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A B S T R A C T

At the end of 2019, the entire world has witnessed the birth of a new member of coronavirus family in Wuhan,
China. Ever since, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has swiftly invaded
every corner on the planet. By the end of April 2020, almost 3.5 million cases have been reported worldwide,
with a death toll of about 250,000 deaths. It is currently well-recognized that patient’s immune response plays a
pivotal role in the pathogenesis of Coronavirus Disease 2019 (COVID-19). This inflammatory element was
evidenced by its elevated mediators that, in severe cases, reach their peak in a cytokine storm. Together with the
reported markers of liver injury, such hyperinflammatory state may trigger significant derangements in hepatic
cytochrome P450 metabolic machinery, and subsequent modulation of drug clearance that may result in un-
expected therapeutic/toxic response. We hypothesize that COVID-19 patients are potentially vulnerable to a
significant disease-drug interaction, and therefore, suitable dosing guidelines with therapeutic drug monitoring
should be implemented to assure optimal clinical outcomes.

Introduction

Coronavirus Disease 2019 (COVID-19) is an infectious disease that
was first reported as pneumonia of ambiguous etiology in a cluster of
patients in the Chinese city of Wuhan by the end of December 2019 [1].
The causative organism was identified several days later as a novel
coronavirus (2019-nCoV). Later, its name was changed to Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as it was found to
be genetically related to the coronavirus responsible for the SARS
outbreak of 2003 [2]. The infection broke out of China to spread to
every continent around the world and was declared as an emerging
pandemic by WHO in March 2020 [3]. Full-length genome sequences
have revealed that SARS-CoV-2 is 96% identical to a bat coronavirus,
thus providing a clue about its original reservoir host [4].

Human-to-human transmission of SARS-CoV-2 is evident and, as a
respiratory infectious disease, COVID-19 primarily spreads with close
contact through respiratory droplets and secretions. Controlling the
disease is based mainly on directing the public towards reducing the
transmission [5]. The disease is contagious, but people are reacting
differently upon exposure to the virus. The virus may get eliminated by
immune system and the infection can pass unnoticed. However, after an
asymptomatic incubation period of up to 14 days, infected persons may
develop mild flu-like symptoms, including fever, dry cough, fatigue,

and shortness of breath [6]. Other reported manifestations include
upper respiratory symptoms as sneezing, runny nose and sore throat, in
addition to gastrointestinal symptoms as nausea, vomiting and diarrhea
[7]. Anosmia or ageusia have been also reported as characteristic signs
of infection [8]. While most cases develop mild symptoms, some may
progress rapidly to a more severe stage that necessitates admission to an
intensive care unit and probably mechanical ventilation [9]. The
complications of this critical stage include severe pneumonia, acute
respiratory distress syndrome (ARDS), respiratory failure, multiple
organ failure, and ultimately death [10].

In the absence of a proven therapy for COVID-19, scientists are
currently endeavoring to find an effective drug capable of eradicating
this infection. Several agents are currently under extensive laboratory
and clinical investigations. Some of these agents are investigational new
drugs while the others are repurposed drugs which are already ap-
proved for other ailments [11]. When it comes to medications, phar-
macokinetics should be strongly considered especially when dealing
with such critical illnesses. Drug metabolism is a highly important as-
pect of its pharmacokinetics that may significantly influence its clear-
ance and, eventually, its efficacy and/or toxicity. Cytochromes P450
(CYPs) are a superfamily of heme-containing monooxygenase enzymes
that have been identified in all kingdoms of life [12]. They represent
the major enzyme family involved in the oxidative biotransformation of
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most drugs and other lipophilic xenobiotics [13]. In mammals, these
enzymes are found primarily in microsomes of the liver, the dominant
metabolizing organ, in addition to other extrahepatic tissues [14].

