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Abstract
The ability to accurately gauge the body condition of free-swimming cetaceans is 
invaluable in population and conservation biology, due to the direct implications 
that this measure has  on individual fitness, survival, and reproductive success. 
Furthermore, monitoring temporal change in body condition offers insight into for-
aging success over time, and therefore the health of the supporting ecosystem, as 
well as a species’ resilience. These parameters are particularly relevant in the context 
of widespread and accelerated, climate-induced habitat change. There are, however, 
significant logistical challenges involved with research and monitoring of large ce-
taceans, which often preclude direct measure of body condition of live individuals. 
Consequently, a wide variety of indirect approaches, or proxies, for estimating ener-
getic stores have been proposed over past decades. To date, no single, standardized, 
approach has been shown to serve as a robust estimation of body condition across 
species, age categories, and in both live and dead individuals. Nonetheless, it is clear 
that streamlining and advancing body condition measures would carry significant 
benefits for diverse areas of cetacean research and management. Here, we review 
traditional approaches and new applications for the evaluation of cetacean energetic 
reserves. Specific attention is given to the criteria of measure performance (sensitiv-
ity and accuracy), level of invasiveness, cost and effort required for implementation, 
as well as versatility e.g. applicability across different species, age groups, as well 
as living versus deceased animals. Measures have been benchmarked against these 
criteria in an effort to identify key candidates for further development, and key re-
search priorities in the field.
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1  | INTRODUC TION

The Body Condition (BC) of an animal is defined as the “relative 
size of its energy reserves” (Gosler, 1996; Krebs & Singleton, 1993; 
Schulte-Hostedde, Millar, & Hickling,  2001; Schulte-Hostedde, 
Zinner, Millar, & Hickling, 2005). BC is an important measurement 
of individual fitness, reflecting the balance between energy intake 
and total energetic investment (Green, 2001; Peig & Green, 2010; 
Schamber, Esler, & Flint, 2009).

Major energetic investments by mammals include courtship 
and mating, reproduction, lactation, and parental care, as well 
as migration or hibernation in certain species. Suboptimal BC 
in cetaceans has been shown to impact an individual's ability to 
fulfill these roles. Clear links have been observed between ceta-
cean maternal BC and maternal investment and reproductive out-
put (IWC,  2001; Lockyer & Waters,  1986; Williams et  al. 2013). 
For example, low food availability, and consequently poor BC in 
killer whales (Orcinus orca), fin whales (Balaenoptera physalus), and 
southern right whales (Eubalaena australis) have been correlated 
with reduced calf numbers (Lockyer,  2007b; Ward, Holmes, & 
Balcomb, 2009; Williams et al. 2013; Seyboth et al., 2016). Further, 
negative repercussions of suboptimal maternal BC have been 
shown to be carried forward to the offspring. For instance, sub-
optimal maternal BC was observed to be associated with reduced 
fetal growth in fin and minke whales (Balaenoptera acutorostrata) 
(Lockyer, 2007a). Similarly, slower calf growth rate was observed 
in southern right whales and humpback whales (Megaptera novae-
angliae) in response to lower maternal BC (Christiansen, Dujon, 
Sprogis, Arnould, & Bejder,  2016; Christiansen, Víkingsson, 
Rasmussen, & Lusseau, 2014; Christiansen et  al.,  2018). A lower 
calf birth and growth rate carries significant consequences for 
the viability and survival of offspring. In adults, individual BC not 
only affects female reproductive success, but also that of males. 
Higher energy reserves provide an advantage when defending or 
fighting for access to receptive females (Forsyth, Duncan, Tustin, 
& Gaillard,  2005; Lane, Boutin, Speakman, & Humphries,  2010; 
Toïgo, Gaillard, Laere, Hewison, & Morellet, 2006). Finally, in mod-
eling studies, it is suggested that individual BC is an important 
predictor of behavior. Specifically, individuals with low energy re-
serves may be forced to increase their foraging effort, which could 
lead them to take greater risks, through, for example, greater 
predator exposure (Frid & Dill, 2002; Miller & Hall, 2012).

The direct repercussions of BC on individual and offspring fit-
ness elevate the importance of effective BC evaluation for many 
areas of cetacean research and monitoring (Ryser-Degiorgis, 2013). 
Additionally, as population BC is reflective of a population's for-
aging success, it can be indicative of ecosystem productivity, and 
over time, change (Braithwaite, Meeuwig, Letessier, Jenner, & 
Brierley, 2015; Harwood et al., 2015). As such, the role of BC as a 
sentinel parameter in ecosystem monitoring is receiving increased 
attention (Bengtson Nash et al., 2017; Tartu et al., 2017).

Evaluating the BC of marine mammals, particularly free-swimming 
cetaceans, however, presents a unique suite of logistical challenges 

(Ball et  al.,  2017; Iverson, Sparling, Williams, & Shelley,  2010). 
Cetaceans spend the majority of their time under the water sur-
face, and therefore obscured from sight, and with limited accessi-
bility. While small cetaceans may be restrained temporarily, either in 
the wild or in captivity, the effort requires complex logistics in light 
of the highly mobile nature of these species. These challenges are 
magnified when targeting notoriously shy species, those occupying 
remote habitats, or critically endangered species. The high level of 
stress generated to the animal through capture warrants significant 
ethical considerations which, in the case of the latter, may preclude 
research permit allocation. As for larger cetaceans, their size and 
associated dangers of close interaction, preclude even temporary 
capture or restraint (Hunt et al., 2013).

Despite these challenges, the informative and predictive power 
of the BC parameter, have led to the development of a great number 
of techniques for quantitative estimation of BC in cetaceans. In the 
context of routine environmental monitoring, an ideal BC measure 
should be (1) sufficiently sensitive to ascertain differences in BC be-
tween individuals of the same species, as well as differences within 
individuals over time. The measure should further be, (2) Nonlethal, 
(3) inexpensive, both in terms of time and direct monetary costs, fa-
cilitating greater sample numbers. Finally, (4) the versatility of the 
measure in terms of its application to different categories, such as 
dead versus live individuals, carries consequences for the value and 
longevity of research and monitoring outputs derived with the BC 
measure. The following is an overview of published approaches, crit-
ically reviewed according to these four criteria.

2  | BLUBBER ME A SURES

Lipids, proteins, and carbohydrates are different forms in which 
mammals store energy. Lipids, with a higher energy density, are 
used as long-term storage, while carbohydrates cover short 
term energy needs (Castellini & Rea,  1992; Hall et  al.,  2012; 
Robbins,  2012). Lipids represent the largest energy store. In ce-
taceans, lipid is primarily stored in the blubber tissue, a critical 
component of mammalian adaptation to the aquatic environment 
(Iverson & Koopman, 2018; Koopman, Pabst, McLellan, Dillaman, 
& Read,  2002). Aside from lipid storage (Ackman, Hingley, 
Eaton, Sipos, & Mitchell,  1975b; Iverson,  2002; Lockyer,  1987b; 
Parry, 1949), blubber also serves a multitude of physiological func-
tions related to body hydrodynamics, water balance, buoyancy, 
and thermal insulation (Fish,  2000; Iverson & Koopman,  2018; 
Koopman et al., 2002; Ryg, Smith, & Øritsland, 1988). While some 
visceral lipid storage does occur (Víkingsson, 1995), the vast ma-
jority of lipids are stored in the blubber (Ackman, Hingley, Eaton, 
Sipos, et  al.,  1975; Iverson,  2002; Lockyer,  1987b; Parry,  1949). 
As such, the relative contribution of blubber to body mass is 
considered a reliable indicator of BC (Aguilar, Borrell, & Gómez-
Campos,  2007), and many methods have used this relationship 
for evaluating BC in cetaceans. Blubber-metric methodologies 
are based on the inferred relationship between blubber volume, 
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or blubber lipid content, and overall BC (Hanks,  1981; Schulte-
Hostedde et al., 2005). Key categories and approaches are outlined 
below.

