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ABSTRACT

All mammals are characterized by the ability of females to produce milk. Marsupial
(metatherian) and monotreme (prototherian) young are born in a highly altricial
state and rely on their mother’s milk for the first part of their life. Here we review the
role and importance of milk in marsupial and monotreme development. Milk is the
primary source of sustenance for young marsupials and monotremes and its
composition varies at different stages of development. We applied nutritional
geometry techniques to a limited number of species with values available to analyze
changes in macronutrient composition of milk at different stages. Macronutrient
energy composition of marsupial milk varies between species and changes
concentration during the course of lactation. As well as nourishment, marsupial and
monotreme milk supplies growth and immune factors. Neonates are unable to
mount a specific immune response shortly after birth and therefore rely on
immunoglobulins, immunological cells and other immunologically important
molecules transferred through milk. Milk is also essential to the development of the
maternal-young bond and is achieved through feedback systems and odor
preferences in eutherian mammals. However, we have much to learn about the role of
milk in marsupial and monotreme mother-young bonding. Further research is
warranted in gaining a better understanding of the role of milk as a source of
nutrition, developmental factors and immunity, in a broader range of marsupial
species, and monotremes.

Subjects Biochemistry, Zoology, Immunology, Nutrition
Keywords Marsupial, Monotreme, Milk

INTRODUCTION

Mammals evolved approximately 200 million years ago (Flight, 2011) and today comprise
three groups—prototherians, metatherians and eutherians. Monotremes (prototherians)
diverged from marsupials (metatherians) and eutherians approximately 166 million years
ago (Renfree et al., 2009), and marsupials and eutherians separated around 130 million
years ago (Bininda-Emonds et al., 2007; Luo et al., 2003; Nilsson et al., 2010). Monotremes
lay eggs and their young hatch in a highly altricial state. Marsupials, however, give

birth to live young in a highly altricial state and most of their development is completed
after birth, whilst eutherians give birth to young varying from altricial to precocial.
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When compared to eutherians, newborn marsupials have been described as similar to

a gestationally eight week old human fetus (Block, 1964), hence much of the development
of marsupials occurs in the external environment. Thus, when comparing the development
of marsupials and eutherians, the time of “pouch emergence” of marsupial young is
often regarded as similar to the time of birth in eutherians. However, despite these
differences in developmental stages at birth, all three groups of mammals are characterized
by the ability of the female of the species to produce milk. Via the mammary gland,
milk supplies growth factors and immunological components to young mammals.
Immediately or hatching after birth, milk is the sole form of sustenance. Mammalian
young rely on their mother to provide all the nutrients for their initial growth and
development. As mammals are diverse in their characteristics, size and habitats that
they live in, milk composition varies markedly depending on the needs of the young.
This article specifically reviews the crucial role of milk in young marsupial (metatherian)
and monotreme (prototherian) development with a focus on both nutrition and
immunology. Furthermore, we highlight other largely neglected areas of research where
milk is essential to development such as its role in maternal-young bonding and where
further research is required. This review will be of particular interest to those conducting
research in mammalogy, nutritional geometry, immunology, mammary gland biology and
lactation.

SURVEY METHODOLOGY

Scientific journal articles were sourced for this review by conducting searches using the
GoogleScholar® and Web of Science® databases. The search strategy used the combined
terms “milk and monotreme” or “milk and marsupial”. We screened and filtered the
articles, limiting those with relevant titles and written in English. We identified further
relevant articles referenced in the articles found. Generally, we included articles written no
more than 30 years ago, although some earlier articles were incorporated due to their
importance in this review to provide further clarity and enhancement.

Mammary glands and pouches

Mammary glands are specialized accessory glands of the skin (Cowie, 1974) and are similar
to sweat glands in their secretory process, having evolved from apocrine-like skin glands
(Lefevre, Sharp ¢ Nicholas, 2010). Mammary glands evolved prior to the radiation of
today’s extant mammals (reviewed in Lefévre, Sharp ¢ Nicholas, 2010; Power ¢ Schulkin,
2013), around 166-240 million years ago when the first mammals arose (Bininda-Emonds
et al., 2007).

Both eutherians and marsupials have nipples or teats to aid transfer of milk to the
young, whilst echidnas (Tachyglossus sp. and Zaglossus spp.) and the platypus
(Ornithorhynchus anatinus) have the ducts of a single mammary gland opening directly
onto the areola in association with a hair follicle, and young monotremes (puggles) suckle
milk from the pores of these milk patches (Griffiths, McIntosh ¢ Coles, 1969). The size and
shape of mammary glands differs between species. The number of mammary glands,
although usually occurring in pairs (Tyndale-Biscoe ¢ Renfree, 1987), differs between
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species. Among marsupials, there is generally an inverse relationship between body size of
the female and the number of teats, with small species such as phascogales and bandicoots
having eight teats (Stannard et al., 2013), and larger species such as wombats and koalas
having two, and macropods having four (Tyndale-Biscoe, 2005). The gray short-tailed
opossum (Monodelphis domestica) is an extreme example having 13 mammary glands
(Tyndale-Biscoe, 2005).

The position of mammary glands (and teats) also varies. In marsupials with pouches,
such as red kangaroos (Macropus rufus), the teats are located within a pit on the
dorsal surface of the pouch, and each teat has a separate mammary gland (Griffiths,
Mclntosh ¢ Leckie, 1972). In marsupials the number of mammary glands, hence the
number of teats, also determines the maximum litter size as marsupial young permanently
attach to the maternal teat shortly after birth. The mammary gland subsequently grows
correspondingly in size with the growth of the pouch young, as does the teat, in length
(Griffiths, McIntosh ¢ Leckie, 1972). The number of teats for each species represents the
maximum number of young that can be sustained for each litter. Thus in some
dasyurid marsupials the transit to the maternal teat and attachment can lead to a fight for
survival, as some marsupials give birth to supernumerary young (Bradley, 1997; Gemmell,
Veitch & Nelson, 2002; Nelson ¢ Gemmell, 2003), and more young are born than there
are teats.