In humans, there are 57 functional members in CYPs families, most
of which have specific endogenous functions including the metabolism
of arachidonic acid, cholesterol, bile-acids, steroid hormones, vitamin
D, and others [15]. The biotransformation of the majority of hepatically
cleared drugs and other foreign chemicals involves members belonging
to the CYP1, CYP2, and CYP3 families. Pathways involving CYP3A4/5,
CYP2C9, CYP2C19 and CYP2D6 are the most common, and responsible
for about 80% of the phase I oxidation system reactions [16,17].
Through their profound contribution to xenobiotic biotransformation,
CYPs can significantly modulate the overall body exposure to a drug.
The metabolic activity of the CYPs may result in decreasing efficacy
and/or toxicity of a drug by enhancing the clearance of its active form.
For another drug, such metabolic activity may lead to increased efficacy
or toxicity by activating its inert prodrug or generating toxic metabo-
lites, respectively. Understanding CYPs activity in relation to the target
drug is crucial in predicting its behavior inside the body and the con-
sequences of its exposure [18].

Statement of the hypothesis

We hypothesize a pharmacokinetic disease-drug interaction in
which hepatic CYPs metabolizing capacity, and eventually drug re-
sponse, is altered in COVID-19 patients. Based on the conclusions
drawn from the currently rapidly evolving knowledge about COVID-19,
our hypothesis is built on the potential modulation of CYPs activity by
the inflammatory environment provoked by SARS-CoV-2 infection, as
well as the pathologic involvement of the liver which harbors the ma-
jority of the drug metabolizing enzymes (DMEs). Patient characteristics
are also believed to increase the likelihood of the incidence of such
interaction.

Supporting evidence for the hypothesis

Susceptibility of CYPs to the immune response in COVID-19

CYPs alteration in the state of inflammation
Systemic inflammation and immune response represent a sub-

stantial element in many acute and chronic diseases which is strongly
implicated in altering drug pharmacokinetics through, mainly, mod-
ulating the expression and activity of DMEs. As a main contributor to
the metabolic biotransformation of most drugs, CYPs are widely in-
volved in such disease-drug interactions [19]. Regulation of CYPs has
been linked to inflammation in several disease states such as infectious
diseases (including viral infections), cancer, type 1 diabetes, rheuma-
toid arthritis, and inflammatory bowel disease, in addition to age-re-
lated disorders such as normal aging, metabolic disorders, and neuro-
degenerative diseases [20].

Alterations in hepatic CYPs expression and activity are caused by
the mediators produced during the inflammation process which are
mainly cytokines [21]. Cytokines are a broad category of small cell
signaling proteins responsible for keeping homeostasis of the immune
system and its components. The immune response is driven by a com-
plex interplay between pro- and anti-inflammatory signals mediated by
different cytokines [22]. It has been reported that different CYPs are
regulated differently, that is, multiple cytokines may participate in
regulating single enzymes, while a subset of enzymes can be regulated
by individual cytokines. This fact about specificity of regulation is
highly important when considering drug interactions because drug
pharmacokinetics will ultimately vary depending on disease type and
its released cytokines, as well as the administered drug and its involved
metabolizing enzymes [23,24].

Since the 1990s, cytokine-induced changes in hepatic CYPs activity
have been described using hepatocyte cultures from different mammals

including rats [25], rabbits [26], pigs [27], and humans [28,29]. A
strong evidence has been also provided through in vivo studies in mice
[30], rats [31], and humans [32]. Some studies have also demonstrated
the suppression of extrahepatic CYPs by inflammatory mediators
[33–36]. Interleukin 1 (IL-1) [37–39], interleukin 6 (IL-6), tumor ne-
crosis factor-α (TNF-α), and interferon gamma (IFN-γ) [40–42] are the
most prominent proinflammatory cytokines that have exhibited sup-
pression of CYPs expression and activity, in addition to other cytokines
such as interleukin 2 (IL-2) [43,44] and interleukin 10 (IL-10) [45].