2.1 | Blubber mass

The most direct measure of blubber energy reserves is quantifica-
tion of blubber mass, which is obtained through weighing of flensed 
blubber. This technique originates from commercial whaling, where, 
among other data, blubber mass was routinely obtained. The method 
has also been applied to incidentally caught and stranded animals and 
has provided useful baseline physiological information. For example, 
a study on harbour porpoises (Phocoena phocoena) killed incidentally 
during commercial fishing operations showed that the relationship 
between blubber mass and body size correlates with variation in BC 
among reproductive classes (Read,  1990), highlighting that calves 
and immature individuals were thinner than mature females. A simi-
lar study on incidentally caught franciscanas (Pontoporia blainvillei) 
found that blubber mass measurements strongly correlated with 
age class (Caon, Fialho, & Danilewicz, 2007). Today, a modification 
of the direct blubber mass approach is still used in whaling opera-
tions such as the Japanese Whale Research Program under Special 
Permit in the Antarctic (JARPA). This program uses “Fat weight” 
(blubber weight + visceral fat) of harvested Antarctic minke whales 
(Balaenoptera bonaerensis) as a BC indicator. Published reports from 
this program have evidenced an apparent decline in BC of harvested 
animals over two decades, with authors attributing the trend to re-
duced krill availability (Konishi et al., 2008).

Although blubber mass is the most direct quantification available 
for BC, it does not account for lipid content as a key measure of 
blubber quality. Total mass may reflect connective tissue and water, 
which have no bearing on BC. Additionally, blubber mass can only 
be applied to dead animals. While its application on stranded and 
incidentally killed animals may be valuable, harvesting animals for 
this purpose is usually in ethical conflict with research and moni-
toring agendas (Bateson,  1986; McMahon, Harcourt, Bateson, & 
Hindell, 2012; Waugh & Monamy, 2016). Furthermore, the technique 
is not without major logistical limitations. Dealing with a cetacean 
carcass is not an easy task, and as the animal size increases, spe-
cialized platforms and equipment become necessary (Lockyer, 1976).

2.2 | Blubber thickness

A more accessible alternative to blubber mass is blubber thickness, 
which has also been used as a reflection of BC (Lockyer,  1987b; 
Víkingsson,  1995). Different methodologies have been developed 
based on this approach, and depending on the techniques applied, 
may provide a direct or indirect measure. Multiple site measures are 
advocated for better representation, as it is well known that blub-
ber thickness is not homogenous across the body surface (Lockyer, 
McConnell, & Waters, 1984). As it not always is possible to take the 

measurement in different places of the same animal, particularly 
when working with free-swimming individuals, it has been advo-
cated that the measurement site be standardized to a site where the 
blubber is most variable (Lockyer, McConnell, & Waters, 1985b). In 
baleen whales, the dorso-ventral region, posterior to the dorsal fin, 
represents the region of most variable blubber thickness and thus a 
good location for obtaining a measure correlative with total blubber 
mass (Aguilar et al., 2007; Konishi, 2006; Lockyer, 1987b). In smaller 
odontocetes, data suggest that this area corresponds to the anterior 
ventral region (Koopman, 2007; Zeng, Ji, Hao, & Wang, 2015).

2.2.1 | Direct measurement

Direct measurement of blubber thickness is carried out by cutting 
through the skin and blubber down to the muscle and measuring the 
full depth of the blubber. In its traditional application, it can only be 
applied to stranded or  harvested animals, or on small cetaceans that 
are temporarily restrained for surgical biopsy (Montie et al., 2008). 
Notably, direct measurement is more reliable on fresh carcasses due 
to normal postmortem decomposition changes (Zeng et al., 2015), 
which holds true for all approaches. Surgical biopsy is highly inva-
sive when applied to live animals, not only because of the degree 
of stress inflicted  when restraining the animal but also due to the 
surgical wound caused by the procedure, which  have been observed 
to take a longer time to heal than wounds inflicted by remote biopsy 
(Weller et al. 1997).

Aside from ethical and logistical considerations, the accuracy of 
blubber thickness measurements may be impacted by the inherent 
loss of tension in the collagen matrix of the blubber tissue that oc-
curs upon incision (Aguilar et  al.,  2007). Blubber tissue is a highly 
organized biocomposite, comprised of adipocytes in a three-dimen-
sional matrix of collagen and elastin fibers that maintain tissue ten-
sion (Toedt,  2001). Once the tissue is cut, it expands leading to a 
small but measurable increase in thickness (Aguilar et al., 2007). The 
degree of this increase may, in turn, be impacted by the tissue adi-
pocyte/collagen proportion. Without factoring in this incremental 
change, and how it varies as a function of animal age and sampling 
season, it becomes difficult to investigate BC via this approach with 
any great confidence beyond its use as a relative measure between 
individuals.

2.2.2 | Indirect measurements

Ultrasound measurement
Ultrasound technology has provided an alternative way to meas-
ure blubber thickness, which has been shown to correlate with 
direct measurements (Cartee, Gray, John, & Ridgway,  1995; Zeng 
et al., 2015). It relies on the concept of sound traveling at different 
speeds through tissues of different density (Curran & Asher, 1974). 
This method has been more widely used in pinnipeds (Gales & 
Burton, 1987; Noren et al., 2015), for its ease of application when 
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the animals are on land and can be immobilized. In cetaceans, it has 
been used on both stranded and free-swimming animals. In stranded 
animals, it has the advantage of reducing the loss of lipids and tis-
sue tension that occurs during necropsy. Additionally, it provides 
fast and valuable information on the distribution and structure of 
fat, enabling, for example, the identification of the different blubber 
layers present according to species type (Zeng et  al.,  2015). Also, 
for improved accuracy, as advocated with direct measures, measure-
ments can easily be taken from different parts of the body.

In captive or free-swimming cetaceans that can be temporarily 
restrained, the technique is similarly reliable. A mean measure-
ment bias of 0.20 cm between ultrasound and direct measurement 
by ruler was reported in beluga whales (Delphinapterus leucas) 
(Cornick et al., 2016). The method has been successfully applied 
to captive harbour porpoises (Kastelein et  al. 1995), bottlenose 
dolphins (Tursiops truncatus) (Cartee et  al.,  1995) and trialed on 
a single juvenile of a gray whale (Eschrichtius robustus) (Curran & 
Asher, 1974). The ideal scenario of restraining the animal for ac-
curate measurements, however, limits its application to smaller 
cetaceans. Transfer of the technique to larger, free-swimming ce-
taceans has, however, been attempted. For example, boat-based 
ultrasound measurements were performed on free-swimming 
right whales (Miller et al., 2011; Moore et al., 2001). Investigators 
noted both the need for further standardization of the protocol re-
garding sampling position on the body of the animal, as well as the 
difficulties associated with the operation of ultrasound equipment 
under boat-based conditions (Moore et al., 2001). Advancements 
in the field of ultrasonography since this publication, including re-
duction in the size of ultrasound equipment, are helping to over-
come the latter.