The mammary gland tissue consists primarily of glandular tissue with alveoli and
ducts amongst a stroma of adipose and connective tissue (Cowper’s ligaments)
(Geddes, 2007). While marsupials lack the suspensory ligaments associated with eutherians
(Cowie, 1974), the ilio-marsupialis muscle of the marsupial mammary glands and teats
enable the mother to draw their young close to the body, in a similar manner to the
cremaster muscle in males that draws the testes closer to the body (Griffiths ¢ Slater, 1988).
Male South American water opossums or yapok (Chironectes minimus), an aquatic
marsupial, have a pouch that is used as a watertight compartment where they house the
scrotum (Hunsaker, 1977), and was likely similar to that of the now extinct Tasmanian
tiger (Thylacinus cynocephalus) that had a backward facing pouch to also enclose their
scrotum (Beddard, 1891). Woolley et al. (2002) have suggested in the later stages of
lactation that the ilio-marsupialis muscles could be used to shake off the suckling young.

There is increasing evidence of the role of cells associated with the immune system
in the normal development and function of marsupial mammary tissue. T cells infiltrate
the mammary tissue early in the first post-natal week in the gray short-tailed opossum
and transcriptome analyses are consistent with the majority being y6 T cells (Fehrenkamp ¢
Miller, 2019b). What role these y§ T cells are playing in mammary protection or the
protection of the suckling young is not known. Also noteworthy is the appearance of
eosinophils early in the postnatal period when the mammary tissue is undergoing significant
remodeling in the opossum. The presence of eosinophils correlates with local expression of
the cytokine interleukin-16, a known chemotactic factor for eosinophils (Fehrenkamp ¢
Miller, 2019a). It has been speculated that in eutherians eosinophils play a role in mammary
remodeling, whether the same is true in marsupials is unknown, but this appears to be an
ancient conserved feature in mammals.
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Odor identification and communication between mother and young
Although nipples and teats in marsupials and eutherians provide a delivery mechanism for
milk to young mammals, they also provide a sensory attractant, including touch, olfaction
and taste, for young mammals to locate milk. The same is true for milk patches in
monotremes. The suckling in marsupials and eutherians by the young in turn induces
oxytocin release in the mother, inducing milk letdown and maintenance (Lincoln &
Renfree, 1981), as well as inducing maternal behaviors (Dwyer, 2014).

Olfaction is not only essential for newborn mammals to locate the maternal nipple and
feed, but also important in kin recognition and maternal-young bonding. In rabbits
(Oryctolagus cuniculus) the mammary pheromone has been shown to influence sucking
performance and hence milk intake in newborn kittens (Jouhanneau, Schaal ¢~ Coureaud,
2016). Mammary pheromone is secreted by the nipples of lactating rabbits, however
the precise source is unknown (Moncomble et al., 2005). It may be produced by the skin
glands at the tip of the nipple and dissolved in milk, secretions of sebaceous and apocrine
glands within the nipple dermis secreted into the galactophorous ducts, or compounds
produced or changed by microflora in the galactophorous ducts (Moncomble et al., 2005).
The olfactory systems of marsupials and monotremes are still immature at birth/hatching,
however given their developmental stage it is likely young can use olfactory cues to
find their way to their mother’s milk (Schneider, 2011). Behavioral testing by Schneider
et al. (2009), for example, have shown that neonate tammar wallabies (Notamacropus
eugenii) use olfactory cues to locate their mother’s odor. Nishitani et al. (2009) also found
human young show reduced pain responses when exposed to the odor of their mother’s
milk, but a reduction in pain response whilst suckling is yet to be investigated in
marsupials or monotremes. Therefore, although no studies have been conducted on the
odors produced by the marsupial teat (and pouch), odors likely aid the newborn marsupial
to locate the teat and attach, as well as aid development of the young-mother bond.

Nutrient composition of milk

The ability to produce milk varying in composition at the same time is called asynchronous
concurrent lactation (Nicholas, 1988). Some marsupials, such as the tammar wallaby,
are able to produce milk with varying compositions at the same time, whereby one
mammary gland supplies a newborn permanently attached to one teat, whilst a second
mammary gland supplies milk with a different composition to an older young at foot.
Similarly, the red kangaroo can produce two different kinds of milk, depending on the age
of the young (Griffiths, McIntosh & Leckie, 1972). One gland can produce a fluid rich

in protein for a neonate and the other “mature” milk for a young at foot (Griffiths,
Mclntosh ¢ Leckie, 1972). Asynchronous concurrent lactation is possible due to changes in
the extracellular matrix composition of the mammary gland, and these changes
subsequently regulate milk protein expression (Warnyonyi et al., 2013). In marsupials, milk
composition and yield also vary with sex of the young (Quesnel et al., 2017; Waterman,
Robert ¢ Braun, 2012). Both tammar wallabies and eastern grey kangaroos allocate more
protein to sons than to daughters (Quesnel et al., 2017; Waterman, Robert ¢» Braun, 2012).
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Milk consists of milk solids (made up of proteins, lipids, carbohydrates and minerals)
and water. Throughout lactation pronounced changes occur to the nutrient composition
which is a characteristic of marsupial milk and makes it different to that of eutherian
milk (Green, 1984; Green, Newgrain ¢ Merchant, 1980). In monotremes, while there is
very limited information available, it likewise appears that their milk composition also
changes over time (Grant, Griffiths ¢ Leckie, 1983; Griffiths et al., 1984; Teahan, McKenzie
& Griffiths, 1991).

Depending on the species, differences in milk composition produced at different times
occur during early, mid and late lactation, but can also be referred to as different phases
or stages. It is difficult to make comparisons between species when discussing these
different phases/stages/time of lactation because the definitions can vary widely between
species, and even in the literature for the same species. Therefore, throughout this paper
where possible we refer to the phase/stage/time of lactation for the species we are
discussing as defined in the literature for that species. For example, early lactation
(sometimes referred to as Phase 2) consists of the milk produced from birth until the end
of fixation, where young are no longer permanently attached to the teat (Tyndale-Biscoe ¢
Janssens, 1988). In some species, such as the tammar wallaby, phase 2 can also be
separated into 2A and 2B. Phase 2A represents the period where the young remains
permanently attached to the teat, and 2B represents the stage whereby the young start to
intermittently detach (Pharo, 2019). Late lactation (Phase 3) begins when the milk
becomes similar to that of eutherian milk, and the young is no longer permanently
attached to the teat (Adamski ¢ Demmer, 2000), and includes the time of permanent
pouch exit, and when the young starts to eat solid foods (Tyndale-Biscoe ¢ Janssens, 1988),
but the timing of teat detachment, or end of fixation or fixed period of lactation, and
pouch exit differs greatly and is not consistently defined for each species. In addition, the
timing of the lactation phases differs for each species, for example phase 2A is 0-125 days
in the tammar wallaby and 0-70 days in the quokka (Setonix brachyurus) (Green,
Newgrain ¢ Merchant, 1980; Miller, Bencini & Hartmann, 2009). Early lactation protein,
whey acidic protein and late lactation proteins are expressed exclusively during early,
mid and late lactation and also act as markers for the different phases (Nicholas et al.,
1997), but have not been studied in all species, and hence may differ among different
species. For these complex reasons, we will refer to early, mid and late lactation loosely, and
not defined by the literature for each species due to its variation in meaning.