El-Kadi et al have assessed the effect of serum from humans with an
acute upper respiratory tract viral infection on CYPs-mediated theo-
phylline metabolism using hepatocytes from rabbits with turpentine-
induced acute inflammatory reaction. Theophylline is metabolized by
several CYPs isoforms (including CYP1A1, CYP1A2, and CYP3A)
yielding different metabolites. Serum treatment resulted in reducing the
formation of all theophylline metabolites as well as the amount of total
CYPs, indicating a significant down-regulation of these metabolizing
enzymes [46]. In a later study using the same experimental model, the
down-regulatory effect was mainly attributed to IL-6, interleukin 1β
(IL-1β), and IFN-γ [42]. CYPs down-regulation was also proven to be
subsequent to the reduction of their activity. Additionally, the in-
flammatory mediators in human serum provoked varying degrees of
suppression to different CYPs with the CYP3A being more vulnerable
than CYP1A to such effect [47].

For decades, IL-6 has been recognized as the major inflammatory
element that provokes a significant repressive effect on the expression
and activity of different CYPs. Human recombinant interleukin 6 (rhIL-
6) has shown concentration-dependent blocking of phenobarbital-
mediated induction of CYP2B1/2 mRNA and activity in rat hepatocytes
[48]. In Fischer 344 rats, rhIL-6 resulted in reducing different CYPs
activities with variable degrees [49]. The mRNA levels of CYP1A1,
CYP1A2, and CYP3A3 were markedly suppressed in three human he-
patoma cell lines (HepG2, HepG2f, and Hep3f3) because of rhIL-6
treatment [50]. Acute-phase inflammatory reaction provoked by tur-
pentine or purified bacterial lipopolysaccharide (LPS) administration to
male rats resulted in significant suppression of hepatic CYP2C11 [51],
an effect that was later confirmed to be transcriptional, involving
CYP2C11 promoter sequences, using rhIL-6 treatment [52,53].

IL-6-knockout (IL-6−/−) mouse was adopted in several studies as a
model to assess the extent of IL-6 contribution to the suppression of
different CYP isoenzymes during inflammatory response generated by
various stimuli. In turpentine-induced inflammation, the inhibitory ef-
fect observed in wild-type (WT) mice on CYP1A2, CYP2A5, and
CYP3A11 mRNAs was revoked in IL-6-deficient mice [54]. Induction of
immune response by Bacillus Calmette-Guérin (BCG) has led to down-
regulation of transcriptional expression of both CYP3A11 and
CYP2C29, but only CYP3A11 in IL-1α/β-knockout mice and TNF-α-
knockout mice, respectively. However, tuberculosis vaccine had non-
significant effect on these enzymes in IL-6-knockout mice [55]. In a
disease model, Citrobacter rodentium infection was used to elicit in-
flammatory response in IL-6−/− mice, where CYP3A11 mRNA sup-
pression seen in WT mice was abolished [56]. The mentioned studies
have shown that the role of IL-6 is usually critical and can’t be played
by another cytokine or mediator, however, sometimes IL-6−/− mice
may react similarly as WT mice, i.e. show down-regulation too, for
certain CYPs in certain inflammation models. This can be explained by
the functional redundancy existing among the released cytokines
which, sometimes, may replace IL-6 [54–56]. Interestingly, sometimes
the suppression of CYPs may happen only in IL-6−/− mice, but not WT
mice, thus indicating that IL-6 may have an opposing signal with in-
ductive effect [56,57].

