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Summary:

Cancer is often seen as a disease of mutations and chromosomal abnormalities. However, some 

cancers, including pediatric rhabdoid tumors (RTs), lack recurrent alterations targetable by current 

drugs, and need alternate, informed therapeutic options. To nominate potential targets, we 

performed a high-throughput small-molecule screen complemented by a genome-scale CRISPR-

Cas9 gene-knockout screen in a large number of RT and control cell lines. These approaches 

converged to reveal several receptor tyrosine kinases (RTKs) as therapeutic targets, with RTK 

inhibition effective in suppressing RT cell growth in vitro and against a xenograft model in vivo. 

RT cell lines highly express and activate (phosphorylate) different RTKs, creating dependency 

without mutation or amplification. Downstream of RTK signaling, we identified PTPN11, 

encoding the pro-growth signaling protein SHP2, as a shared dependency across all RT cell lines. 

This study demonstrates that large-scale perturbational screening can uncover vulnerabilities in 

cancers with “quiet” genomes.

Introduction:

Large-scale perturbational screening of cancer cell lines aims to provide mechanistic insight 

into cancer biology and identify therapeutic vulnerabilities, which may prove especially 

useful for cancers that lack obvious targetable genetic alterations. While direct targeting of 

activated oncogenes is now a proven therapeutic approach, mutations in tumor suppressor 

genes are more common across many cancer types and cannot be targeted directly 

(Lawrence et al., 2013). Here, we investigate the potential of large-scale perturbational 
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screening to identify vulnerabilities in highly aggressive and lethal pediatric rhabdoid 

tumors (RT). This genomically simple cancer is driven by a single recurrent genetic event: 

biallelic loss of the tumor suppressor SMARCB1, or much less commonly SMARCA4, core 

subunits of the SWI/SNF (BAF) chromatin-remodeling complex. The average mutation 

burden in RT is more than twenty-fold lower than the average across cancer types; recent 

genomic characterization of large numbers of primary patient RT has revealed that 80% of 

RT have SMARCB1 loss as the sole recurrent mutation (Lawrence et al., 2013, Lee et al., 

2012, Roberts et al., 2000). The cell(s) of origin have been unknown, and tumors can occur 

in various soft tissues including kidney, liver, or brain (these brain-localized tumors are 

known as AT/RT: atypical teratoid/rhabdoid tumor). Recent data reveal at least three distinct 

sub-classes of RT that may each arise from different progenitor cells (Torchia et al., 2015, 

Johann et al., 2016, Chun et al., 2016). The range of rhabdoid tumor tissue origins and sub-

classes complicate treatment recommendations as dependency relationships are often 

unclear.

Mechanistically, we have recently demonstrated that the SWI/SNF chromatin remodeling 

complex is essential for the maintenance of enhancers (Mathur et al., 2016) and that 

inactivation of the SMARCB1 subunit of this complex, as occurs in nearly all RT, disrupts 

enhancer function, which impairs differentiation and thus may underlie unrestrained 

proliferation (Alver et al., 2017, Wang et al., 2016).

Given that the sole identified recurrent genetic event is the absence of a gene, there are no 

obvious therapeutic targets and mortality remains high (Wang et al., 2009). Therefore, RT 

constitutes a compelling model with which to investigate the potential of large-scale 

perturbational screening of cancer cell lines to identify therapeutic vulnerabilities.

Consequently, we collected 16 RT cell-line models (derived from tumors found in brain, 

kidney, muscle, and soft tissue tumors) and robustly deployed both small-molecule and 

genetic (CRISPR-Cas9-mediated gene knockout) perturbational screening to discover 

vulnerabilities in RT.

These approaches converged to reveal several receptor tyrosine kinases (RTKs) as 

therapeutic targets in RT, with RTK inhibition effective in suppressing RT cell growth in 
vitro and against a xenograft model in vivo. We find that rhabdoid cell lines from all tissue 

origins activate a heterogeneous range of RTKs, including PDGFRA and MET, contributing 

to the proliferation of RT cells and leading to dependency on these pathways. Overall, we 

find that RTK activation, driven in part by increased expression caused by loss of 

SMARCB1, rather than genomic alterations, is a hallmark of RT model systems, and that 

high levels of RTK expression are observed in primary RT patient samples. Both genetically 

and via a small-molecule inhibitor we also find that RTK-dependent RT cells are particularly 

sensitive to loss of the protein tyrosine phosphatase PTPN11 (encoding SHP2), a 

downstream effector of RTK signaling. These findings highlight the potential of large-scale 

perturbational screening to reveal dependencies conferred by tumor suppressor loss and 

suggest RTKs and SHP2 as therapeutic targets in patients with RT.
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Results:

RTK inhibitors selectively target RT cell lines

Previously, we reported a small-molecule sensitivity dataset (Cancer Therapeutics Response 

Portal) describing the effects of a library of 481 small molecules, an informer set enriched 

for FDA-approved oncology drugs and clinical candidates, on the viability of 840 individual 

cancer cell lines (CCLs) representing 25 cancer lineages, which included four RT CCLs 

(Seashore-Ludlow et al., 2015, Rees et al., 2016). We tested 47 additional CCLs, including 

five RT CCLs, against this small-molecule collection, using area-under-concentration-

response curves (AUCs) to measure sensitivity as described previously (Seashore-Ludlow et 

al., 2015, Rees et al., 2016). We normalized AUCs for each small molecule across all 887 

CCLs by calculating a robust z-score using the median absolute deviation (ZMAD). To 

identify potential therapeutic vulnerabilities in these nine RT cell lines (a diverse set derived 

from brain, kidney, muscle, and soft tissue tumors), we focused on small molecules selective 

for RT CCLs relative to non-RT CCLs. Of the 15 most selective small molecules (ZMAD 

AUC < −3 in at least three RT CCLs), 14 were annotated receptor tyrosine kinase (RTK) 

inhibitors, targeting angiogenesis-related receptors such as vascular endothelial growth 

factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), fibroblast 

growth factor receptor (FGFR), and hepatocyte growth factor receptor (HGFR/MET). 

Overall, RTK inhibitors as a class were highly selective for RT cell lines compared to non-

RT cell lines, suggesting a remarkable dependence on these targets (Kolmogorov-Smirnov p 

= 7.3 × 10−11; Figure 1a, Figure S1a). The selectivity of FDA-approved RTK inhibitors for 

RT CCLs compared to CCLs best representing currently approved indications is presented in 

Figure S1b.

To expand on this finding, we collected seven additional RT CCLs and tested all 16 

validated SMARCB1-deficient RT CCLs against 30 RTK inhibitors, including FDA-

approved therapeutics (Figure S1c). Results were consistent with high-throughput data, and 

further suggested distinct vulnerabilities of sets of cell lines to sets of small molecules: 

different RTK inhibitors potently inhibited the viability of different subsets of RT cell lines 

(e.g., imatinib: G402, A204, KD, NCIH2004RT, KPMRTRY; crizotinib: MON, TM87, 

TTC642, TTC549) while showing little efficacy against others (Figure 1b, Figure S1a, Table 

S1). Of note, RTK inhibitors with overlapping target profiles (Table S2, Figure S1d) 

clustered together in these results, suggesting on-target activity.

RTKs are preferential dependencies in RT CCLs

In parallel, we carried out genome-scale CRISPR-Cas9-mediated gene knockout screens on 

8 RT CCLs with six guide RNAs targeting each gene (Aguirre et al., 2016, Meyers et al., 

2017). Values were collapsed to a single dependency score per gene and adjusted per cell 

line using CERES to account for the confounding factor of copy number in CRISPR-Cas9 

screens (Aguirre et al., 2016, Munoz et al., 2016), with normalization to pan-essential (score 

of −1) and non-essential (score of 0) genes. Notably, each RT cell line displayed a strong 

dependency on at least one RTK, although the specific dependencies again varied by cell 

line (Figure 1c, Figure S2e, Table S3). The strongest observed dependencies included 

FGFR1, MET, PDGFRA, and PDGFRB (CERES score ZMAD < −4 in at least two RT 
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CCLs), while other RTKs were strong dependencies in a single RT CCL (e.g., PDGFRB, 

FGFR2, and ERBB4; Table S3).

RTKs are highly expressed and activated in RT CCLs

To nominate biomarkers for RTK dependencies, we performed RNA sequencing on RT 

CCLs in conjunction with the Cancer Cell Line Encyclopedia (Ghandi et al., 2019, Barretina 

et al., 2012). RTK-dependent RT CCLs exhibited high expression of the corresponding 

RTK-encoding transcript(s) relative to both non-dependent RT CCLs and non-RT CCLs 

(Figure 2a). Consistent with published primary tumor data (Chauvin et al., 2017), we see 

that rhabdoid cell lines have low promoter methylation at RTK genes. In the cell lines tested, 

we see that the same relevant dependent RTK genes have low promoter methylation, while 

RTKs not important in those cell lines have higher levels of promoter methylation (Figure 

S1f) (Ghandi et al., 2019). Measurement of total and phospho-protein levels using a global 

phospho-RTK array or individual antibodies demonstrated protein expression and 

phosphorylation (indicating activation) of the relevant RTKs in RT CCLs (Figure 2b, Figure 

