

after initial analysis (Pal et al., 2017; Stavropoulos et al., 2016). Predictors were given 

patients’ WGS data and clinical phenotypic descriptions in the form of Phenotips 

annotations, based on HPO terms. Four teams participated in this challenge (Table 1); two of 

them took part also in the CAGI5 SickKids challenge described above (groups 11 and 12).
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Altogether 191 potential diagnostic variants were proposed for 25 patients, including 60 

variants in genes not associated with OMIM disease phenotypes. The majority were variants 

for dominant disorders and no structural variants were proposed. Of note, half of the variants 

proposed by SID#10 and over 20% of the diagnostic variants proposed by SID#12 had MAF 

>1%, rendering them unlikely to be causal variants. Although variants generally were 

chosen for their ability to explain the patient’s phenotype, for the majority, the phenotypic 

abnormalities associated with the variant only partially overlapped with those of the patient. 

In many of these cases, the degree of mismatch between predicted phenotype and patient’s 

phenotype was sufficient to make causality highly unlikely. E.g., a novel MECP2 missense 

variant (p.Glu55Lys) was proposed by SID#9 and SID#11 for patient 1041, who presented 

with microcephaly, hypotonia, and developmental delays (Table 7). While these terms are 

also seen in Rett syndrome (the condition associated with MECP2), they were present at 

birth in the child, while girls affected by Rett syndrome appear normal at birth and only 

become symptomatic with age.

For CAGI4, most variants were predicted by a single submission only. However, 10 variants 

were nominated for the same patients by more than one group (Table 7). SID#9 and 11 had 

the largest overlap (six variants), this is somewhat expected as they both used Exomizer for 

variant prioritization. In four cases, the predictor’s candidate variant also had been classified 

as a candidate variant by the SickKids bioinformatics pipeline but discarded upon initial 

manual review by the SickKids Genome Clinic diagnostic team. Nomination by the CAGI4 

participants prompted reassessment of these variants by the SickKids Genome Clinic team, 

which performed validation and reverse phenotyping for several of the proposed causal 

variants. For patient 1024, the predicted variant was in a gene that did not fit the clinical 

phenotype and for patient 1025, the gene was a good phenotypic fit but the variant did not 

validate by Sanger sequencing (both were predicted by SID#12 and the SickKids 

bioinformatics pipeline). Prioritized variants for patients 1011 (by SID#12 and SickKids) 

and 1060 (by SID#9, 12, and SickKids) were located in genes that had partial overlap with 

the clinical phenotype and were successfully validated. In two instances (patients 1105, 

1106) when two teams picked the same variant (Table 6), the patient’s referring clinical 

geneticist re-assessed the patient in light of the proposed disease gene and concluded that it 

was a good fit for the patient’s phenotype, meaning that the CAGI participants provided a 

clinical diagnosis for these two cases (Pal et al., 2017).

In addition to primary diagnostic variants, three groups also predicted secondary findings. 

No variants were proposed by more than one team. Variants submitted by SID#10 and 11 did 

not fulfill the 2015 ACMG criteria for pathogenic or likely pathogenic variants and would 

hence not be returned as medically actionable. Four of the variants predicted by SID#12 had 

also been picked by the SickKids diagnostic assessment team as potentially medically 

actionable (data not shown). Of note, three of them were discarded due to low read depth 

and two did not validate by Sanger sequencing. This left only one variant in FBN1 
(c.G1027A, p.Gly343Arg) that has conflicting interpretations in ClinVar (Variation ID: 

161244), meaning that ultimately none of the nominated predictive secondary variants were 

reportable clinical findings.
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Discussion

One of the greatest barriers to fully realizing the potential of genomic medicine to transform 

clinical practice is variant interpretation. While current technologies allow us to identify the 

vast majority of variants in the human genome, we can only interpret the phenotypic and 

clinical significance of a few. This is due to lack of knowledge about the impact/

pathogenicity of variation in most parts of the human genome as well as insufficient clinical 

descriptions or per contra heterogeneity/diversity of the phenotype under examination. This 

calls for a multidisciplinary approach that enlists computational biologists, clinical experts 

and research geneticists to tackle these challenges. The CAGI SickKids challenges were 

designed to begin to address this complex problem.

CAGI4 and CAGI5 participants were provided with WGS data and phenotype descriptions 

for 25 and 24 patients respectively who had remained without a diagnosis after evaluation by 

the SickKids Genome Clinic project (Lionel et al., 2018; Stavropoulos et al., 2016). 