The above-outlined blubber measures share common strengths 
and limitations. While the relevance of blubber in the study of ceta-
cean BC is clear, the literature concerning the relationship between 
blubber thickness with BC is often conflicting and may vary between 
species, and within individuals over time (Aguilar et al., 2007; Caon 
et al., 2007; Dunkin, McLellan, Blum, & Pabst, 2005; Evans, Hindell, 
& Thiele, 2003; Gómez-Campos, Borrell, & Aguilar, 2011; Kershaw, 
Brownlow, Ramp, Miller, & Hall, 2019; Read, 1990). A nonlinear re-
lationship between BC and blubber thickness is driven by a number 
of factors. For example, lipid deposition and mobilization processes 
to and from lipid storage sites are highly dynamic and dependent 
upon the energetic state of the individual (Cropp, Bengtson Nash, & 
Hawker, 2014). If we consider that there is a succession to the dy-
namic, with visceral fat suggested as being more mobile than blubber 
stores; the “first in, first out” of energy stores (Lockyer et al., 1985a; 
Niæss, Haug, & Nilssen, 1998); then it is given that the overall BC 
blubber thickness relationship is only linear in a narrow range. That 
is, that significant lipid energy depletion can occur in a very good BC 
individual, without noticeable change in blubber thickness.

The ancillary role of blubber in thermoregulation further   con-
founds the BC-blubber thickness relationship. The surface area 
to volume ratio and the  thermal environment, determine the heat 
loss of an individual (McLellan et al., 2002; Worthy & Edwards, 1990). 

To cope with varying thermal regimes, cetaceans may adapt the in-
sulative properties of the blubber tissue; both blubber quantity 
(thickness) and blubber quality (lipid content) (Dunkin et al., 2005; 
Kvadsheim, Folkow, & Blix, 1996; Worthy & Edwards, 1990). In light 
of such confounding factors, alternate or supporting BC measures to 
blubber thickness are advocated in lieu of species-specific investiga-
tion of the relationships.

2.3 | Blubber lipid content

A change in the overall energy stores of cetaceans is reflected not 
only in the thickness of the blubber tissue, but also the composi-
tion of the blubber tissue, particularly its lipid content (Aguilar & 
Borrell, 1990). As such, the lipid content of blubber has been pro-
posed as a measure of BC in cetaceans (Aguilar & Borrell,  1990; 
Krahn et al., 2001).

Quantification of total blubber lipid content is feasible only 
for carcasses and has its origin in the whaling industry where 
“oil yields” were measured. Most recently,   historical   measures 
from humpback and sperm whales (Physeter macrocephalus) (Irvine, 
Thums, Hanson, McMahon, & Hindell, 2017) were used to  , draw 
links between the interannual BC, as interpolated from annual 
oil yields, and krill densities in the corresponding Antarctic feed-
ing grounds of the population (Braithwaite et  al.,  2015). Despite 
the valuable information gained from this data, comparisons and 
conclusions must be made with caution because of the inconsis-
tency of sample type; some sets of data refer to the amount of 
oil extracted exclusively from the blubber, whilst others   report 
oil extracted from the entire carcass. The data also differ in the 
way in which the oil yield was recovered. For instance, some re-
cords were detailed enough to report the oil yield at an individual 
level; however, as the industry grew, oil yields were reported as 
e.g.  weekly tallies. Finally, falsification of whaling data is widely re-
ported throughout history, and caution must be taken when inter-
polating quantitative measures from these forms of data (Clapham 
& Ivashchenko, 2018).

Total blubber lipid content measures can inherently only be ob-
tained from dead animals, and this approach shares the afore-men-
tioned logistical limitations associated with quantification of blubber 
mass. An adaptation of the technique whereby lipid percent by 
blubber mass is determined, has, however, been routinely used as 
an indicator of BC. As the approach requires only a small blubber 
sample, it can be applied to both dead and free-swimming ani-
mals (Beck, Smith, & Hammill, 1993; Kershaw et al., 2019; Shier & 
Schemmel,  1975; Stirling, Thiemann, & Richardson,  2008). While 
necropsy of dead individuals provides greater access to blubber 
tissues of varying depth, body location, and samples size, samples 
from free-swimming individuals are readily obtained through re-
mote biopsy. The use of biopsy darts for the remote collection of 
tissue samples from free-swimming cetaceans has gained popularity 
in the recent past due to the nonlethal and minimally invasive na-
ture of the method (Noren & Mocklin, 2012). For most research and 
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monitoring efforts, remote biopsy samples from presumably healthy 
animals are preferred over samples collected from stranded individ-
uals as stranded individuals often represent the very young, old or 
diseased animals and are therefore  not representative of the overall 
population (Aguilar, Borrell, & Pastor, 1999; Krahn, Herman, Ylitalo, 
Sloan, & BURROwS D.G., Hobbs R.C., Mahoney B.A., Yanagida G.K., 
Calambokidis J. & Moore S., 2004a).

Blubber  lipid quantification involves extraction of lipids from a pre-
weighed blubber sample (Varanasi et al., 1994). As lipid content is also 
an important factor in other areas of cetacean research, such as eval-
uation of lipophilic contaminant burdens, its advantage is that it is al-
ready widely integrated into many monitoring programs. Nevertheless, 
as with blubber thickness, information derived via the lipid % measure 
with regard to BC is often conflicting. While Bengtson Nash, Waugh, 
and Schlabach (2013a) found a significant reduction in outer blubber 
lipid % between fed and fasted cohorts (n = 58) of adult, male, southern 
hemisphere humpback whales, paired morphometric UAV measures 
and outer blubber lipid % measures of 9 mixed gender adults and 16 
mixed-gender juveniles did not show a linear relationship (Christiansen 
et al.2020). Similarly, Evans et al. (2003) found no correlation between 
blubber thickness and blubber lipid content of stranded sperm whales 
(n = 108). Most recently, Kershaw et al.  (2019) found no correlation 
between lipid content and blubber thickness of stranded humpback 
whales (n = 3), sowerby ś beaked whale (Mesoplodon bidenis) (n = 4), 
cuvier ś beaked whales (Ziphius cavirostris) (n = 2) nor northern bottle-
nose whale (Hyperoodon ampullatus) (n = 2).

The major weaknesses of the blubber lipid % measure relate 
to blubber stratification, specifically the outer blubber layer, as well 
the high level of variability introduced through sample acquisition 
and lipid analysis. Blubber is a complex tissue and is not homogenous 
throughout its depth in neither composition of function (Koopman, 
Iverson, & Gaskin, 1996b; Krahn, Herman, Ylitalo, Sloan, Burrows, 
et al., 2004). The outer blubber layer, in particular, serves a number 
of ancillary functions aside from lipid storage. These include ther-
moregulation, buoyancy, water balance, and locomotion (Koopman 
et  al.,  2002; Montie et  al.,  2008; Ryg et  al.,  1988; Strandberg 
et  al.,  2008). It is given, therefore, that there exists a limit to the 
amount of lipid that may be lost from this layer without jeopardizing 
these ancillary functions, and therefore individual survival (Evans 
et al., 2003; Gómez-Campos et al., 2011; Waugh, Nichols, Noad, & 
Bengtson Nash, 2012; Noren et al., 2015; Ball et al., 2017; Castrillon 
et al. 2017; Bengtson Nash, 2018b). All measures targeting the outer 
blubber layer thus share what we have termed the Outer Blubber 
Layer Threshold limitation that may be summarized as a resistance to 
loss of maintainance lipids from this layer across normal BC ranges.