In early lactation (soon after parturition) milk solids in marsupial milk are relatively low
and the milk is dilute, in later stages of lactation the milk becomes thicker. Milk solids
increase as lactation progresses (Green, 1984; Green, Newgrain & Merchant, 1980;
Tkonomopoulou, Smolenski ¢» Rose, 2005; Nicholas, 1988). Milk solids can be as low as 9%
weight for weight (w/w) in early lactation and increase to 54% w/w in late lactation
depending on species (Crowley, Woodward & Rose, 1988; Green, Krause ¢» Newgrain,
1996). In some marsupials, including the Virginian opossum (Didelphis virginiana),
common brushtail possum (Trichosurus vulpecula), common ringtail possum and koala
(Phascolarctos cinereus), milk solids peaking in early to mid-lactation prior to pouch exit
(Cowan, 1989; Green, Krause & Newgrain, 1996; Krockenberger, 1996; Munks et al., 1991).
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Krockenberger (1996) suggested that more dilute milk may provide an important water
source for young koalas prior to weaning, however it is possible mothers produce dilute
milk to conserve their own energy resources. Monotreme milk is rich in solids, with
48.9% w/w in short-beaked echidna (Tachyglossus aculeatus) milk and 39.1% w/w in
platypus milk (Griffiths et al., 1984). Similar to marsupial milk, monotreme milk appears
to be more dilute in early lactation with platypus having 8% solids (Grant, Griffiths ¢
Leckie, 1983) and short-beaked echidnas 12% (Griffiths, McIntosh ¢ Coles, 1969), however
data are based on small samples sizes.

Protein

Total macronutrient quantities change throughout lactation and qualitative changes also
occur to the macronutrients. Protein concentration increases throughout lactation in
most marsupials (Ikonomopoulou, Smolenski ¢» Rose, 2005; Merchant et al., 1996; Rose,
Shetewi ¢ Flowers, 2005). By comparison, protein content either remains stable or only
decreases slightly in eutherian species, for example as seen in rhesus monkeys (Macaca
mulatta), insectivorous bats and equids (Kunz et al., 1995; Lonnerdal et al., 1984; Oftedal &
Jenness, 2009). Casein and whey protein increase gradually in tammar wallaby milk
(Nicholas, 1988), with pre-albumin and a-globulin fractions increasing from 180 days
postpartum and peak at pouch exit (Green ¢» Renfree, 1982). Levels of serum albumin,
a-lactalbumin, -lactoglobulin and transferrin are relatively consistent throughout
lactation in the red kangaroo (Muths, 1996; Nicholas et al., 2001). However, whey acidic
protein secretion begins at around day 155 post-partum and ceases at day 209, cystatin is
secreted from day 102 until day 192, and late lactation protein A is secreted from day
192 (Nicholas et al., 2001). In the quokka whey albumin, y-globulin and p-globulin levels
remain consistent throughout lactation and are present at levels lower than maternal
serum albumin (Jordan ¢ Morgan, 1968). Common brushtail possum transferrin
increases around the time of pouch exit, as much as ten-fold between days 110 and 130
(Grigor et al., 1991).

Casein and o-globulin proteins are the main proteins in milk, including monotreme
milk. Overall, caseins are quite different across mammalian species, however most species
have no more than four different casein proteins (Ginger ¢» Grigor, 1999). Initially platypus
were found to only have one casein protein while short-beaked echidnas had two
(Grant, 2007; Marston, 1926; Teahan, McKenzie ¢ Griffiths, 1991), and more recently
Lefevre, Sharp ¢ Nicholas (2009) characterized the caseins in both species. The whey
proteins of the short-beaked echidna are distinctly different from those of the platypus
(Joseph & Griffiths, 1992). Total protein and casein composition of echidna milk is high in
early lactation (until day 48) (Teahan, McKenzie ¢» Griffiths, 1991).

Lipids

Lipids increase gradually in a range of marsupial milks during early lactation, and then
increase exponentially into late lactation and reach a peak around weaning (Crowley,
Woodward & Rose, 1988; Green, Merchant & Newgrain, 1987; Ikonomopoulou,
Smolenski & Rose, 2005; Muths, 1996). Crude lipid concentration can increase by up to five
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times in late lactation compared to early lactation (Rose, Shetewi & Flowers, 2005). In three
arboreal folivores lipid concentration peaks in mid-lactation. In koalas this occurs just
prior to pouch exit, before reducing in late lactation (Cowan, 1989; Krockenberger, 1996;
Munks et al., 1991). The common ringtail and brushtail possums have the lowest
concentrations of crude lipid (maximum 8 g/100 mL) in their milk compared to other
marsupials studied thus far (Cowan, 1989; Munks et al., 1991). By comparison lipid
concentration can be as high as 46 g/100 g in the eastern quoll (Dasyurus vivverinus) or
31.4 g/100 g in the Tasmanian pademelon (Thylogale billardierii) (Green, Merchant &
Newgrain, 1987; Rose, Shetewi ¢ Flowers, 2005).

Oleic acid (CI8:1) followed by palmitic acid (CI6:0) are the predominant fatty acids
present in marsupial milk (Crowley, Woodward ¢» Rose, 1988; Green, 1984; Green,
Merchant & Newgrain, 1987; Grigor, 1980). In the eastern quoll palmitic acid is higher than
oleic acid in early lactation and they crossover between 6 and 10 weeks post-partum
with oleic acid becoming the dominant fatty acid (Green, Merchant ¢ Newgrain, 1987).
Stearic acid (CI8:0) and linoleic acid (CI8:2) are also major fatty acids in marsupial
milk (Crowley, Woodward & Rose, 1988; Grant, Griffiths & Leckie, 1983; Green, Merchant
& Newgrain, 1987; Griffiths et al., 1988; Griffiths, McIntosh ¢ Leckie, 1972; Poole et al.,
1982), as well as palmitolic acid (C16.1) in long-nosed potoroo (Potorous tridactylus) milk
(Crowley, Woodward ¢ Rose, 1988). Arachidonic acid (C20:4) is present in eastern quoll
and numbat (Myrmecobius fasciatus) milk more so than in tammar wallaby milk, likely
due to the insectivorous diet of quolls and numbats (Green, Merchant ¢» Newgrain, 1987;
Griffiths et al., 1988). Short-chain fatty acids are not found in the long-nosed potoroo,
tammar wallaby or numbat milk while only trace amounts are found in eastern grey and
red kangaroo milk (Crowley, Woodward & Rose, 1988; Green, Griffiths ¢» Leckie, 1983;
Griffiths et al., 1988; Griffiths, McIntosh ¢ Leckie, 1972; Poole et al., 1982).