Several studies have evaluated the impact of IL-6 triggered by ma-
lignancies. In an interesting study by Charles et al, the hepatic levels of
both human CYP3A4 as well as its murine orthologue CYP3A11 were
simultaneously assessed in a tumor-derived inflammation model using
transgenic mice loaded with genetic constructs containing the upstream
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regulatory elements of the human CYP3A4 gene linked to the lacZ re-
porter gene. The tumor generated a systemic inflammatory response
with high levels of circulating IL-6 resulting in down-regulation of
CYP3A11 orthologue at mRNA, protein, and activity levels as well as
CYP3A4 transgene product which was assessed through measuring β-
galactosidase enzyme activity [58,59]. Different tumor types have also
demonstrated a significant suppressive effect on hepatic CYP3A11 with
an accompanying increase in IL-6, and such effect was progressively
promoted by tumor growth [60]. The pivotal role of IL-6 in cancer-
mediated repression of hepatic CYP3A has been further demonstrated
by attenuation of such effect via Anti-IL-6 monoclonal antibody treat-
ment [61], or interleukin-6 receptor blocking [62]. Anti-IL-6 antibody
intervention was also tested in IL-6-treated primary human hepato-
cytes. The inhibitory effect of IL-6 affected CYP1A1, CYP1A2, CYP2B6,
and CYP3A4; and it was also capable of overriding CYP1A2 and
CYP3A4 induction mediated by omeprazole and rifampicin, respec-
tively. Anti-IL-6 antibody partially abrogated enzyme activity sup-
pression [63].

The basis of cytokine-induced down-regulation of CYPs activity is
not fully elucidated; however, the associated decrease in their re-
spective mRNAs strongly suggests a transcriptional mechanism invol-
ving a number of transcriptional factors [64,65]. Nuclear factor kappa B
(NF-κB), a pivotal regulatory transcription factor in the inflammatory
and immune response, has been shown to regulate gene expression of
many hepatic CYP enzymes in humans, rats, and mice [66,67]. The aryl
hydrocarbon receptor (AhR) is a gene battery that regulates a group of
DMEs including CYP1A1, CYP1A2, and CYP1B1. Both NF-κB and AhR
have a mutual inhibitory effect thus repressing each other’s functions
[68,69]. For instance, pyrrolidine dithiocarbamate (PDTC), an inhibitor
of NF-κB signal, has demonstrated partial blocking of the inflammatory
reduction in CYP1A2 activity [70,71]. The reported inhibitory effect of
NF-κB activators on the pregnane X receptor (PXR) and its target genes
(most notably of which is CYP3A4) on one hand, and enhanced PXR
activity by inhibiting NF-κB on the other hand, indicates how in-
flammatory stimuli can manipulate hepatic CYPs expression [72–74].
Activation of NF-κB results in repressing glucocorticoid receptor (GR),
thus down-regulating constitutive androstane receptor (CAR) expres-
sion and its associated genes such as CYP2B, CYP2C, and CYP3A [75].
Other studies have shown that NF-κB can interfere with CYPs expres-
sion, such as CYP2C11 and CYP2E1, by binding directly to their re-
spective genes [38,76].

Immunopathological aspects of COVID-19
The immune system plays a crucial role in resolving COVID-19 in-

fection, but it also can go out of control and contribute to its progres-
sion. After invading the alveolar cells, the host body starts mounting an
immune response during the incubation period and the mild stage to
exterminate the virus and hamper disease progression to the severe
stage. However, if body defenses are impaired, the suboptimal antiviral
immune reaction will allow viral proliferation resulting in lung damage
and dissemination to other angiotensin-converting enzyme 2 (ACE2)-
expressing cells such as enterocytes [77–79]. The initial containment of
the infection by innate immune response generates a strong local in-
flammatory reaction with a myriad of inflammatory cytokines. Upon
failure of this attempt, the highly specific adaptive immune cells are
summoned, by systemically disseminated cytokines, to augment the
immune response and clear the increasing viral load [80]. If co-
ordinated recruitment of innate and adaptive immunity fails to effec-
tively control the pathogen, more immune cells will get activated, with
subsequent release of more cytokines, in a positive feedback loop of
pathogenic inflammation. This state of systemic inflammation is called
cytokine storm syndrome (CSS) and it has been reported in severe cases
as an important cause of ARDS and multiple organ failure [81]. At this
point, the immune system is doing more harm than good to the body
and becoming a major cause of lung damage and subsequent mortality,
thus suppressing such hyperinflammation is strongly recommended

together with symptomatic treatment [82,83]. It is noteworthy that the
immune system starts its response upon viral exposure and continues to
reinforce it till, in most cases, it effectively diminishes viral burden.
Premature halting of immune response may delay virus clearance and
perpetuate the infection, therefore the use of immunosuppressants
should be the last resort and only for severe cases with profound in-
flammatory lung injury [84].