S2a). Consistent with a contribution of SMARCB1 in regulation of RTK activation, 

retroviral restoration of SMARCB1 in the kidney RT G402 cell line reduced mRNA levels 

of FGFR1 and downstream RPS6KB1, but not PDGFRA or other pathway members (Figure 

2c). Both RTKs showed a decrease in activated phospho- and total protein, and phospho-

p70S6K also decreased, with no change in total protein (Figure 2d, Figure S2b). Of note, we 

did not detect SMARCB1-dependent changes in SWI/SNF binding within 100 kB of 

expressed RTKs (Wang et al., 2016), nor significant changes in histone acetylation (Table 

S4), suggesting that reduced RTK transcript levels may not be a direct consequence of 

SWI/SNF binding at the RTKs, although binding to a more distal enhancer cannot be 

excluded.

RTK inhibitors suppress RTK signaling alone and in combination

To relate small-molecule sensitivity data with RTK activation, we tested whether RTK 

inhibitors could decrease RTK phosphorylation in sensitive cell lines. As RTK inhibitors are 

generally ATP-competitive and have overlapping target profiles, we combined available 

kinase-profiling data (presented in Table S2) with our own cell-line-sensitivity data in non-

RT CCLs harboring known activating mutations in RTKs to nominate the most likely 

relevant cellular target(s) of these molecules (Figure S1d). Combining these results, along 

with the clustering of inhibitors with shared targets (Figure 1b), suggested that these 

inhibitors were working via the targets identified by gene-knockout and genomic data 

(Figure 2a–b). In NCIH2004RT, A204, G401, G402, KD, and KPMRTRY cells, treatment 

with PDGFR-inhibiting compounds decreased phosphorylation of PDGFR and downstream 

AKT (Figure 2e, Figure S2c). In KYM1, TM87, TTC549, TTC642 and MON cells, 

treatment with MET-inhibiting compounds decreased phosphorylation of MET, GAB1, and 

AKT (Figure 2f, Figure S2d). In BT12 and NCIH2004RT cells, treatment with FGFR1-

inhibiting compounds decreased phosphorylation of FGFR1 as well as downstream MEK1/2 

or AKT (Figure S2e). In contrast to more selective inhibitors, dual-targeting small molecules 

such as MET/PDGFR inhibitors (cabozantinib, foretinib, glesatinib) were more broadly 

active in RT cell lines, including in lines that expressed and were dependent on either or both 

RTK (Figure 1b, Table S3). For example, treatment of MET- and PDGFRA-expressing 
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TTC642 cells with the selective PDGFR inhibitor imatinib and the selective MET inhibitor 

SGX-523 alone reduced phosphorylation of only PDGFRA or MET, respectively, while 

treatment with the combination of imatinib and SGX-523 or the dual inhibitor cabozantinib 

decreased both MET and PDGFRA phosphorylation (Figure 3a–b, Figure S2d). 

Additionally, treatment with cabozantinib decreased p-AKT and p-MEK1/2 levels to a 

greater extent than PDGFR or MET inhibition alone (Figure 3b, Figure S2d). Similar 

patterns were observed in the TTC549 cell line (Figure S2d).

As combination treatment was more effective in reducing levels of phospho-RTKs and 

downstream phospho-targets, we asked whether combinations of RTK inhibitors would 

result in synergistic cell killing. We observed that pairwise combinations of selective 

inhibitors of different RTKs synergized in cell lines where multiple RTKs were active, such 

as in TM87, TTC549 and TTC642 cells (FGFR and MET; Figure 3c, Figure S3a, b, d). 

Consistent with a recent report that identified synergy between FGFR and PDGFR inhibition 

in the G402 cell line (Wong et al., 2016), we also found that combinations of FGFR and 

PDGFR inhibitors were strongly synergistic in G402 cells (Figure 3d, Figure S3a), as well 

as in A204, KD, and NCIH2004RT cells (Figure S3c), which showed dependence on both 

FGFR1 and PDGFRA/B. These findings were specific to cell lines expressing multiple 

RTKs: for example, synergy between FGFR and PDGFR inhibitors was not observed in 

TM87, BT12, or BT16 cells that did not express activated PDGFRA or PDGFRB (Figure 

S3d).

RTK inhibitors are active against RT xenograft models

Collectively, these results provide support for use of multi-targeting inhibitors or 

combination treatments where multiple RTKs are active. To investigate this in vivo, we 

tested the multi-targeting RTK inhibitors lenvatinib, pazopanib, and cabozantinib in an 

orthotopic xenograft model of the luciferase-labeled TTC642 cell line. This cell line 

expresses PDGFRA, FGFR1, FGFR3, and MET. Responses were compared to both no 

chemotherapy and to a known active standard-of-care (SOC) treatment with combination 

doxorubicin and vincristine. Cabozantinib was also tested in combination with SOC. Mice 

were treated for four three-week courses (Figure 4a), and mice with a tumor burden greater 

than 20% of their body weight were removed from the study and scored as having 

progressive disease (PD). Mice with stable disease (SD), partial responses (PRs), and 

complete responses (CRs) were scored using bioluminescence as previously described 

(Stewart et al., 2014).