Monotreme milk shows some diversity in fatty acid composition across species.
Short-beaked echidna milk is low in polyunsaturated fats compared to platypus milk which
is high in polyunsaturated fats, such as linolenic acid (C18:3) (Augee, Gooden ¢ Musser,
2006; Griffiths, 1978; Griffiths et al., 1973). In addition, short-beaked echidnas lack very
long-chained polyunsaturated fats such as docosahexaenoic acid (C22:6), docosatetraenoic
acid (22:4) and docosapentaenoic acid (C22:5) (Griffiths et al., 1973). Oleic acid (C18:1)
is the dominant fatty acid in monotreme milk, with short-beaked echidnas having more
oleic acid than platypuses (Griffiths et al., 1984). The fatty acids in platypus milk are
the same as those found in the food of platypuses (macroinvertebrates) (Gibson et al.,
1988). Fatty acid composition is influenced by captivity and diet in short-beaked echidnas,
with significant differences observed between oleic and palmitic acids in captive and
free-ranging short-beaked echidna milk (Augee, Gooden & Musser, 2006). Similar to
marsupials and monotremes, eutherian pinnipeds also show increases in lipid content of
milk during lactation (Arnould ¢» Hindell, 1999; Riedman ¢ Ortiz, 1979). For example,
northern elephant seal (Mirounga angustirostris) lipid levels increase from around 12% to
50% during lactation (Riedman ¢ Ortiz, 1979). This increase occurs as water content
decreases.
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Lipid content in milk has been suggested to be linked to nursing patterns, whereby those
mothers being absent from their young for long periods produce higher quantities of fat,
and those mothers that are always close to their young and therefore able to feed their
young more frequently have lower levels of fats but higher carbohydrate levels (Oftedal,
2002; Sharp et al., 2006). This is also true of some seal species that leave their young for
periods of time to go out and forage (Dosako et al., 1983; Riedman ¢ Ortiz, 1979).
Marsupial neonates are permanently attached to the maternal teat and marsupial milk
contains low levels of fat during this period (Crowley, Woodward ¢ Rose, 1988; Green,
Merchant & Newgrain, 1987). The lipid levels increase as the young grows and detaches
from the teat prior to weaning (Crowley, Woodward ¢ Rose, 1988; Green, Merchant &
Newgrain, 1987; Ikonomopoulou, Smolenski ¢ Rose, 2005; Muths, 1996). It has been
suggested the lipid increases in marsupial milk can be correlated to the need for fat reserves
required for thermoregulation and increased muscle activity related to locomotion in the
young (Merchant et al., 1996; Munks et al., 1991).

Carbohydrates

Carbohydrate concentration in marsupial milk gradually increases post-partum, followed
by a sharp decrease around the time of pouch exit. For example, in the tammar wallaby
total hexose peaks at 13% at 26 weeks and falls to 1% by 40 weeks pospartum (Messer ¢
Green, 1979; Messer et al., 1982), and a similar pattern is observed in the red-necked
wallaby (Macropus rufogriseus) and red kangaroo (Merchant et al., 1989; Muths, 1996).
In the eastern quoll, milk carbohydrate concentration peaks at eight weeks postpartum and
rapidly decreases from 17 weeks post-partum prior to the onset of weaning at 20-22 weeks
(Messer et al., 1987). Carbohydrates also undergo qualitative changes in composition
throughout lactation that, like lipids and proteins, are timed to correspond to the
developmental needs of the developing young undergoing the equivalent of “fetal”
development outside the womb.

Lactose is the main carbohydrate in eutherian milk, however this is not the case in
monotremes and marsupials (Bergman & Housley, 1968; Jenness, Regehr ¢ Sloan, 1964;
Messer & Kerry, 1973). There are differences between carbohydrate composition across
marsupial species. In the tammar wallaby carbohydrates change from lactose to
oligosaccharides between days 4 and 21 days post-partum (Messer, Griffiths &> Green,
1984). In the gray short-tailed opossum early lactation milk contains monosaccharides
(galactose and glucose) as well as lactose, and after two weeks the milk carbohydrate
changes to predominantly oligosaccharides that coincides with the end of fixed lactation
(Crisp, Messer ¢» VandeBerg, 1989). During late lactation of the gray short-tailed opossum,
milk contains lactose, oligosaccharides and monosaccharides, while tammar wallaby
milk contains monosaccharides as the only carbohydrates (Crisp, Messer ¢ VandeBerg,
1989; Messer ¢~ Green, 1979). In the potoroo early milk is mostly oligosaccharides and then
changes to lactose, galactose and glucose at 15 weeks post-partum (Crowley, Woodward ¢
Rose, 1988). Arboreal folivore milk has similar compositional changes in carbohydrates.
In the common brushtail possum lactose is the main carbohydrate, with traces of higher
oligosaccharides in early lactation (Crisp, Cowan ¢ Messer, 1989). During mid-lactation
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the carbohydrate portion of koala milk is dominated by oligosaccharides, while during
late-lactation it is dominated by lactose, similar to the common ringtail and brushtail
possums (Crisp, Cowan & Messer, 1989; Krockenberger, 1996; Munks et al., 1991).
Monotreme milk has a high fucose composition and the principal carbohydrate in
echidna milk is sialyl-lactose, and difucosyl-lactose in the platypus whereas these are
only minor carbohydrates in human milk (Messer, 1974; Messer ¢ Kerry, 1973).
In Tasmanian short-beaked echidnas (7. a. setosus) difucosyl-lactose was only detected in
late lactation (~150 days post hatching) (Oftedal et al., 2014). Lactose is present in
only trace amounts during early lactation in short-beaked echidna milk (Oftedal et al,
2014). It is hypothesized that fucose is the main energy source for young monotremes and
is comparable to galactose and glucose in eutherian mammals (Messer et al., 1983).
Sialyl-lactose found in monotreme milk is unique to the echidna and not found in any
other mammal milk (Messer, 1974; Oftedal et al., 2014).