While in some cetaceans, such as bottlenose and common dol-
phins (Delphinus delphis), harbour porpoise, sei whales (Balaenoptera 
borealis), and fin whales, blubber is stratified in well-defined lay-
ers (Ackman, Hingley, Eaton, Logan, & Odense,  1975a; Aguilar & 
Borrell, 1990; Koopman et al., 1996a, 2002; Lockyer et al., 1984; 
Montie et al., 2008; Samuel & Worthy, 2004), in other species in-
cluding humpback and bowhead whales (Balaena mysticetus), the 
transition between outer to inner blubber is gradual (Ackman, 

Hingley, Eaton, Logan, et  al.,  1975; Ball et  al.,  2015; Elfes,  2008; 
Waugh, Nichols, Schlabach, Noad, & Bengtson Nash,  2014). The 
inner layer is thought to be the most metabolically active, in terms 
of lipogenesis and lipolysis (Olsen & Grahl-Nielsen,  2003) with a 
fatty acid composition that is strongly affected by most recent 
lipid mobilization/deposition processes. Adipocytes in this layer 
are high in number but often small in size. The middle layer is used 
for lipid storage, with often larger but fewer adipocytes (Koopman 
et  al.,  2002; Montie et  al.,  2008; Ryg et  al.,  1988; Strandberg 
et al., 2008).

Error and variability of blubber lipid% measures introduced 
through sampling relate to uncertainty regarding the blubber layer 
captured, as well as lipid loss through excision. Uncertainty regard-
ing blubber layer is easily controlled during necropsy where visual 
and biochemical assessment of the full blubber layer is possible. 
On the other hand, remote biopsy leaves substantial room for un-
certainty. Not only does the biopsy penetration depth depend on 
factors such as the dart head used, the pressure and angle with 
which the dart penetrates the tissue, but little is ever known re-
garding what proportion of the total blubber tissue, the sample 
portion represents.

As soon as blubber is cut, lipid will leak from the tissue. The error 
that this lipid loss introduces to lipid % calculations will depend on 
both the size of the tissue sample used for lipid analysis,  with smaller 
sample masses yielding a higher proportional error, as well as the effi-
ciency of tissue processing upon collection, for example the duration 
of  submersion in seawater, and until storage.  Studies have shown 
that blubber lipid content from remotely biopsied tissues was not 
representative of directly harvested blubber tissue (Krahn, Herman, 
Ylitalo, Sloan, Burrows, Hobbs, Mahoney, Yanagida, & Calambokidis, 
& Moore, 2004; McKinney et al., 2014; Ryan, McHugh, O’Connor, & 
Berrow, 2013). A difference of up to 44% in lipid content was found 
between comparable samples taken by biopsy and excised using a 
scalpel in fin whale blubber (Ryan et al., 2013).

Finally, the lipid % measure has been derived  from a wide variety 
of, frequently unspecified, analytical protocols used for lipid extraction. 
Typically, some variation of a chloroform–methanol solvent extraction 
is used (Bligh & Dyer, 1959; Budge, Iverson, & Koopman, 2006; Folch, 
Lees, & Sloane-Stanley, 1957; Smedes, 1999). Occasionally, however, 
stronger solvent mixes, such as hexane, acetone, and dichloromethane 
are used for extraction (Casa et al. 2019). All the lipid content mea-
sures assume first that the lipid % of a blubber sample is representative 
of the body region from where it was obtained, and second, that the 
extraction method efficiently strips all, and only, lipids from the blub-
ber (Ryan et al., 2013). Cruder extraction methods will strip additional 
organic material from the tissue, representing a  methodological error 
and introducing inter-study variability.

2.4 | Blubber trunk lipid mass (BTLM)

Blubber trunk lipid mass (BTLM), a hybrid measure of blubber mass 
and lipid content, has been proposed as an index for blubber mass 
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(Gómez-Campos et al., 2011). The trunk of many cetaceans is a region 
of highly dynamic lipid deposition and mobilization (Lockyer, 1987a), 
and hence a body region more likely to reflect a linear change in re-
sponse to BC. BTLM is derived by considering the total amount of 
lipid stored in the trunk blubber mass, and it is calculated by the fol-
lowing formula:

A study on striped dolphins (Stenella coeruleoalba) showed that 
the BTLM measurements exceeded the accuracy for blubber lipid 
content assessments (Gómez-Campos et al., 2011). The major lim-
itation of this measure is the fact that it is only applicable to dead 
animals and only individuals and species  of a manageable size.

2.5 | Adipocyte metrics

The measurement of relative adipocyte volume has been proposed 
as a proxy of BC. While adipocyte histology has previously been 
used to make BC evaluations in, for example, harbour porpoises 
(Koopman et al., 2002), an effort has recently been made to develop 
a standardized approach (Castrillon et al. 2017). The concept behind 
using adipocyte area or volume as a proxy for BC lies in the fact that 
very early on in mammalian development, the number of adipocyte 
cells is set so that a change in BC will be reflected in an increase or de-
crease in adipocyte volume, as opposed to adipocyte number (Faust, 
Johnson, Stern, & Hirsch, 1978). The original approach measured the 
adipocyte area from histologically prepared images of blubber tissue 
(Castrillon et al. 2017). The tissue is stained, to differentiate the adi-
pocyte cells from the collagen matrix. Adipocyte area is calculated 
as the average adipocyte cross-sectional area from measurements 

of at least 100 individual adipocytes. Given the laborious nature of 
this method, rendering it impractical for high-throughput, routine 
analysis, an index measure derived through automated image analy-
sis, was developed. The Adipocyte Index (AI) is defined as the ratio 
of inter-vacuolar area to adipocyte area within a defined image area 
(Figure 1). To make the index more intuitive, that is, a larger value for 
better BC, the AI−1 was later introduced (Druskat, Ghosh, Castrillon, 
& Bengtson Nash, 2019).

Application of adipocyte metrics in a study on humpback whales 
found that the measures were more sensitive in differentiating be-
tween two cohorts of whales at different stages of fasting than blub-
ber lipid content. Specifically, AI and adipocyte area differentiated 
the two cohorts, whereas blubber lipid content failed to do so.

This approach is suitable for application in live or dead animals, 
although the freshness of tissue is of some importance. The method 
is subject to the Outer Blubber Threshold limitations discussed 
above, which also carry some consequence for age cohorts. It is for 
example not advisable to perform analysis on calves or juveniles 
where the blubber tissue is not yet fully developed.

3  | BODY COMPOSITION

Several approaches for BC quantification have used body composi-
tion analysis. Body composition analyseis approaches focus on the 
categorization of body mass into major body components, identified 
as water, fat, protein, carbohydrates, and inorganic constituents, 
based on each component's physical properties (Boyd, Bowen, & 
Iverson, 2010; Speakman, 2001). The total body composition analy-
sis measures the total mass of each of these components in the body. 
The  Total Body Fat (TBF) measurement of this approach is taken 

BTLM(Kg) = %lipids in blubber × blubber weight

F I G U R E  1   Histological (hematoxylin 
& eosin stain) and AI analysis images of 
blubber from two individual humpback 
whales (a and b) with different BC. (a) 
AI = 0.16. (b) AI = 0.45
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as representative of BC. Several body composition estimation ap-
proaches have been applied to cetaceans.