Mice given the standard of care treatment survived an average of 36 days, and all came off 

the study due to PD (Figure 4b–h). Mice treated with cabozantinib alone, which targets 

PDGFRA and MET, survived longer than those on SOC, staying on treatment an average of 

61 days (Figure 4d). Combination of cabozantinib and SOC further increased survival; mice 

survived an average of 80 days and 3 of the 4 mice in this arm completed the entire 

treatment course with tumor shrinkage indicating PR (Figure 4e, f–h). Mice given lenvatinib, 

which targets PDGFRA and FGFR family members, also survived longer than SOC (average 

75 days), and 3 of the 7 mice showed SD or PR (Figure 4c, f–h). Providing further evidence 

that targeted multi-RTK inhibition is beneficial, all the mice treated with pazopanib, which 
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showed the weakest activity in vitro against PDGFRA- and FGFR-dependent cell lines, were 

removed from the study for PD by 38 days (Figure 4b, f–h).

We also tested luciferase-labeled orthotopic xenografts of the FGFR1-, FGFR3-, and 

PDGFRA-expressing A204 rhabdoid cell line, using the same drugs and combinations, 

along with a combination of pazopanib and SOC. These tumors appeared more aggressive, 

and most mice, including those given SOC, were removed before the end of the study for 

progressive disease (Figure 4h). However, three mice were able to complete the entire study, 

one from the lenvatinib-treatment group (CR), and two from the pazopanib and SOC group 

(one CR, one PR). Collectively, these results suggest that RTKi treatment in combination 

with SOC in vivo can provide more benefit than SOC alone, and that targeting multiple 

RTKs may represent a more effective treatment strategy than single inhibition in tumors with 

multiple active RTKs.

RTK-encoding transcripts show heterogeneous expression in RT patient samples

To better understand the heterogeneous nature of RTK activation and dependency in RT 

CCLs and its potential relevance to human RT, we collected public genome-wide expression 

data for 239 human RT samples across six studies, including two with samples collected 

from multiple tumor locations (Han et al., 2016, Chun et al., 2016), and analyzed expression 

of 58 human RTK genes. Across all studies, PDGFRA, PDGFRB, FGFR1, and FGFR2 
showed the highest expression (Figure S4). However, consistent with cell-line data, we 

observed heterogeneity of RTK expression both within and across tissue types. For example, 

in the TARGET study, PDGFRA was more highly expressed in kidney relative to soft tissue 

tumors (padj = 0.0001). We also observed differential expression patterns for MET (highly 

expressed in liver samples) and ERBB4 (highly expressed in brain relative to soft tissue; padj 

= 0.00167; Table S5). These findings support the importance of RTK expression in RT, and 

are consistent with cell-line data, where CCLs with highest phospho-PDGFRA expression 

were from muscle (A204) and kidney (KPMRTRY, G402, and NCIH2004RT), while ERBB4 

was detected predominantly in brain-derived CCLs (e.g., BT16).

PTPN11 represents a shared dependency across all RT cell lines

RTKs converge on canonical downstream effector proteins (e.g., AKT, MEK, S6K) that 

integrate signaling from multiple RTK pathways, and some mouse models of RT have been 

reported to show persistent AKT activation (Darr et al., 2013). Interestingly, however, the 

genes encoding these downstream effector proteins do not score as dependencies in 

CRISPR-Cas9 screening. While most of these downstream effector proteins have 

functionally homologous proteins encoded by paralogous genes, e.g., AKT1/2, MAP2K1/

MAP2K2, and RPS6KB1/2, potentially making any of these genes appear non-essential 

when singly lost, small-molecule inhibitors tend to hit all paralogs and are also not selective 

for RT CCLs (Figure S1a, e).

To more systematically investigate signaling downstream of RTKs in RT cell lines, we 

analyzed gene dependency scores for 476 genes within the gene ontology RTK signaling 

network 

(GO_TRANSMEMBRANE_RECEPTOR_PROTEIN_TYROSINE_KINASE_SIGNALING
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_PATHWAY). For each gene, we calculated the probability of dependency in each RT and 

non-RT cell line. Of 8 genes essential across all 8 RT models (probability > 0.95), 7 were 

also universally essential across non-RT cell lines (minimum probability = 0.88), suggesting 

these dependencies were not specific to RT cell lines or RTK signaling (e.g., components of 

RNA polymerase II). The exception, PTPN11, encodes the tyrosine phosphatase SHP2, 

which acts downstream of RTKs to effect survival and proliferation and is often mutated and 

activated in cancer.