Minerals (Electrolytes)

Comparatively less data are available on electrolytes compared to macronutrients in
marsupial and monotreme milk. Sodium and potassium levels are variable. Usually sodium
is found in higher concentrations than potassium in early lactation. There is an inverse
correlation with these two minerals in late lactation when potassium levels become higher
than sodium levels (Cowan, 1989; Merchant et al., 1989; Merchant et al., 1996). In the
red-necked wallaby, red kangaroo, and common ringtail and brushtail possums sodium
levels increase around the time of weaning just prior to lactation ceasing (Cowan, 1989
Merchant et al., 1989; Munks et al., 1991; Muths, 1996). Atypically American marsupials
show little change in sodium or potassium concentrations over the course of lactation
(Green, Krause & Newgrain, 1996; Green, Vandeberg ¢~ Newgrain, 1991). Sodium and
potassium concentrations of monotremes (means from 37 to 99 days postpartum in the
short-beaked echidna and unknown ages of platypus (Griffiths et al., 1984)) are within the
range observed in the brush-tailed bettong (Bettongia penicillata) in early lactation (day
55) (Merchant, Libke & Smith, 1994).

Generally iron concentrations show a decreasing trend during lactation in marsupial
and eutherian mammals (Loh ¢ Kaldor, 1973). Comparatively marsupial and monotreme
milk contain higher levels (>3x) of iron than eutherian species (Green, Merchant ¢
Newgrain, 1987; Griffiths, 1983; Kaldor ¢ Ezekiel, 1962). Marsupials and monotremes rely
on iron supplied in milk for hemoglobin, cytochromes, and myoglobin due to their
premature state at birth and prolonged need for milk (Griffiths, 1983). Due to the
underdeveloped stage of marsupial livers at birth they are unable to store as much iron as
eutherians and thus require higher levels from milk. Iron concentration in the milk can be
up to nine times the maternal plasma levels in marsupials (Kaldor ¢» Morgan, 1986).

In the common ringtail possum no clear trends for calcium and magnesium
concentrations are evident (Munks et al., 1991). In the red kangaroo calcium peaks in
mid-lactation and reduces after pouch emergence, whilst magnesium concentrations are
low relative to other electrolytes in the milk (Muths, 1996). In the Virginian opossum
calcium peaks in early lactation and stays high until 10 weeks post-partum and decreases
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in late lactation (Green, Krause ¢ Newgrain, 1996). Calcium and magnesium
concentrations of monotremes are similar to that in marsupials, however data are means
(from 37 to 99 days postpartum in the short-beaked echidna), and from unknown ages
of platypus (Griffiths et al., 1984), thus changes in these mineral concentrations cannot
be determined. In an insectivorous eutherian, the nine-banded armadillo (Dasypus
novemcinctus), calcium concentration increases (~x2.9) throughout lactation between 3
and 6 days postpartum and 49-51 days postpartum (Power et al., 2018), so it is possible
monotremes undergo similar increases to those of marsupials and eutherians however

more research is required.

Macronutrient energy

We applied nutritional geometry techniques to published data to assess the nutrition of
marsupial milk. Using the Atwater factors, protein 17 kJ/g, lipid 37 kJ/g, carbohydrate
16 kJ/g (Merrill &» Watt, 1973), composition of milk on a dry matter basis published data
were converted into a percentage energy basis and graphed to determine the percentage of
macronutrient energy contribution to milk at different times during lactation and
comparisons made across two species (Table S1). In the tammar wallaby and eastern quoll
protein contributes a less variable percentage of energy than carbohydrate and lipid,
remaining between 17% and 28% for both species (Fig. 1). In early lactation for both
species carbohydrate contributes a greater percentage of energy. Later in lactation closer to
weaning time, lipid contributes the most energy in milk of both species (Fig. 1). Higher
lipid energy would support young at a time of accelerated growth and development and
potential aid in fat storage.

Milk as sustenance for young

Growth of young is related to the quantity and quality of the milk produced and thus
higher intake leads to faster growth rates. In marsupials the body mass of young range
from 10 to 750 mg at birth (T'yndale-Biscoe, 2005), thus milk intake in early lactation is low
and increases exponentially. For example, quokka pouch young increase milk intake
from 1.6 mL d™" at 55 days postpartum to 32.5 mL d™ at 165 days postpartum (Miller,
Bencini ¢» Hartmann, 2010). Marsupial young grow at a rate of 0.2 to 0.5 g per mL of
milk consumed depending on species and age (Green, Merchant ¢ Newgrain, 1988;
Merchant, Libke & Smith, 1994; Merchant et al., 1996; Miller, Bencini ¢ Hartmann, 2010,
Munks & Green, 1997; Smolenski & Rose, 1988). The tammar wallaby grows at a rate

of 0.21-0.25 g mL™" during the first 24 weeks postpartum and then increases to

0.37 g mL™" after 25 weeks (Green, Merchant ¢ Newgrain, 1988). By comparison the
brush-tailed bettong grows at a rate of 0.51 g mL™" at 4-6 weeks postpartum and then
decreases to 0.40 g mL™" at 13 weeks (Merchant, Libke ¢ Smith, 1994). Differences in
growth rates during lactation are likely related to changes in energy composition of the
milk throughout lactation and other factors (see section on “Macronutrient Energy”).
As well as total milk intake, Smolenski & Rose (1988) suggested that protein intake from
milk caused differences in growth rates between two similar-sized marsupial species.
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Figure 1 Right angle mixture triangle of macronutrient composition of milk from the eastern quoll
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Short-beaked echidna young can suckle 10-20% of their body mass in 30-60 min
(Green, Griffiths & Newgrain, 1985; Griffiths, 1965). As lactation progresses frequency of
feeding young decreases in monotremes and the time the mother spends out foraging
for food increases (Morrow ¢ Nicol, 2012; Rismiller ¢» McKelvey, 2009; Thomas et al.,
2020). Green, Griffiths ¢» Newgrain (1985) estimated that echidna young grow at a rate of
0.41 + 0.10 g mL™" of milk consumed.