It has been reported that a wide range of proinflammatory cytokines
are elevated in peripheral blood of COVID-19 patients such as inter-
feron gamma (IFN-γ), tumor necrosis factor-α (TNF-α), granulocyte–-
macrophage colony stimulating factor (GM-CSF), macrophage colony-
stimulating factor (MCSF), and interleukins IL-1, IL-6, and IL-12; and
many more [7,85]. Interfering with these inflammatory mediators can
modulate the amplified immune response that ends up with lung da-
mage. Interleukin-6 is one of the important targets for anti-cytokine
therapy as it is believed to be a key player in the process and its ele-
vation is associated with poor prognosis [86–88]. Tocilizumab is a
monoclonal antibody against the interleukin-6 receptor (IL-6R) ap-
proved for the treatment of rheumatoid arthritis. It has been reported
that a single dose of tocilizumab significantly improved the clinical
outcomes in COVID-19 patients [89,90]. Sarilumab is another IL-6R
antagonist which is also approved for treating rheumatoid arthritis and
is currently assessed for its efficacy against COVID-19 [11].

Impact of COVID-19 on the hepatic metabolizing efficiency

Different organs, such as lung, kidney, and intestine, contribute to
drug biotransformation in the body; however, the liver is generally
regarded as the major metabolizing organ responsible for drug clear-
ance [91]. Through several enzyme systems, the most prominent of
which is CYPs, the liver can drive numerous metabolic reactions. Acute
as well as chronic insults to the liver will eventually hamper its meta-
bolic machinery resulting ultimately in inefficient drug clearance
[92,93]. Regardless of the cause, it is believed that the severity of liver
disease is correlated to the extent of metabolism alteration [94,95].

Lungs represent the hot spot for the pathogenesis of COVID-19,
however, potential involvement of other organs, such as the liver, has
been also reported [96,97]. The hepatic involvement can be tied to the
incidence of other extrapulmonary, or more specifically gastro-
intestinal, manifestations [98,99], and it has been reported in COVID-
19 patient with or without underlying liver disease [100]. Reported
findings of hepatic dysfunction in COVID-19 cases include elevated
aminotransferases [101] and bilirubin [102], hypoalbuminemia [6], in
addition to microvesicular steatosis with mild lobular activity [77]. It is
worth mentioning that hepatic impairment has been also associated
with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)
[103], which is highly homologous to SARS-CoV-2 [104], as well as
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) [105].

The exact mechanism behind liver function deterioration is not fully
understood, however, it has been proposed that SARS-CoV-2 causes
direct liver injury. Viral hepato-tropism can be attributed to the rela-
tively high expression of its cellular entry gate, i.e. ACE2, in cho-
langiocytes, rather than hepatocytes, rendering them vulnerable to viral
attack [106,107]. This assumption is supported by the increase in cir-
culating levels of serum gamma-glutamyl transferase (GGT) in COVID-
19 patients [108]. Hepatic abnormalities can be also a secondary effect
induced after initiating disease management by consumption of hepa-
totoxic antipyretic agents (e.g. acetaminophen), antiviral medications
(e.g. oseltamivir and lopinavir), antibiotics, and steroids [109,110].
Despite the absence of viral antigens in the liver, the overwhelming
systemic inflammatory reaction elicited by SARS-CoV-2 can be also a
major cause of multiple organ dysfunction including liver damage as
seen in other respiratory viral infections [111–113].
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Drug outcome alteration in a vulnerable patient population