SHP2 has been found to be an important node in RTK signaling and essential for the growth 

of cancers reliant on RTK signaling (Prahallad et al., 2015, Matalkah et al., 2016, Ghandi et 

al., 2019). Additionally, shRNA screening (targeting 7,500 genes) in 250 cancer cell lines 

revealed that lines with activating mutations in RTKs were preferentially dependent upon 

PTPN11 (encoding SHP2), and these cell lines were sensitive to a novel allosteric SHP2 

inhibitor, SHP099 (Chen et al., 2016). In our genome-scale CRISPR-Cas9 screen, RT cell 

lines were highly dependent on PTPN11 (dependency score range −0.96 to −1.33) (Table 

S6).

To determine whether rhabdoid cell lines showed preferential sensitivity to SHP2 loss, we 

screened the SHP099 inhibitor at eight different concentrations in 274 cancer cell lines, 

including 14 RT cell lines, using PRISM, a high-throughput pooled screening assay (Yu et 

al., 2016). CML cell lines carrying the BCR-ABL fusion were most sensitive (Gu et al., 

2018), and rhabdoid cell lines showed preferential sensitivity to SHP099 compared to other 

lineages (Figure 5a). Of note, RT lines had lower AUC and IC50 than cell lines containing 

either PTPN11 activating mutations or RTK activating mutations. We confirmed these 

sensitivities across all 16 RT cell lines in conventional (unpooled) assays and observed that 

sensitivity to SHP099 also correlated with CRISPR-based sensitivity to PTPN11 loss 

(Figure 5b, Table S6). SHP099 treatment also decreased phospho-ERK in RT cell lines and a 

positive control line while having no effect on a negative control line, and no effect on 

upstream RTKs (Figure 5c, Figure S5a). Long-term (ten-day) treatment also inhibited colony 

formation in sensitive lines while having no effect in a control insensitive line (Figure 5d). 

We confirmed that PTPN11/SHP2 is ubiquitously expressed across rhabdoid cancer cell 

lines of all origins and primary human tumors (Figure S5b, c).

Gene expression and epigenetic landscape of RT cell lines

Recent studies in AT/RT and RT suggest that cell lines (and tumor samples) cluster into 

three to four epigenetically-defined subtypes, which also correlate with location of tumor 

origin (Torchia et al., 2016, Torchia et al., 2015, Johann et al., 2016). In AT/RT, for example, 

only one of these three defined subtypes, the spinally-located tumors, highly expressed and 

were dependent upon PDGFRB (Torchia et al., 2016). Therefore, we investgiated whether 

our RT cell lines clustered into subgroups based on RNA-seq expression as well as genome-

wide methylation profiling. Our collection of 16 rhabdoid cell lines are derived from tumors 

found in brain (AT/RT), kidney, muscle, and soft tissue. Of note, all three of our AT/RT cell 

lines have been classified as AT/RT Type 2 (Torchia et al., 2016), so our findings here are 

limited to non-CNS and AT/RT Type 2 tumors.

Oberlick et al. Page 8

Cell Rep. Author manuscript; available in PMC 2020 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We performed methylation profiling and an AT/RT-defined subgroup analysis on our 

rhabdoid cell lines. Four lines were classified as the “MYC” subgroup while the rest were 

low confidence MYC or undefined (Table S7). Of our AT/RT lines, one was defined as low 

confidence MYC and two were “undefined”, making it hard to draw any conclusions. Next, 

we clustered cancer cell lines based on gene expression using data from CCLE, and 

visualized results in a tSNE plot. This dataset contained 1,165 cancer cell lines, including 21 

rhabdoid cell lines: the 16 rhabdoid cell lines characterized here plus five newly available. 

Rhabdoid tumor cell lines clustered closely together indicating conserved gene expression in 

RT lines regardless of tissue of origin (Figure 5e). When tSNE analysis was restricted solely 

to RT cell lines, tissue of origin did not appear to be a major determinant of gene expression 

differences between lines (Figure 5f).

Discussion:

Pediatric RT are driven by deletion or loss-of-function mutations in the SMARCB1 (or 

rarely SMARCA4) tumor suppressor gene. Aside from SMARCB1 loss, RT have an 

extremely low mutation rate and an absence of recurrent mutations in other genes. 

Consequently, despite being one of the most aggressive and lethal cancers, there are no 

obvious genetically-informed therapeutic targets. We therefore used RT as an exemplar to 

investigate whether large-scale, systematic high-throughput screening of cell lines could 

nominate new therapeutic approaches in the context of ‘quiet’ genomes driven by loss of a 

tumor suppressor.