Maternal nutrition

Lactation is energetically costly for all mammals with energy needs ranging from 35% to
149% above maintenance costs for mothers (Gittleman & Thompson, 1988; Hayssen, 1993).
Marsupials have a long lactation period where significant changes occur to milk
composition, and for marsupial young, most growth occurs at this time. Thus, marsupial
mothers invest a significant proportion of energy towards milk production over a
longer period of time than comparatively-sized eutherian mammals, whereas eutherians
invest more in gestation. In the marsupials it appears that energetic needs increase
significantly in late lactation by 112-222% (Atramentowicz, 1992; Cork, 1991;
Krockenberger, 2003; Loudon, 1987; Stannard ¢ Old, 2015). Changes to maternal energetic
needs correspond to milk becoming more energy-rich and containing a higher lipid
concentration. In the eastern quoll 9-14 weeks postpartum, there is an energetic increase
to 200% that of non-lactating animals that coincides with an increase in milk production
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(Green, Merchant & Newgrain, 1997). During gestation and early lactation there are
minimal increases in the energetic needs of marsupial mothers (Atramentowicz, 1992;
Cork, 1991; Loudon, 1987). However, restricting maternal nutrition affects the nutritional
composition of milk produced by marsupial mothers (Green ¢ Merchant, 1988).

For example, bettongs fed on a restricted diet in captivity produced milk with a lower
protein content compared to those on an ad lib diet and free-ranging animals (Rose et al.,
2003). Access to lower quality forage caused eastern grey kangaroos to produce
lower-energy milk than mothers in a previous year that were also in better body condition
(Quesnel et al., 2017).

Some marsupial mothers contribute very little fat reserves towards lactation and rely on
current nutrient intake during lactation (Cork, 1991; Krockenberger, 2003; Loudon, 1987,
Stannard ¢ Old, 2015). In the wild, this has implications on survival of young, for
example if mothers cannot access the required nutrition for themselves, as well as their
young, they may have to abandon their young to be able to survive. One example is that red
kangaroos have a high mortality of young-at-foot and pouch young during times of
drought and poor quality food availability (Frith ¢» Sharman, 1964). When resources are
plentiful, marsupials that have multiple young at once will produce milk of the similar
quality/quantity for their litter no matter how many young they have, causing young in
smaller litters to grow faster (Atramentowicz, 1992; Stannard ¢ Old, 2015) and potentially
wean earlier. For the bare-tailed wooly opossum (Caluromys philander) having one young,
as opposed to eight, does not require a significant increase in energy intake, and thus
energy intake by mothers with one pouch young is no different to non-lactating females
(Atramentowicz, 1992). Northern brown bandicoots (Isoodon macrourus), and common
ringtail and brushtail possums appear to use body stores to cope with late lactation,
as well as increase their energy intake, similar to other marsupials (Bell, 1981; Merchant,
1990; Munks ¢ Green, 1995). The northern brown bandicoot stores body reserves in
the first 30-40 days of lactation then uses these stores in the latter half of lactation
(Merchant, 1990). It is suggested these stores are fat that can be mobilized when the
mothers require them for late lactation (Merchant, 1990). In the common ringtail possum
the body stores are possibly fat (Munks ¢» Green, 1995), however this has not been
investigated. Eastern grey kangaroos use both stored and incoming resources to cope with
the cost of lactation (Gelin et al., 2016; Quesnel et al., 2017). There is some indication that
short-beaked echidnas use body stores to support lactation (Griffiths, 1965; Morrow e
Nicol, 2012). Morrow ¢ Nicol (2012) found echidna mothers do not leave the nursery burrow
to feed during the first few weeks after the young have hatched, and subsequently lost
significant body mass, however their body mass increased again after leaving the burrow and
recommencing feeding. Platypus will consume up to 2,093 kJ kg™' d™! during lactation
which is 227% that of non-lactating females (Thormas et al., 2020). Like marsupials, there
seems to be minimal increases in energetic needs of female platypus in the first month of
lactation (Thomas et al., 2017; Thomas et al., 2020). More data is needed on maternal
nutrition from a wider range of marsupials and monotremes to understand how nutrient
demands change throughout lactation.
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Growth factors in milk

Milk not only provides essential nutrition required for development but also plays a role in
signaling growth and development in young (Donovan & Odle, 1994; Joss et al., 2009;
Kobata et al., 2008; Waite et al., 2005). The components that are not essential for nutrition
but used in cell and tissue growth are known as bioactives, and include proteins, peptides,
fatty acids, hormones and growth factors (Donovan ¢ Odle, 1994). The reader is
referred to Sharp et al. (2014) and Sharp et al. (2017) for comprehensive reviews of
bioactives in milk of marsupials and monotremes. Modepalli et al. (2015) and Modepalli
et al. (2016) found milk collected from tammar wallabies likely aids lung maturation.
Modepalli et al. (2014) also identified miRNA in tammar wallaby milk and found they act
as markers for lactation and mammary gland development in the mother and may aid
development of the young. Tammar wallaby milk contains exosomes that are likely

to be able to cross the neonatal gut and hence enter the bloodstream (Daly et al., 2007;
Old & Deane, 2003), therefore allowing miRNA within the milk to impact growth and
development (Sharp et al., 2014). Further, cross fostering studies in marsupials have shown
that when a younger marsupial neonate is placed onto a teat secreting later-stage milk,
the neonate will develop faster (Kwek et al., 2009; Waite et al., 2005), which is possibly due
to the differences in bioactives supplied in milk of different stages as well as a higher energy
content (Green ¢» Merchant, 1988).

Earlier studies of cross-fostering in marsupials, particularly cross-species, were trialed
over 60 years ago (Merchant ¢ Sharman, 1966), because of its potential as a conservation
tool, to remove the need for the donor species to continue lactation and support of the
newly born young, and allow subsequent mating, thus enhancing population numbers
through additional births (Druery et al., 2007; Finlayson et al., 2007). Most studies have
since been conducted on macropods (Clark, 1968; Johnson, 1981; Jones, Temple-Smith &
Taggart, 2004; Merchant & Sharman, 1966; Schultz, Whitehead ¢ Taggart, 2006; Taggart
et al., 2005), but other studies have investigated bettongs (Smith, 1998) and wombats
(Finlayson et al., 2007). Interspecies cross-fostering has had mixed success. Success has
been reported for pouch young transferred from wild bridled nailtail wallabies
(Onychogalea fraenata) and spectacled hare wallabies (Lagorchestes conspicillatus) to
captive unadorned rock wallaby (Petrogale inornata) mothers (Johnson, 1981), and for
pouch young transferred from wild brush-tailed rock wallaby (Petrogale penicillata) and
yellow-footed rock wallaby (Petrogale xanthopus) mothers to captive tammar wallaby
mothers (Taggart, Schultz ¢» Temple-Smith, 1997). However, Johnson (1981) has also
documented mortality and retarded growth after transfer of wild whiptail wallaby
(Macropus parryi) pouch young to agile wallaby (Macropus agilis) mothers, and Menzies
et al. (2007) has noted similar impacts on pouch young after transfer from parma wallabies
(Macropus parma) to tammar wallabies. Finlayson et al. (2007) has since suggested
synchrony of reproductive cycles, in both target and recipient species, is essential for
cross-fostering success.