3.1 | Carcass analysis

The gold standard for body composition analysis is whole carcass 
analysis, and therefore, the transfer of the technique to tissues biop-
sied from live individuals is not considered to be as accurate (Wells 
& Fewtrell, 2006). Carcass analysis can be carried out by bomb calo-
rimetry or fat mass estimation and is performed on the whole carcass 
or of subsamples of the homogenized carcass (Iverson et al., 2010). 
The bomb calorimetry approach measures the calorimetric content 
of the homogenized carcass. This measure can be used to determine 
the fat and protein content, which in turn can be transformed to 
a body energy equivalent using fat and protein density standard 
values, 39.5 MJ/kg and 23.5 MJ/kg, respectively (Boyd et al., 2010; 
Schmidt-Nielsen, Bolis, & Taylor, 1980). Fat mass estimation is de-
termined by taking the difference between the dry mass of the 
sample before and after lipid extraction (Speakman,  2001). While 
measurements can also be made on a tissue-specific basis, as is done 
with blubber lipid content, results do not correlate with whole-body 
composition but rather with tissue-specific estimations. The need 
to grind the whole body of the animal limits these applications not 
just to dead animals, but also to small species or juveniles (Boyd 
et  al.,  2010). Despite the clear challenges of this approach, whole 
body estimates have been obtained for fin, sei, and sperm whales 
as well as harbour porpoises, providing important baseline informa-
tion regarding lipid content, protein, and ash content (Lockyer, 1991; 
Lockyer et al., 1984, 1985b; McLellan et al., 2002).

3.2 | Isotope dilution

Nonlethal techniques have also been developed to determine body 
composition. Bioelectrical Impedance Analysis (BIA) and isotope 
dilution are two of these techniques. These approaches do not 
measure body composition directly, but rather infer it from meas-
urements of body properties (Wells & Fewtrell, 2006). Both tech-
niques use the measure of Total Body Water (TBW) to predict the 
TBF in an individual. As water is not evenly distributed in the body 
tissues, with fat tissue containing substantially less water than 
lean tissue (Speakman,  2001). The fatter an organism becomes, 
the lower the water content as a percentage of its total body mass 
(Speakman, 2001). Both techniques have been carried out on pin-
nipeds for BC evaluation (Arnould, 1995; Bowen & Iverson, 1998; 
Reilly & Fedak, 1990), but only isotope dilution has been applied to 
cetaceans, focusing on research questions related to specific physi-
ological functions such as osmosis, water consumption and flux, 
rather than BC (Hui, 1981; Telfer, Cornell, & Prescott, 1970).

For this reason, isotope dilution is briefly presented as part of 
this review as a potential approach for evaluating BC of live, captive 
individuals. For a more detailed explanation of this technique, refer 

to Speakman (2001), or for a more specific application on seals, to 
Schwarz et al. (2015). Briefly, isotope dilution requires the injection 
of a known dose of isotope labeled water (D₂O, H₂1⁸O or 3H₂O) into 
live animals (Smith, Engel, Diskin, Španěl, & Davies,  2002). After 
allowing a period of equilibration of the labeled water within an 
animal, blood, urine, or saliva samples are collected at specific inter-
vals to develop a dilution curve, quantified by stable-isotope mass 
spectrometry (Castellini & Mellish,  2015). It has been established 
that the water content of lean tissue is approximately 73% (Pace & 
Rathbun,  1945) and based on this value, it is possible to calculate 
TBW. Initially, it was thought that these values were relatively sta-
ble; but now is known that individual and population variation can 
be large. For instance, young animals have lean tissues with higher 
water percentage (Sawicka-Kapusta, 1974). The uncertainty regard-
ing the absolute value of water content in lean tissue is undoubtedly 
the biggest problem when estimating TBF, using the isotope dilution 
technique (Speakman,  2001). For this reason, body-size, age-, and 
sex-specific equations still need to be developed prior to method 
implementation. The approach shares the limitations of the need 
to restrain the animal for a period of time, for weighing and sam-
ple collection, limiting its application to small species and captive 
animals. The high cost and health risks associated with the use of 
radioisotopes (3H) require special permits, equipment, and waste 
disposal, further increasing the logistical challenges associated with 
this technique.

3.3 | Glide method

A more recent indirect approach for predicting BC is that of using 
glide to determine body density. Glides are the periods of a dive 
where the individual is not actively fluking. During these nonac-
tive swimming phases, the forces of drag and lift are acting on the 
body in a way that is dependent on overall body density/buoyancy. 
As lipids are less dense than most other tissues (Biuw, McConnell, 
Bradshaw, Burton, & Fedak, 2003), TBF is directly related to body 
density. Body density determines the rate of speed changes during 
glides (Miller et al., 2016), with denser animals found to glide at a 
slower speed (Boyd et al., 2010).

A data logger with 3-axis acceleration and speed sensors is at-
tached to the animal. A glide model uses the data from this device 
to recreate the dive profile, allowing calculation of deceleration/
acceleration from glide speed data. The acceleration during a glide 
is the difference between the drag forces and the net buoyancy 
along the individual swimming trajectory (Miller, Johnson, Tyack, 
& Terray,  2004; Zhang et  al.,  2019). To validate this technique di-
rectly with BC, estimates of relative lipid content of individual seals 
obtained by glide pattern analysis were compared with those ob-
tained by hydrogen isotope dilution, with a variation in the results 
of about  ±  2% (Biuw et  al.,  2003). Validation of the technique, in 
a preliminary study in cetaceans, was not, however, made with a 
quantitative measure of BC, but rather modeled estimates (Miller 
et al., 2016). In this study, it was reported that the obtained results 
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fit the model with good precision in the deep-diving cetacean spe-
cies, northern bottlenose whales (Hyperoodon ampullatus) (Miller 
et al., 2016). The model, however, needed adjustments to account 
for diving air volume in shallower diving cetacean species, such as 
humpback whales, as the effect of ambient air pressure on animal 
density is reduced by compression at depth (Biuw et al., 2003; Miller 
et al., 2016). In cetaceans, the glide model approach has also been 
applied to sperm whales, albeit to describe the swimming behav-
ior rather than evaluate BC (Miller et al., 2004). To apply the glide 
model to humpback whales, it was modified to consider the effect 
of the air volume in the net buoyancy, and the potential effect of 
the drag induced by lift. Humpback whales tend to dive and glide 
at alternative, shallower pitch angles requiring the generation of lift 
in comparison to  deep-diving cetaceans that maintain steep pitch 
angles during glides (Narazaki et al., 2018). The study concluded that 
the glide method has the potential to estimate BC in shallow div-
ing baleen whales despite results being more precise in deep-diving 
toothed whales.

The glide method carries the logistical challenges of tagging but 
also the distinct advantage that the glide measure reflects total body 
fat. The approach has not yet been completely validated for its use 
as a proxy for BC. Application of the approach would further re-
quire species-specific evaluation and optimization of the model used 
due to the variability in the diving behavior across species (Miller 
et al., 2016).

4  | BODY MORPHOMETRY

Another approach used as a proxy for BC is morphological meas-
urements to infer whole body mass. Morphometry is the numerical 
expression of animal morphological characteristics (Stower, Davies, 
& Jones, 1960). Complications associated with the direct weighing 
of carcasses have led to the development of a significant number of 
BC indices derived from morphological measurements which, down-
stream, also predict body mass (Boyd et al., 2010; Cattet, Atkinson, 
Polischuk, & Ramsay,  1997). All approaches assume the cetacean 
species has an ellipsoid shape and that a dependent relationship ex-
ists between BC and body mass (Jakob, Marshall, & Uetz, 1996; Peig 
& Green,  2010). The indices are developed according to empirical 
measurements, of which the most common are girth, and girth in 
relation to body length.