In this report, high-throughput small-molecule and genetic screening across 16 RT cell lines 

derived from several tissue locations was used to identify specific vulnerabilities of RT cell 

lines relative to cell lines representing other cancer types. These approaches converged to 

reveal dependencies on both receptor tyrosine kinases and downstream SHP2 (PTPN11), 

where RT cell lines express high levels of various RTKs and are sensitive to both 

pharmacologic inhibition of these proteins and knockout of the genes encoding these RTKs 

and PTPN11.

Studies testing smaller numbers (n = 1–7) of RT and AT/RT cell lines have variably found 

activation and expression, and in some cases dependence upon, RTKs including EGFR (Darr 

et al., 2015, Kuwahara et al., 2004, Chauvin et al., 2017), FGFR (Wohrle et al., 2013, Wong 

et al., 2016, Chauvin et al., 2017), PDGFR (Wong et al., 2016, Torchia et al., 2016, Chauvin 

et al., 2017), or IGF1R (Arcaro et al., 2007), leading to uncertainty regarding the most 

relevant target(s). In addition to validating the known dependencies on FGFR and PDGFR, 

our large-scale genome-wide CRISPR-Cas9 knockout screen and follow-up screening of 30 

RTK inhibitors with distinct targeting profiles enabled us to identify overexpression of and 

dependency on novel targets, including MET and ERBB4, in a subset of models. Our data 

from 16 cell lines across multiple tumor locations, combined with public tumor-expression 

data, support the notion that RTK expression and dependency vary both within and across 

tissue types. The profiling of our cell lines did not seem to reliably match the published 

classification schema of primary tumors, conceivably a consequence of cell culture. Notably, 

transcriptome analysis demonstrated that regardless of tissue of origin the gene expression 

profile of RT cell lines is quite similar and that the relatively limited heterogeneity between 
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cell lines does not correlate strongly to tissue of origin, suggesting that the dependent RTKs 

do not constitute the greatest differential feature of the gene expression landscape.

In addition, we find that overexpression and activation of multiple RTKs is a common 

feature of tested RT cell lines, although it is noteworthy that the three tested AT/RT cell lines 

were derived from the Type 2 sub-class so we are not able to comment upon dependencies in 

other sub-types. RT cell lines are sensitive to appropriate single or combination treatments 

using existing clinically-approved RTK inhibitors, but, importantly, the diversity of RT 

models and patient samples suggest there is no single RTK inhibitor efficacious in all 

rhabdoid tumors. Immunohistochemistry (IHC) to identify the relevant activated RTK(s) 

may be the most proximal marker for immediate clinical investigation. In future clinical 

trials, the comparison of IHC with methylation classifiers is warranted in evaluation for 

matching patient tumors to specific RTK dependencies.

Intriguingly, we identified a shared dependency of RT cell lines on PTPN11, encoding the 

RTK signaling effector SHP2. Recently, an analysis of results from an shRNA knockdown 

screen of 7,500 genes across 250 cancer cell lines revealed that cell lines sensitive to 

knockdown of various RTKs were also highly sensitive to loss of PTPN11 (Chen et al., 

2016). A novel allosteric inhibitor of SHP2 was developed (SHP099) and found to be 

efficacious in PTPN11-dependent cell lines, and an optimized compound, TNO155, has 

entered clinical development. While we found RT cell lines to be even more sensitive to 

SHP099 than cell lines with activating mutations in PTPN11 or RTKs in vitro, further 

studies (e.g., with TNO155) may inform whether SHP2 inhibition is an effective therapeutic 

strategy against a broader range of RT models and tumors in vivo.

These findings raise the question: what is the mechanistic basis by which RT are 

preferentially dependent upon RTKs? SWI/SNF regulates the chromatin structure at 

enhancers, where it facilitates transcription factor function to enable development and 

differentiation (Hu et al., 2011, Bossen et al., 2015, Marathe et al., 2017, Mathur et al., 2016, 

Wang et al., 2016, Nakayama et al., 2017). Loss of SMARCB1 in RT destabilizes the 

SWI/SNF complex, leading to reduced binding capacity at enhancers, which in turn results 

in specific reduction of the active enhancer mark H3K27ac and impaired differentiation. 