CYPs have been implicated in mediating clinically relevant drug
interactions in several disease states [114]. Such metabolic interactions
have been regarded as a major reason behind revising and updating
safety profiles of pharmaceutical products [115]. Disease-drug inter-
actions are commonly observed in inflammatory conditions with drugs
whose clearance is predominantly CYPs-mediated [116]. Examples of
such conditions include rheumatoid arthritis [117], hepatitis [118],
Crohn’s disease [119], acquired immunodeficiency syndrome (AIDS)
[120], influenza [121], congestive heart failure [122], and cancer
[123].

As a central inflammatory regulator, agents interfering with IL-6
actions have led to regaining the inhibited CYPs activity, thus nor-
malizing drug disposition pattern. Blocking IL-6 receptor by the
monoclonal antibodies; tocilizumab [124] and sarilumab [125] in
rheumatoid arthritis patients co-administering simvastatin has reversed
CYP3A4 activity suppression as demonstrated by a clinically significant
decrease in simvastatin exposure. Halting IL-6 signaling by direct
binding with the monoclonal antibody sirukumab has also proven ef-
fective in rheumatoid arthritis patients who received a CYPs probe
cocktail consisting of midazolam (CYP3A), omeprazole (CYP2C19), and
warfarin (CYP2C9). Area under the plasma concentration–time curve
(AUC) for probe substrates was reduced after sirukumab administration
indicating that the activity of their respective metabolizing enzymes
was recovered [126]. As an attempt to predict the risk of such inter-
actions, physiologically based pharmacokinetic (PBPK) models were
developed to assess the impact of anti-IL-6 agents on the metabolism of
concomitant medications [127–129].

The immune response, with IL-6 in the core of its network of
mediators, is a hallmark of COVID-19 pathogenesis. Based on the
aforementioned examples, it is strongly postulated that CYPs metabolic
activity will be inevitably altered, mostly down-regulated, during the
course of SARS-CoV-2 infection in a similar manner, resulting in a
clearance-related pharmacokinetic interaction with the administered
drugs. Additionally, liver involvement in COVID-19 may further com-
plicate the picture. In May 2020, the investigational antiviral agent,
remdesivir, has received U.S. food and drug administration (FDA)
emergency use authorization for the treatment of COVID-19. According
to its manufacturer, remdesivir undergoes extensive metabolism by
CYPs especially CYP3A4 [130]. Moreover, other potential candidates
for treating COVID- 19 such as chloroquine [131] and colchicine [132]
are also hepatically metabolized, so understanding the nature of such
interaction is highly essential as it can influence the therapeutic/toxic
response of patients to the agents intended for managing the disease
[133,134]. Full attention should be paid when anti-cytokine therapy
comes into play. In this case, partial or complete regain of normal
metabolic status can be achieved as a result of the immunomodulatory
effect.

In case of co-administration of multiple drugs, the risk of drug in-
teractions increases, however, a more complex disease-drug-drug in-
teraction is expected in COVID-19. SARS-CoV-2 infection has resulted
in high rates of hospitalization and intensive care unit (ICU) admission
[135,136]. This can be regarded as a major clinical concern especially
when considering that critically ill patients are more predisposed to
drug interactions, and that CYPs are involved in the metabolism of
commonly prescribed drugs in the ICUs [137]. Moreover, demographic
analysis of COVID-19 patients has revealed that older people with co-
morbidities are the most affected group [98,138] who also represent
the potential candidates for advancing to severe stages and inevitable
ICU admission [85]. Medical comorbidities in elderly patients warrant
concomitant drug therapies, thus rendering them the most vulnerable
group for both drug-drug and disease-drug interactions [139,140].
Therefore, the utmost level of caution is required to deliver the optimal
dose for these patients.
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