4.1 | Body girth

Body girth measurement data have been used both in isolation, 
and for deriving BC indices (Gómez-Campos et al., 2011; Lockyer & 
Waters, 1986). By convention, the measurement is taken from the 
front of the dorsal fin, where the animal's girth is at its maximum 
(Boyd et al., 2010). Contradictory results have been found regard-
ing the consistency of the measurement as a reflection of the BC. In 

franciscanas (Caon et al., 2007), and minke whales (Konishi, 2006) 
body girth, blubber weight, and body weight were all found to be 
positively correlated, lending support for its value as a BC meas-
ure. Similarly, in fin (Lockyer, 1986) and bowhead whales (George, 
Druckenmiller, Laidre, Suydam, & Person, 2015), significant differ-
ences in body girth were found between reproductive groups. By 
contrast, body girth was poorly correlated with blubber mass in 
striped dolphins (Gómez-Campos et al., 2011) and harbour porpoises 
(Read, 1990).

In addition to BC, the overall body size and thus the age of the 
animal is an aspect that also affects body girth; therefore, this needs 
to be accounted for when using this method and comparing individ-
uals. Although this measure is taken routinely on captive, live cap-
tured and stranded animals, the need to handle the animals, limits 
its application to small species. Several factors can further influence 
the measure. For example, in stranded animals, the degree of bloat-
ing and decomposition may impact results (Boyd et al., 2010). In live 
animals, in addition to the difficulties associated with capturing and 
handling of a wild animal, the measurement may vary with preg-
nancy, and even with small animal movements, such as breathing 
(Lockyer et al. 2003).

4.2 | Body girth—length

The relationship between body girth and body length has been 
applied in a variety of ways to predict body volume. This has also 
been used as a proxy of BC due to its close correlation with body 
mass. The girth to length ratio (Ichii, Shinohara, Fujise, Nishiwaki, 
& Matsuoka,  1998; Kershaw, Sherrill, Davison, Brownlow, & 
Hall,  2017), girth—length regression (Lockyer & Waters,  1986), 
and residuals from girth—length regression (Haug, Lindstrøm, & 
Nilssen, 2002) are among some of the calculations applied, either 
in isolation to estimate body volume, or as part of more complex 
BC indices. However, it is important to note that the relationship is 
species and age-category specific, with anomalies found particu-
larly among very young individuals that are still growing in length. 
Immature individuals allocate a significant amount of energy toward 
growth rather than building fat reserves (Peig & Green,  2010). A 
leaner juvenile, as measured by body girth and length, may, there-
fore, be in better energetic health than an adult with comparable, 
or even better, BC.

Extensive literature exists on the selection and calculation of 
various BC indices using body morphometry metrics. For recent re-
views, see Peig and Green (2010), Labocha and Hayes (2012) and 
Labocha, Schutz, and Hayes (2014). As such, this review will not 
focus on reviewing the benefits and drawbacks of individual indices, 
but rather the collection of techniques for obtaining the empirical 
morphometry data used for BC index calculations. Some general 
considerations regarding the use of BC indices based on morpho-
metric data are, however, warranted. It should be noted that, to date, 
there is no clear consensus on whether these indices are sufficiently 
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accurate or sensitive, nor the range of circumstances under which 
they may be valid (Cook et al., 2001). Further, it is advocated that 
any BC index should include nonmorphological parameters that are 
known to influence blubber variation, such as sex, age, reproductive 
class/state, day in the feeding season, and stage of the annual re-
productive cycle to improve the indices’ accuracy (Boyd et al., 2010; 
Christiansen et al., 2014).

4.3 | Body volume models

A truncated cone model is the most commonly used methodology 
when calculating body volume, especially in pinnipeds. The method 
models the external morphology of marine mammals as a series of 
cylinders and conical frustrums. (Bell, Hindell, & Burton, 1997; Ryg 
et al., 1988; Luque & Aurioles-Gamboa 2001). However, cetaceans 
have highly streamlined body shapes that are not likely to be well 
represented by a series of cones and cylinders. Therefore, 3D mod-
eling may provide a more accurate representation of external ce-
tacean morphology (Adamczak, Pabst, McLellan, & Thorne, 2019). 
Such modeling was performed in two species of pilot whales, short-, 
and long-finned pilot whales (Globicephala macrorhynchus and G. 
melas), as a preliminary study. A baseline model of the core body was 
created using morphometric measurements and digital photographs, 
with a 3D mesh around the body. See details of modeling construc-
tion in Adamczak et al. (2019).

Using morphological measurements from stranding data; specif-
ically several girth measurements along the body, as well as body 
length, the base model was scaled and modified to represent the 
specific external morphology of each whale in the sample, ac-
counting for morphological differences between individuals. Both, 
the truncated cone method and 3D model were performed with 
the same set of data. The 3D model better represented the exter-
nal morphology of pilot whales, particularly in the tail stock region 
where the truncated cones method failed to account for its sharp 
elliptical cross-sectional shape, yielding anomalously high superficial 
area and volume values.

The 3D model assessment was done visually, and no further val-
idations with actual body volume have been performed. The model 
was applied only on mature females and males, with pregnant and 
lactating females, and immature individuals excluded. To date, the 
proxy has only been applied only to stranded animals.

Another example of body volume modeling is presented by 
Christiansen, Víkingsson, Rasmussen, and Lusseau (2013), with 
particular attention to blubber volume. The total blubber volume 
was estimated in minke whale harvested in Iceland using multi-
ple direct measurements of blubber thickness, girth, and length 
(Christiansen et  al.,  2013) (Figure  2). Again, the body modeling 
was carried out as a series of frustrums, to take into consideration 
the variation in girths between measurements sites. The study 
found an increase in blubber volume during the feeding season, 
in mature and pregnant whales, but not in immature whales, 
likely due to preferential energy investment into growth in these 
animals.

Body morphometry models developed on stranded and har-
vested animals carry great potential to be transferred to free-swim-
ming individuals, using photogrammetry methods described in 
subsequent sections, where benefits and limitations of the ap-
proaches are also further discussed.

4.4 | Photogrammetry

Due to the challenge of measuring different body parts in free-
swimming and in stranded individuals, the application of body 
morphometry measures using photographic images of the indi-
vidual (photogrammetry) to measure different parts of the body 
has become a popular approach (Best & Rüther,  1992; Cubbage 
& Calambokidis,  1987; Durban, Fearnbach, Barrett-Lennard, 
Perryman, & Leroi,  2015; Koski, Rugh, Punt, & Zeh,  2006; 
Whitehead & Payne, 1981). As the data obtained with photogram-
metry is two-dimensional, the approach uses width measurements 
taken along the body to calculate body shape (Burnett et al., 2018; 
Christiansen et al., 2014, 2018; Miller, Best, Perryman, Baumgartner, 
& Moore, 2012).

Most of the photogrammetry techniques, such as stereo-photo-
grammetry (Bräger & Chong, 1999; Brager, Chong, Dawson, Slooten, 
& Wursig, 1999; Cubbage & Calambokidis, 1987), laser-photogram-
metry (Clarke, Aguayo, & Obla,  1972; Durban & Parsons,  2006; 
Jaquet,  2006; Webster, Dawson, & Slooten,  2010) and underwa-
ter-videography (Nolan & Liddle,  2000), have been used to deter-
mine the body size of the animal, either directly or indirectly. Few 
have been applied for the specific purpose BC evaluation. The ex-
ception to this is aerial-photogrammetry.