Participants were asked to predict primary and secondary causal variants. Additionally, for 

CAGI5, groups had to match each genome to one of three categories of disease (neurologic, 

ophthalmologic and connective), and separately to each patient.

A single category does not provide enough information to distinguish a genome

For the first task in CAGI5 SickKids challenge, matching genomes to one of the three 

clinical categories, groups performed no better than random prediction (Figure 1), assigning 

the correct phenotype category to an average of nine genomes. Only a third of all genomes 

were correctly matched by more than three submissions. Although half of the submissions 

had a higher accuracy than the nine matches expected of a random prediction, the results 

were not statistically significant. A comparison of the accuracy of predictions in each broad 

disease category showed that the connective tissue category was slightly easier to match, 

with one submission (SID#6.2) achieving a significantly better result compared to 10,000 

random simulations by matching 10 out of 11 genomes correctly. However, this result would 

still rank lower than the random prediction where the highest probability would always be 

given to the connective tissue category (11 out of 24 genomes or 46%). This challenge was 

made all the more difficult by the presence of patients with complex phenotypes who had 

been assigned to a specific clinical category based on their most prominent clinical features, 

but had clinical features belonging to two or more categories. These results indicate that 

classifying patients into a single category may not provide sufficient information to 

distinguish a genome, or that there is insufficient knowledge about genomic variation to 

segregate genomes into broad categories.

Thorough understanding of the phenotypic descriptions leads to success in the specific 
genome to patient matching

From the outset, one of the greatest obstacles for the CAGI5 SickKids challenge was to 

match a genome to a patient. The only information that could be accurately assigned based 

on our current knowledge was gender and reported ancestry, with the latter available only for 

19 of the 24 patients. Interestingly, not all groups utilized gender information to the full 

extent (Supp. Table S2). Despite the difficulty of matching a given genome to a specific 
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clinical description and in contrast to the lack of success in broad category matching, two 

submissions (SID#4 and 8) performed significantly better than random chance. These two 

groups were able to correctly match five and six genomes respectively, whereas the expected 

highest match number of nine random predictions was four. A similar success range was 

achieved in another CAGI challenge (Cai et al., 2017), where the best prediction could 

correctly match up to 25% of genomes to self-reported phenotypes.

To understand whether the overall low accuracy of the predictor community was caused by 

lack of information in the clinical descriptions, we assessed the relationship between the 

number of correct genome-patient matches and the informational content of a patient’s 

phenotype description. Unexpectedly, except for ophthalmologic disorders, richer clinical 

descriptions did not correlate with higher correct prediction rates (Figure 4). The mismatch 

between patients and genomes in the presence of rich phenotypic information could be 

explained, at least in part, by the complexity of the clinical descriptions. Reflecting the 

reality of clinical diagnosis of genetic disorders, these often included terms belonging to 

more than one phenotypic category, potentially confounding prediction classification. 

Specifically, in 29% (7/24) of cases, clinical descriptions contain references to both 

connective and neurological defects (patients A, I, K, V), eye and connective (patient X) or 

eye and neurological (patient J) defects, or defects belonging to all three categories (patient 

D). In at least two cases (patients J and L), these descriptions reference conditions outside 

the three defined categories, including major, multi-system health concerns, abnormal organ 

morphology and physiology, abnormal immunity and metabolism.

Most of the predictors used HPO coding (or another similar gene-phenotype database) for 

gene prioritization in each clinical case. A recent paper has demonstrated that the use of 

specific HPO terms improves gene-ranking with the top 10% of HPO terms being sufficient 

to rank the causative gene (Tomar, Sethi, & Lai, 2019). Unlike other submissions, SID#4 

weighed the clinical terms by scoring the most serious and definitive (to a presumed disease) 

term in the profile with the highest value (ref to Pal et al CAGI5 paper). SID#8 built eight 

gene sets related to the diseases of interest and classified each case as belonging to one of 

those categories, rather than using all the genes associated with any of the HPO terms 

derived from the clinical descriptions. Complex phenotypes (patients A, J and X) were 

among the correctly matched genomes by these best-performing submissions, suggesting 

that in this case, phenotypic diversity could present an advantage in genome matching if 

appropriately leveraged.

In summary, this part of the challenge suggests that exhaustive phenotyping can introduce 

noise in the selection process, and that focusing on specific phenotypic features of a disease 

most relevant to the patient under examination can be a more effective prediction strategy 

than collecting as much phenotypic information as possible. Therefore, in addition to 

considering gender and ethnicity, a thorough understanding of the phenotypic descriptions 

was likely a key success factor.