Restoration of SMARCB1 to RT-derived cell lines results in stabilization of the SWI/SNF 

complex (Wang et al., 2016) and cell cycle arrest accompanied by expression of genes 

associated with differentiation (Kuwahara et al., 2010, Betz et al., 2002, Mathur et al., 2016, 

Wang et al., 2016, Alver et al., 2017). Consequently, SMARCB1 loss may drive the growth 

of RT in part by preventing differentiation of highly proliferative progenitor cells in which 

RTKs are expressed. Here, we demonstrate that downregulation and deactivation of 

progenitor-active RTKs is in part dependent upon SMARCB1, as SMARCB1 re-expression 

results in reduced phosphorylation and expression. With respect to mechanism, this reduced 

activation may not be a direct consequence of altered SWI/SNF binding at the RTKs as we 

did not detect SMARCB1-dependent changes in SWI/SNF binding within 100 kB of 

expressed RTKs, although binding to a distal enhancer cannot be excluded (Wang et al., 

2016).
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Together, these findings seem most consistent with the following model whereby 

SMARCB1 loss results in impaired enhancer function, thus ‘locking in’ RT to the strongly 

RTK-driven progenitor state and precluding down-regulation of RTKs that would otherwise 

occur with differentiation. The marked dependence of RT upon RTKs is thus a result of both 

gene expression related to the cell of origin combined with a functional differentiation block 

caused by SMARCB1 loss. These lineage-related RTK dependencies may be akin to lineage 

dependencies upon estrogen receptor and androgen receptor in breast and prostate cancer, 

respectively, both of which have shown therapeutic efficacy when targeted. As cancers 

driven by mutation of other SWI/SNF subunits similarly have impaired ability to activate 

enhancers (Wang et al., 2016, Alver et al., 2017, Mathur et al., 2016), the dependency upon 

RTKs could extend to the myriad of other cancers in which SWI/SNF subunits are 

recurrently mutated, and further investigations are thus warranted.

Historically, results from pre-clinical testing have had modest predictive value in the 

outcomes of clinical trials. While numerous factors may contribute to predictive limitations, 

two have been 1) concern regarding the extent to which cell line models reflect behavior 

within patients, and 2) heterogeneity between the cancers of different patients that is often 

poorly reflected in laboratory testing due to the use of only a small number of cell lines. 

Collectively, our work suggests that large-scale perturbational screening of cancer cell lines 

uniting genetic and small-molecule approaches can be efficacious in identifying 

therapeutically-actionable dependencies not directly encoded by an oncogenic mutation. Our 

work robustly validated dependencies previously predicted from analysis of primary tumors, 

revealed new therapeutically targetable dependencies in RTs, and revealed the extent of 

heterogeneity in RTK dependence between cancers with remarkably simple genomes. Our 

findings further suggest that combination RTK inhibitor therapy, potentially coupled with 

profiling of expressed and active RTKs in patient tumors, and/or inhibition of SHP2, should 

be further investigated as potential therapies for these lethal pediatric cancers.

STAR METHODS TEXT

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Charles Roberts (Charles.Roberts@stjude.org).

This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human cancer cell lines—Cell lines were Mycoplasma negative, and identities were 

validated by SNP fingerprinting as described previously (Rees et al., 2016, Seashore-Ludlow 

et al., 2015, Cowley et al., 2014). A204, A375, CAL120, G401, G402, HEK293T, KYM1, 

LUDLU1, MeWo, MKN45, MV411, T47D, and U2OS cell lines were obtained from the 

Broad Biological Samples Platform. A2058 were ordered from ATCC. BT12, BT16, 

CHLA-266, NCIH2004RT, TM87, TTC549, TTC642, and TTC709 cells were maintained in 

the Roberts lab. A673 were maintained in the Stegmaier lab. KD and MON were a kind gift 

from Franck Bourdeaut at the Curie Institute. KP-MRT-RY was a kind gift from Yasumichi 
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Kuwahara at the Kyoto Prefectural University of Medicine. TTC1240 was a kind gift from 

Timothy Triche at UCLA. Abbreviations: FBS, Fetal Bovine Serum; P/S, Penicillin 

Streptomycin. Cells were grown in a 37°C incubator with 5% CO2.

A204 (muscle RT), G401 (kidney RT), and G402 (kidney RT) were grown in McCoy’s 5A + 

10% FBS + 1% P/S.

BT12 (AT/RT) were grown in OptiMEM + 5% FBS + 1% P/S.

BT16 (AT/RT), TM87 (muscle RT), A673 (Ewings), A2058 (melanoma), CAL120 (breast 

cancer), U2OS (osteosarcoma), and HEK293T (immortalized kidney) were grown in 

DMEM + 10% FBS + 1% P/S.

CHLA266 (AT/RT) were grown in IMDM + 20% FBS + 1% P/S + 1% ITS (Insulin, 

Transferrin, Selenium).

KYM1 (soft tissue RT) were grown in DMEM-F12 + 10% FBS + 1% P/S.

MV411 (AML) were grown in IMDM + 10% FBS + 1% P/S.