F I G U R E  2   Measuring sites for blubber thickness and girth measurements. G1–G6 are the girth measurement positions. D1–D6, M1–M6, 
and V1–V6 are the dorsal, medial, and ventral sites where blubber thickness was measured. The different body sections used for the frustum 
volume estimations are marked with roman numerals I–V. Figure replicated from Christiansen et al. (2013)
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4.4.1 | Aerial-photogrammetry

In the traditional application, individuals at the surface of the water are 
photographed from an aeroplane or helicopter at a known height. In 
general, a known altitude and lens focal length is used to scale the image 
(Miller et al., 2016). BC indices have been calculated in gray (Perryman 
& Lynn, 2002) and right whales (Miller & Hall, 2012), using body meas-
urements from photographs. However, the high costs of manned aerial 
photographs are one of the major drawbacks of this approach.

In recent years, researches have taken advantage of the rapid 
developments of Unmanned Aerial Vehicle (UAV) technology. UAV-
derived photogrammetry images have been used to determine BC of 
humpback (Christiansen et al., 2016), right (Christiansen et al., 2018), 
gray and pygmy blue whales (Balaenoptera musculus brevicauda) 
(Burnett et al., 2018), by taking vertical aerial photographs of indi-
viduals swimming at the surface (Figure 3). Photographs are scaled 
by images which include both the target animal and the research ves-
sel (Christiansen et al., 2016), or imaging an object of known length 
every flight (Burnett et al., 2018). The UAV-based approach signifi-
cantly reduces disturbances to animals, is a much safer approach for 
researchers and greatly reduces the costs of sampling. While aerial 
photography has traditionally been incredibly expensive, being only 
accessible to some researchers, the cost of UAVs is continually de-
creasing, making the approach more accessible on a broader scale 
and thus implemented in many areas of research. Another advantage 
of this approach is the simplified implementation of aerial photog-
raphy. Previously, it was necessary to have a specialized team, in-
cluding an aeroplane pilot, and experienced photographer with large 
specialised cameras and lenses. UAVs combine all the major equip-
ment and the sampling can be carried out by a small team.

Considerations for the application of morphometric measures 
from aerial photographs include both those related to animal physi-
ology, as well as technical considerations. For example, any BC mea-
sure that focuses on body volume measurements must consider the 
exceptions and anomalies introduced above, such as pregnancy and 
lung volume. Reported technical error sources relate to image dis-
tortion, picture quality, and measurement precision. Environmental 
factors, such as glare, waves, water spray, and turbidity, can distort 
the animal contour, reducing accuracy (Christiansen et  al.,  2016). 
Picture quality refers to the position of the animal in the photo-
graph, with an image of the individual in a straight line in order to 
calculate its length accurately. Measurement precision error can be 
reduced by using independent researchers measuring the same set 
of photographs. The latter can add labor and cost to processing of 
images, however, the recent development of a Whale Quantitative 
Analysis program in R by Burnett et al. (2018) is expected to improve 
processing efficiency.

5  | BIOCHEMIC AL AND CHEMIC AL 
BIOMARKERS OF BC

A biomarker is a naturally occurring molecule, gene, or characteris-
tic by which a pathological or physiological process can be identi-
fied (Atkinson et al., 2001). The application of biomarkers is widely 
used in areas such as medicine, ecotoxicology, and ecology. While 
the identification and development of reliable biomarkers requires 
detailed knowledge of complex physiological and biochemical pro-
cesses, their identification and validation can yield  powerful tools 
for health and ecosystem monitoring, including BC.

F I G U R E  3   (a) An example of a desired 
aerial photograph of a humpback whale 
captured by an unmanned aerial vehicle. 
The whale is lying flat at the surface, 
dorsal side facing up, with a straight 
body axis and peduncle (nonarching). 
(b) Position of measurement sites 
of humpback whales proposed by 
Christiansen et al. (2016). For clarity, only 
width (W) measurement sites located 
at 10% increments along the body 
axis are shown. Image replicated from 
Christiansen et al. (2016)
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5.1 | Lipophilic contaminant concentration index (CI)

The use of lipophilic, Persistent Organic Pollutants (POPs) burdens 
has been proposed as suitable biomarkers of fluctuating BC in hump-
back whales (Bengtson Nash, Waugh, & Schlabach, 2013b; Bengtson 
Nash 2018a). POPs are synthetic compounds defined by their persis-
tence, toxicity, propensity to bioaccumulate in organisms, and their 
capacity for long-range environmental dispersal. Most known POPs 
are lipophilic, accumulating in lipid-rich tissues of organisms, with 
their toxicokinetics being driven by lipid dynamics (Bengtson Nash 
et al., 2013b; Yordy et al., 2010). Humpback whales in the Southern 
Hemisphere undertake annual migrations involving voluntary fasting 
for four to nine months. Investigators previously found that across 
just four months of the migration journey, POP concentrations in the 
outer blubber layer increased by up to 500 times for some compounds 
(Bengtson Nash et al., 2013b), and utilized the chemical Concentration 
Index (CI) to demonstrate this effect. Lipid loss from the blubber alone 
could not explain this increase; hence, the CI demonstrated whole-
body lipid depletion and remobilization of associated POP burdens 
(Bengtson Nash, 2018b). As the lipid reserves are converted to en-
ergy, but the POP burdens are unable to be metabolized, the POPs 
merely redistribute to the body's remaining lipid depots, of which the 
outer blubber layer starts to represent an increasing proportion due 
to the Outer Blubber Threshold effect (Bengtson Nash et al., 2013b).

Although this approach has been used to measure change in 
population BC over time, the approach would be equally valid for 
individuals tracked over time, or similarly defined populations. The 
approach is particularly suitable for polar foraging species where 
contaminant sources are diffuse and not influenced by localized 
emissions. The approach could not, however, be used to compare 
two diverse populations with different diets where direct contam-
inant uptake differences may contribute significantly to observed 
differences in blubber POP burdens. Similarly, diet-associated fac-
tors could not be excluded in populations with a high level of in-
dividual exchange with other populations. Finally, the cost of POP 
analysis is notoriously expensive so while information regarding BC 
may be valuable supplementary information to any long-term POP 
monitoring program, a focus on POPs purely for BC investigation 
may be considered prohibitively expensive.

5.2 | Omics

Advances in molecular sequencing, in addition to both chemical 
and biochemical detection techniques, offer the potential for ac-
celerated identification of suitable biomarkers of BC. Specifically, 
transcriptomics, proteomics, and metabolomics applied in phocid 
species have flagged their potential for application in cetaceans. 
This technology is primarily aimed at the universal detection of 
mRNA (transcriptomics), proteins (proteomics), and metabolites 
(metabolomics) in a specific biological sample in a nonspecific and 
unbiased way (Horgan & Kenny,  2011). Transcriptome sequencing 
offers an insight into which genes were active (being transcribed) at 

the time of sampling. Transcriptomics has been successfully used, 
for example, as a predictor of health outcomes in humans (Szabo 
2014) and for the investigation of fasting metabolism in northern el-
ephant seals (Khudyakov, Champagne, Meneghetti, & Crocker, 2017; 
Martinez et al., 2018). Northern elephant seal blubber transcriptome 
investigations facilitated the identification of many genes that were 
differentially expressed in response to stress, caused by acute cor-
ticosteroid elevation induced by administration of an exogenous 
stressor, the adrenocorticotropic hormone (ACTH) (Khudyakov 
et al., 2017). Additionally, in a different study, differences in expres-
sion were found in response to changes in global expression pro-
files before and after six to eight weeks of fasting in weaned pups 
(Martinez et al., 2018).