Considerations for improving variant prediction

The CAGI challenges were designed to test our ability to associate genotype and phenotype 

beyond our current limits, and to look at genomic and phenotypic data in a much more 
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multifactorial and complex way than monogenic Mendelian approaches. In the past, genetics 

was, out of necessity, a phenotype-to-genotype driven field. With the advent of NGS, a 

genotype-to-phenotype approach became possible. For the CAGI SickKids challenges, 

groups mainly adopted a phenotype-to-genotype approach, where most groups started with 

gene prioritization by building gene lists associated with given phenotype descriptions and 

selected variants within those genes or gene ontologies. No group took a purely variant-to-

phenotype approach where rare, predicted damaging variants were used to independently 

build a set of gene ontology and phenotype terms that were then matched to patients’ 

phenotype descriptions. In clinical practice, bioinformatic pipelines typically filter out 

common, benign, and non-coding variants, and the phenotypes previously associated with 

the genes in which the remaining variants are found are compared to the patient phenotype, 

assuming a single gene disease relationship. It would be interesting to see how combinations 

of various approaches might lead to an improvement in performance of computational 

methods and identification of multigenic possibilities in similar challenges in the future.

The variant prediction part of the CAGI5 challenge was also complicated by the fact that the 

genomes were unlinked from the respective clinical descriptions. In CAGI4 on the other 

hand, the specific genome-patient matches were known. The vast majority of variants in that 

challenge appeared to be chosen for the ability to partially explain phenotype. In two cases 

this approach led two groups to predict the same variant for the same genome which resulted 

in a diagnosis for these patients. Yet, for many proposed diagnostic variants, the phenotype 

associated with the variant had little enough overlap with the patient’s phenotype that the 

variant was considered implausible by the clinical assessors. This issue arose multiple times 

in both CAGI4 and CAGI5, suggesting that there may be systematic problems with how 

phenotypic information is used bioinformatically. One contributing cause is the tendency to 

match the patient’s phenotype and the phenotype associated with the variant at the root HPO 

term. E.g., retinal degeneration and cataracts match at the root term of eye disorder, but have 

fundamentally different etiologies and clinical significance. Another problem is matching 

one HPO term at a time, which can produce an apparent match between the candidate gene 

and the patient when they don’t share other major HPO terms. E.g., a patient with 

developmental delay is matched to a gene that is associated with developmental delay, but 

the patient lacks the severe microcephaly and malformations seen with the candidate gene.

Study limitations

Primary disease causing variants selected by groups were often excluded from further 

clinical analysis due to the population frequencies of the variant being too high to cause 

Mendelian disease, variants located in non-coding regions, or variants being synonymous. 

Population frequencies of variants involved in multifactorial genetic disease may be higher 

than for Mendelian disorders. Such high frequency, multifactorial variants may prove to be 

important for clinical phenotypes in the future, but evidence for such a role is currently 

lacking.

The phenotype spectrum caused by pathogenic variants in a particular gene often expands 

over time with new information and identification of additional patients. In addition, ~5% of 

children evaluated for rare genetic disorders have more than one causal genomic variant 
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(Stavropoulos, et al., 2016, Smith et al., 2019). Furthermore, inheritance patterns for genes 

often change with improved knowledge and understanding. It is reasonable to suspect that 

some of the VUS identified in this study may, in the future, be reclassified as phenotype 

expansions (Masuda et al., 2015; Negri et al., 2015; Sellars, Sullivan, & Schaefer, 2016). 

Examples of such variants include the EP300 p.Gln2343Arg variant in patient F (genome 

93) and the LMNA p.Arg296Leu variant in patient J (genome 68).

Finally, a major limitation of current genome sequence analysis methods, is the 

identification of significantly large number of variants of unknown clinical significance. This 

is in part due to limited functional information available for these variants. Integrating other 

“omics” data, such as transcriptomics and proteomics analyses, would enrich variant 

functional characterization and aid in the identification of causative variants.

Conclusion

Adopting WGS as a diagnostic tool requires addressing the current lack of understanding of 

the role of many genes and variants in disease. Our assessment of the CAGI SickKids 

challenges involving undiagnosed children, suggests that computational approaches are most 

successful in predicting genotype from phenotypic information when the associated clinical 

terms are weighted by relevance. This may be especially pertinent in the case of complex 

phenotypes. Reportable clinical findings were discovered in the linked genomes challenge 

(CAGI4), while several other variants were identified as good candidates for phenotypic 

expansion or further research in CAGI5. Introducing clinical methodologies, such as 

combining phenotype-to-gene with variant-to-phenotype information, and integrating 

different types of omics data could hold promise for future development of computational 

methods seeking to explore the genetic basis of disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The expected number of genome-disease category matches inferred by in silico simulation 

based on composition of disease categories. (A) Distribution of overall number of matches. 