A further protein (S100A19) has been identified in tammar wallaby neonatal
forestomach and expressed only when the neonate is exclusively digesting milk
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(Kwek et al., 2013). The same protein is expressed in the tammar wallaby mammary gland
tissue but is only expressed during pregnancy and involution (Kwek et al., 2013). It is
believed S100A19 is involved in gut development or plays an antibacterial role in both
the neonatal gut and the mammary gland (Kwek et al., 2013). A more recent and
comprehensive microarray study conducted on tammar wallaby mammary gland
expression at different lactation periods has found, despite many immunological-related
proteins being expressed during crucial developmental periods (Joss et al., 2009), that the
molecular expression of some genes were down regulated, and some genes varied
greatly in their levels of expression, such as SIM2 and FUTS, however their function in
lactation is yet to be determined (Vander Jagt et al., 2016).

Milk replacers
Milk replacers provide an alternative to maternal milk to raise young when the mother
cannot. The nutrient composition of milk varies among different species as discussed earlier.
For that reason, milk from one species is generally not suitable for another. Milk
replacers have been used for a variety of marsupials and a monotreme, including bare-nosed
wombats (Vombatus ursinus), Tasmanian devils (Sarcophilus harrisii) and the short-beaked
echidna (Jackson, 2003). Marsupials may require hand-raising when a mother rejects
their young, is unable to produce enough milk, or has died. It is recommended that
marsupials be fed milk with very low levels, or no lactose and galactose, hence eutherian milk
is not suitable. There are a range of commercially available milk replacers that have been
designed specifically to meet the needs of marsupials and monotremes that should be used.
Using data available on commercially available milk replacers, we mapped
macronutrient energy using the Atwater factors, protein 17 kJ/g, lipid 37 kJ/g and
carbohydrate 16 kJ/g. On a percentage energy basis milk replacers adequately replicate
carbohydrate and protein energy for most marsupial milks during mid-lactation but they
do not contain as much lipid as available in maternal milk (Fig. 2). Generally, the milk
replacers recommended for late lactation have higher lipid concentrations. In addition to
being used to raise young, milk replacers have been used as supplements for older
underweight animals, specifically koalas and bilbies (Macrotis lagotis), to help get animals
back into condition (Gamble ¢ Blyde, 1992).

Milk aids immunological defense of the young

As discussed previously marsupials and monotremes are born relatively under-developed
compared to eutherian mammals. Newborn marsupials have been compared to an eight
week old human fetus in terms of their developmental stage (Block, 1964), and are
unable to mount specific immune defense (Old ¢ Deane, 2000). At the time of birth,
the young marsupial crawls from the vagina to the teat and permanently attaches.

On attachment the teat swells in the neonate’s mouth and the mouth fuzes around the teat.
As the neonate is unable to mount a specific immune response shortly after birth, and
due to a lack of circulating mature lymphocytes (reviewed in Old ¢ Deane (2000)), the
young marsupial is believed to be highly reliant on maternally-derived strategies for
immune defense, including immunoglobulins transferred prenatally via the yolk-sac in
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some species (Deane, Cooper ¢ Renfree, 1990), immunological cells (Young et al., 1997),
and other immunologically important molecules in milk (Joss et al., 2009; Lefévre et al.,
2007).

Neutrophils in all stages of development have been found in tammar wallaby milk and
were the predominant cell type in colostrum and early stage milk of tammars and
long-footed potoroos (Potorous longipes) (Young et al., 1997), and late stage milk collected
from koalas (Young ¢ Deane, 2001). In contrast, lymphocytes were observed in early
and late stage tammar milk, but not in colostrum samples, and macrophages were only
found in late stage tammar and yellow-footed rock-wallaby (Petrogale xanthopus) milk
(Young et al., 1997). Basden, Cooper ¢ Deane (1996) found high levels of circulating
neutrophils in newborn tammar wallabies and these may have been maternally-derived
given the numbers in milk. Cockson & McNeice (1980) also suggested this method of
maternally-derived transfer of cells occurred across the neonatal quokka gut, as they noted
small and large lymphocytes in the milk supplied to young 12 days postpartum and
neutrophils in the milk of young 20 days postpartum.

Transplacental immunoglobulin(Ig) transfer although shown to occur in the tammar
wallaby (Deane, Cooper ¢ Renfree, 1990), does not occur in all marsupials, as evidenced by
a lack of circulating Ig in newborn Virginian (Hindes ¢» Mizell, 1976) and gray short-tailed
opossums (Samples, Vanderberg ¢ Stone, 1986). Ingested Igs have been detected in the
serum of common brushtail possums (and quokka) in the switch phase of lactation
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(up until at least 98 days), but not in the late phase of lactation (150 days) (Yadav, 1971),
however no pouch young younger than 40 days postpartum were examined. Further,
although the concentration of IgG in colostrum is low in the tammar wallaby and hill
kangaroo (Macropus robustus), after suckling the level of IgG in the serum of the

young dramatically increases, suggesting passive uptake of IgG from the colostrum
(Deane, Cooper & Renfree, 1990; Deane ¢ Cooper, 1984).

Early milk contains colostrum, a protein-rich substance with high levels of Igs, as well as
proteins important for transport, nutrition and immune protection (Joss et al., 2007).
IgA has been detected in the early phase of tammar wallaby (Deane, Cooper ¢» Renfree,
1990) and common brushtail possum (Adamski ¢» Demmer, 1999) lactation. Expression of
IgA, the J-chain, responsible for the dimeric formation of IgA, and polymeric Ig receptor
(PIGR), the molecule responsible for transferring the IgA complex through epithelial
cells, have been reported in the common brushtail possum mammary gland at all stages of
lactation. However IgA and J-chain expression was heightened during the first week of
lactation and towards the end of the switch phase, when the young marsupial first leaves
the pouch, and PIGR expression was similar in its expression levels except that it remained
high after the end of the switch phase until lactation ended (Adamski & Demmer,

1999). Thus, IgA appears important for immune protection of the young during the early
neonatal period and at the time of pouch exit (Adamski ¢» Demmer, 1999). Further,
Adamski & Demmer (2000) reported two distinct stages during common brushtail possum
lactation when immune transfer was increased, these being the early lactation and switch
phases. Expression of FCRN, responsible for regulating IgG in milk, is also highest
during the early lactation phase and decreases over time, whereas, f-2-microglobin
increases during the switch phase when IgG secretion from the mammary gland is highest
(Adamski, King ¢ Demmer, 2000).