A proteomic study on blubber from harbour porpoises iden-
tified 295 different proteins; 15% of those proteins were involved 
in inflammation and immune response, and 11% in lipid metabo-
lism (Kershaw, Botting, Brownlow, & Hall, 2018). It was concluded 
that a proteomic approach could facilitate a greater understanding 
of the multifunctional role of blubber Similarly, in a northern ele-
phant seal study, metabolomic analysis described the variability in a 
suite of circulating metabolites that occur with fasting (Champagne 
et al., 2013).

Omics analyses yield huge data sets and require expert bioinfor-
matic analysis to extract useful information. The potential of these 
techniques is great; however, is just starting to be explored for the 
evaluation of cetacean BC. The goal of omics analyses, in the context 
of BC biomarkers, is to identify one or several products or processes 
acting simultaneously that demonstrate a dependent, and ideally 
linear, relationship with BC. Once such candidates have been identi-
fied, their routine quantification through targeted, and cheaper ap-
proaches can be implemented.

6  | DISCUSSION AND CONCLUSION

The powerful insight that BC estimation can provide into individual, 
population, and ecosystem health has made the quantification of BC 
desirable, and of increasing conservation importance. Although nu-
merous methodologies have been proposed for the determination of 
cetacean BC, currently there is no consensus on the best approach 
for quantification. This review critically evaluates traditional and 
emerging approaches according to select criteria that encourage up-
take of a measure into routine population monitoring, and compari-
sons between different studies, populations, and species (Table 1).

One of the most important criteria for any measure is sensitivity 
or accuracy, which is the capacity of the approach to provide a true 
reflection of BC, or change in the BC of a given individual or popu-
lation over time. In the presented suite of approaches, the measures 
that may be considered the most accurate are the direct blubber 
measures, such as blubber mass measurements or carcass analysis, 
either by bomb calorimetry or by fat mass estimation. As destruc-
tive measures, these direct approaches are limited to assessment 
of harvested, stranded, or by-caught animals which carries either 
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ethical implications, or the potential to skew biological assessments. 
As such an inevitable compromise upon accuracy is introduced by 
the remaining measure criteria, that is, 2) Nonlethal, 3) Inexpensive, 
and 4) Versatile.

Lethal harvesting for scientific investigation not only car-
ries ethical implications but also, it is inherently contradictory 
to the conservation goals of conservation research (Waugh & 
Monamy,  2016). Nonlethal sampling approaches range in their 
level of invasiveness, from live capture and release, to UAV mea-
surements. In the middle of the spectrum are measures performed 
on blubber obtained through remote biopsy. Remote biopsy has 
gained popularity in the recent past due to the enormous amount 
of information that can be gathered from a single tissue sample, 
the significant reduction in stress to the animal, and reduction in 
sampling cost. This technique is now part of many field protocols 
all over the world, and it has been used on over 40 cetacean species 
(Noren & Mocklin, 2012).

The cost of acquiring a BC measure, both in terms of time and 
direct monetary costs, invariably plays a role in how frequently the 
measure is likely to be implemented. For long-term monitoring, reg-
ular, frequent application is essential to achieve the required power 
of a data set to confidently ascertain temporal change in BC. Of 
the outlined approaches, UAV derived photogrammetry measure-
ments, blubber histology, and biochemical and chemical biomarkers 
hold high potential for reduced costs, large sample throughput, and 
therefore routine application.

Finally, the versatility of the BC measure may influence its se-
lection in certain research and monitoring campaigns. It is unreal-
istic to suggest that a single measure can be accurately applied to 
different species, age categories, animals of varying reproductive 
state, as well as live or dead individuals, without prior category-spe-
cific validation. Indeed, a thoroughly validated measure, applied to a 
well-defined group of animals, may serve its purpose for most stud-
ies. Timely advancement of the field would, however, greatly benefit 
from robust cross-category testing of measures in order to ascertain 
measure-specific restrictions and limitations, which in turn would 
facilitate faster identification of optimal measures for new research 
agendas.

In Table 1 the above-discussed approaches are evaluated against 
the predetermined criteria rubric. The three vastly different ap-
proaches that performed the best, according to criteria rubric, were 
glide pattern analysis, the Adipocyte metrics  and a BC index derived 
using UAV-photogrammetry, all accumulating a score of ≥ 9 out of a 
possible score of 12.

The key advantage that glide pattern analysis presents over other 
measures, aside from destructive whole-body analyses and the POP 
Concentration Index, is that the measure reflects whole-body fat 
stores, including visceral stores. Glide pattern analysis therefore 
shows good potential, although remains in the developmental stage 
and requires further validation, particularly with respect to shallow 
pitch and shallow-water dives. As tagging of an animal is necessary, 
the cost-efficiency of the approach also limits its broader monitoring 
application at present.

The Adipocyte Index is derived from outer blubber tissue. 
Blubber is one of the most readily accessible tissues, via both nec-
ropsy and remote biopsy, from which information regarding ceta-
cean energy reserves can be derived. Nevertheless, blubber is a 
complex tissue with diverse and overlapping roles. The major limita-
tion of outer blubber derived measures relate to the Outer Blubber 
Layer Threshold effect discussed throughout this review.

UAVs photogrammetry is based on morphological measure-
ments applied for the calculation of BC indices. The reduction in size 
and cost of UAV technology has fostered rapid developments in the 
field, and wide-spread application. The greatest limitations of this ap-
proach come from the index calculations, which have been the sub-
ject of other reviews, for example, (Labocha & Hayes, 2012; Labocha 
et  al.,  2014; Peig & Green,  2010; Schulte-Hostedde et  al.,  2005; 
Wilder, Raubenheimer, & Simpson, 2016). Briefly, the standardization 
of the measurement across studies remains an identified need, as does 
the minimization and quantification of errors. Further, in standardizing 
and optimizing the representativeness of UAV derived BC indices, it 
is paramount to take into account non-BC parameters that influence 
body volume, such as sex, season, and pregnancy (Boyd et al., 2010).

In addition to these three selected, well-performing applications, 
continued investment into method development, with a particular 
focus on new technologies and interdisciplinary transfer of methods, 
has the potential to reduce current limitations for the benefit of di-
verse areas of cetacean research and monitoring.

7  | IDENTIFIED PRIORITIES

The key research priorities identified through this review can be 
summarized as follow:

•	 Implementation of diverse measures in parallel on individuals 
and populations representative of a spectrum of BC states is 
needed. This would be of benefit for both closely related mea-
sures, such as blubber thickness and blubber lipid content, as well 
as vastly different measures, such as glide dynamics and AI. Such 
quality assurance studies would serve to highlight the strengths 
and weaknesses of, and therefore optimal application for, each 
measure.

•	 Continued development, validation, and streamlining of leading 
applications. For example, ancillary data regarding pregnancy, as 
determined through blubber steroid hormone analysis, would pro-
vide a sample set for exploration and testing of how pregnancy is 
likely to influence BC quantification via 3D modeling techniques, 
and ultimately how the error might be managed.

•	 Further investment into research and development for the identi-
fication of new chemical and biochemical markers of BC. Uptake 
of new technological advances into cetacean applications holds 
vast potential for advancement of the field.

•	 Finally, the above priority simultaneously holds excellent poten-
tial for advancement of our understanding of blubber and its com-
plex role in cetacean homeostasis.
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