(B) Distribution of the highest match number observed in nine predictions (to simulate nine 

submissions of this challenge). (C) Distribution of the number of matches for each disease 

category.
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Figure 2. 
(A) Recall and (B) precision values shown for each broad phenotype category by 

submissions.
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Figure 3. 
The expected number of genome-phenotype matches inferred by 10,000 times in silico 

simulation. (A) Distribution of overall number of matches. (B) Distribution of the highest 

match number observed in nine predictions (to simulate nine submissions of this challenge). 

In the simulation, we assume that sex for all genomes can be predicted correctly.
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Figure 4. 
Correlation between the informational content of the patient’s clinical description and the 

number of correct genome-patient matches by all submissions.
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Table 1.

A list of participating teams

ID Submission ID PI

CAGI5

Group 1 SID#1 Aditya Rao

Group 2 SID#2 Rita Casadio

Group 3 SID#3 Rehovot group

Group 4 SID#4 Lipika R. Pal/John Moult

Group 5 SID#5 Olivier Lichtarge

Group 6 SID#6.1, SID#6.2 Aashish Adhikari

Group 7 SID#7 Jennifer Poitras

Group 8 SID#8 Sean Mooney/Predrag Radivojac

CAGI4

Group 9 SID#9 Chris Mungall

Group 10 SID#10 Julian Gough

Group 11 SID#11 Aditya Rao

Group 12 SID#12 Lipika R. Pal/John Moult
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Table 2.

Summary of the performance of all groups of matching the broad phenotype category to each genome and 

predicting which specific clinical description corresponds to which genome for CAGI5 challenge.

Genome code Patient code Correct category SID# with correct disease category match SID# with correct genome-patient 
match

7 X ophthalmologic 7, 8 5, 7, 8

9 W ophthalmologic 4, 5

17 H ophthalmologic 4, 5 4

18 U neurologic 1, 3

21 G neurologic 5, 7 6.1

30 R neurologic 1, 6.2

39 P neurologic 1, 4, 5, 6.1, 7

42 O ophthalmologic 3, 7 3

56 N connective 3, 4, 5, 6.1, 6.2, 8 4, 8

57 T connective 6.1, 6.2, 8

67 M ophthalmologic 1, 5, 8 1

68 J neurologic 3, 8 3, 5, 8

71 L connective 3 1, 5

76 Q connective 3, 4, 5, 6.1, 6.2

78 V connective 1, 2, 3, 4, 6.2, 7, 8 6.2

79 K connective 4, 5, 6.2

81 I connective 1, 2, 3, 5, 6.1, 6.2, 7, 8

91 E neurologic 4, 5, 7

92 S connective 1, 3, 4, 6.1, 6.2

93 F connective 4, 6.2, 7, 8 4, 8

95 C ophthalmologic 1, 2, 4, 8 2, 4, 5

97 D connective 5, 6.1, 6.2

99 B neurologic 4, 8 4, 8

102 A connective 6.2, 8 8
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Table 3.

Summary of the performance of each group’s submission(s) in broad disease category matching for CAGI5 

challenge

Submission ID Number of matches Sum of probabilities for 
matches

Number of matches, no 
credit to ties

Mean probability assigned to 
the correct class

SID#1 8 7.0 7 0.44

SID#2 3 3.0 3 0.25

SID#3 9 4.7 9 0.34

SID#4 12 7.6 11 0.42

SID#5 11 5.2 9 0.36

SID#6.1 7 2.7 7 0.35

SID#6.2 11 7.8 9 0.40

SID#7 8 6.0 6 0.39

SID#8 11 9.9 11 0.49
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Table 4.

Summary of the performance of each group’s submission(s) in the specific genome to patient matching

Submission ID Number of matches Sum of probabilities for matches Mean probability assigned to the correct class

SID#1 2 2.00 0.08

SID#2 1 1.00 0.10

SID#3 2 0.38 0.08

SID#4 5 2.32 0.14

SID#5 4 3.59 0.34

SID#6.1 1 0.06 0.06

SID#6.2 1 0.36 0.07

SID#7 1 1.00 0.05

SID#8 6 4.52 0.26
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