More recently, Fehrenkamp, Morrissey ¢ Miller (2019) demonstrated a correlation
between FcRN expression in the mammary of lactating gray short-tailed opossums with
FcRN expression in the gut of the neonates. As expression declined, presumably to reduce
maternal IgG transfer as the young matured, there was concomitant reduction in
expression in the gut of the suckling young. The timing of this decline correlates also with
the maturity of the neonatal immune system and the appearance of endogenous IgG in
the neonate (Wang, Sharp & Miller, 2012). These observations are consistent with reducing
transfer of maternal IgG timed with the newborn developing its own ability to respond to
pathogens and generate active protective immunity and less dependance on passive
maternal immunity. Furthermore, there is little evidence of resident, IgG producing B cells
in opossum mammary tissue, suggesting that the IgG being transferred is from
maternal circulation. In contrast there are resident IgA producing B cells in the opossum
mammary (Fehrenkamp, Morrissey ¢ Miller, 2019).

As stated earlier in this review total protein was highest in the late phase of lactation
in the tammar wallaby (Green, Newgrain & Merchant, 1980; Green ¢» Renfree, 1982).
Proteins of primary immunological importance include Igs, myeloid cathelicidin and
complement component B, whilst other components may provide secondary levels of
protection such as very early lactation protein (VELP) (Joss et al., 2009). VELP has also
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been identified in common brushtail possum (Kuy et al., 2007) and koala (Johnson et al.,
2018) milk. VELP may play a role against bacterial colonization of the mucosal surfaces
of the gastrointestinal tract (Joss et al., 2007). MM1 has also recently been identified in
the koala genome and suggested to have antimicrobial properties (Johnson et al., 2018).
Other proteins are involved in nutrition, for example B-lactoglobin, and development such
as retinal A and a-fetoprotein (Joss et al., 2009).

Monotremes express a unique monotreme lactation protein (MLP) in a variety of
tissues including milk, with the highest expression occurring in milk cells (Enjapoori et al.,
2014). Analysis of the recombinant protein shows it is N-glycosylated, amphipathic
and a-helical, and therefore typical of an antimicrobial protein (Enjapoori et al., 2014;
Newman et al., 2018). Functional studies have confirmed the recombinant protein has
antimicrobial properties against Staphylococcus aureus and a commensal bacteria,
Enterococcus faecalis (Enjapoori et al., 2014). Further antimicrobial proteins have also been
found in echidna (EchAMP) and platypus (PlatAMP) milk (Bisana et al., 2013; Enjapoori
et al., 2014), and shown to have bacteriostatic properties against Gram positive and
negative bacteria but not Enterococcus faecalis (Bisana et al., 2013).

Cathelicidins, a type of antimicrobial peptide, found in most vertebrates are also
produced by marsupials (Carman et al., 2009, 2008; Johnson et al., 2018) and have been
identified in milk (Daly et al., 2008; Wanyonyi et al., 2011). Warren et al. (2008) have also
identified cathelicidins (Whittington et al., 2008a, 2008b) and defensins in the platypus
genome, and Whittington et al. (2009) in the tissues (brain, kidney, liver, lung, spleen and
testis), but did not find cathelicidins or defensins in platypus milk.

Nicholas et al. (1997) described the changes in composition of whey proteins in tammar
wallaby milk throughout lactation and correlated these with the different stages of
lactation. Joss et al. (2009) also described the protein components of whey over the four
lactation periods (phase 1 (early), 2A and 2B (switch phase) and 3 (late)) of the tammar
wallaby and correlated the changes in protein content to the changes in developmental
stages of the newborn marsupial. Whey acidic protein four- disulfide domain protein-2, for
example, is increased in pregnancy, high in phase 2A, downregulated in phase 2B,
upregulated again at the end of phase 3 and high in involution (Watt et al., 2012), and has
been shown to have antibacterial activity against a range of pathogenic bacteria but not
Enterococcus faecalis. The increased levels of expression at these times correlate to the
time at which the mammary gland is most at risk of infection (Daly et al., 2007). The time
of increased expression is also likely to provide the young with additional immune
protection whilst they are developing immunocompetence and unable to mount their own
immune specific response (Old ¢ Deane, 2000).

Studies investigating gene expression in tammar wallaby mammary gland tissue using
expressed sequence tags has found increased expression of genes over the period of
lactation, particularly secreted proteins (Lefevre et al., 2007). These proteins were involved
in translation, and metabolic and immune functions (Lefevre et al., 2007). Piotte et al.
(1997) also confirmed the presence of lysozyme, an antimicrobial enzyme, and found its
protein structure to be similar to bovine stomach lysozymes and primate lysozymes, but
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different to calcium-binding lysozymes in the echidna (Kikuchi, Kawano ¢ Nitta, 1998;
Teahan et al., 1991) and horse (McKenzie ¢ Shaw, 1985).

CONCLUSIONS

Milk is essential for marsupial and monotreme sustenance and development. Nutrient
changes in marsupial milk are very pronounced. Although data on nutrient changes
throughout lactation is available for some marsupial species, there is limited data available
for monotremes. Additional information on the changes in macronutrient composition
of monotreme milk would allow for a better understanding of those features that are
ancient and conserved among mammals versus those that are unique to individual
mammalian lineages.

Noteworthy, from the literature, are the changes that maternal energy requirements
undergo during late lactation, when maternal energy requirements can increase by 222%
above basal. The increased energy needs correspond to when milk becomes more lipid
rich. Maternal food intake and sex of offspring correlates to differences in milk
macronutrient concentration.

Commercially available milk replacers provide a substitute for maternal milk. Replacers
have been developed that replicate the macronutrient composition of marsupial and
monotreme milk for captive rearing of young. What remains lacking is a greater
understanding of milk composition at different stages of development for specific species.
Such will aid conservation of those species through provision of milk more closely
resembling that of mothers throughout development.

Whilst a good body of research exists for the role of milk in some specific marsupials,
further research is required to address the role of a range of factors present in milk
and their direct effect on newborns from a broader range of marsupial and monotreme
species. It is also clear that the wide and varied definitions of the different stages and phases
of milk production that it hinders comparison between many of the studies on marsupials.
Conservation of marsupials and monotremes would also benefit from furthering our
understanding of their species-specific biology.
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