KD (soft tissue RT), KPMRTRY (kidney RT), MON (soft tissue RT), NCIH20004RT 

(kidney RT), TTC549 (extra-renal RT), TTC642 (extra-renal RT), TTC709 (muscle RT), 

TTC1240 (kidney RT), A375 (melanoma), LUDLU1 (lung cancer), MeWo (melanoma), 

MKN45 (stomach cancer), and T47D (breast cancer) were grown in RPMI + 10% FBS + 1% 

P/S.

Animals—Athymic nude immunodeficient female mice were purchased from Jackson 

Laboratories (strain code 007850). This study was carried out in strict accordance with the 

recommendations in the Guide to Care and Use of Laboratory Animals of the National 

Institutes of Health. The protocol was approved by the Institutional Animal Care and Use 

Committee at St. Jude Children’s Research Hospital. All efforts were made to minimize 

suffering. All mice were housed in accordance with approved IACUC protocols. Animals 

were housed on a 12–12 light cycle and provided food and water ad libitum.

Orthotopic Ultrasound-Guided Paranephric Xenograft Implantation—Orthotopic 

rhabdoid xenografts were created by injecting luciferase-labeled A204 and TTC642 cells 

into recipient athymic nude mice in the paranephric location. All ultrasound procedures were 

performed using the VEVO 2100 high-frequency ultrasound equipped with a MS-550S 

transducer running at 40 MHz. A204 and TTC642 cells were grown by routine culture 

methods. Each cell line was suspended in Matrigel (BD Worldwide, Cat#354234) at a 

concentration of 1×105 cells per microliter and placed on ice. Anesthetized (isoflurane 1.5% 

in O2 delivered at 2 liters/min) recipient nude mice were placed laterally on the imaging bed 

such that the left flank faced upward. In order to provide a channel for delivery of the 

implant, a 22 gauge catheter (BD Worldwide, Cat# 381423) was gently inserted through the 

skin and back muscle into the paranephric region and the hub was removed. A chilled 

Hamilton syringe fitted with a 27 gauge needle (1.5 inch) and loaded with 10 µl of the cell 

suspension was guided stereo-tactically through the catheter and positioned between the 
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kidney and adrenal gland as visualized using ultrasound. The cells were injected into the 

region and the needle was left in place for 30 seconds to permit the matrigel component to 

set. The needle was then slowly removed, followed by gentle removal of the catheter.

Preclinical Testing—Mice with rhabdoid orthotopic xenografts generated as described 

above were screened weekly by Xenogen® and the bioluminescence was measured. Mice 

were enrolled in the study after achieving a target bioluminescence signal of 106 −107 

photons/sec/cm2 to ensure tumor engraftment, and chemotherapy was started the following 

Monday.

A204: Mice (n = 31 total) were randomized to 7 treatment groups: Lenvatinib, Cabozantinib 

(CABO), Pazopanib (PAZO), Doxorubicin (DOXO) + Vincristine (VCR), DOXO + VCR + 

CABO, DOXO + VCR + PAZO, and placebo. The following doses were used:

TREATMENT GROUP DOSING

CABOZANTINIB 30 mg/kg once daily continuous dosing days 1–21

LENVATINIB 30 mg/kg once daily continuous dosing days 1–21

PAZOPANIB 65 mg/kg twice daily continuous dosing days 1–21

DOXO + VCR (standard of care) DOXO 3.5 mg/kg day 1, VCR 0.38 mg/kg day 8 and day 15

DOXO + VCR + 
CABOZANTINIB

DOXO 3.5 mg/kg day 1, VCR 0.38 mg/kg day 8 and day 15, CABO 30 mg/kg 
once daily on days 8–21

DOXO + VCR + PAZOPANIB DOXO 3.5 mg/kg day 1, VCR 0.38 mg/kg day 8 and day 15, PAZO 65 mg/kg 
twice daily on days 8–21

PLACEBO vehicle control (no chemotherapy)

TTC642: Mice (n = 30 total) were randomized to 6 treatment groups: Lenvatinib, 

Cabozantinib, Pazopanib, DOXO + VCR, DOXO + VCR + CABO, and placebo. The same 

doses were used as above.

Mice received 4 courses of chemotherapy (21 days per course) and bioluminescence was 

monitored weekly. Disease response was classified according to bioluminescence signal. 

Mice with a signal of 105 photons/sec/cm2 or less (similar to background) were classified as 

complete response, 105-106 photons/sec/cm2 as partial response, 107 up to 108 

photons/sec/cm2 (similar to enrollment signal) as stable disease, and greater than 108 

photons/sec/cm2 as progressive disease, as described previously (Stewart et al., 2014). Mice 

with tumor burden at any time greater than 20% of body weight were also classified as 

progressive disease. Mice were monitored daily while receiving chemotherapy.

Xenogen® Imaging—Mice were given intraperitoneal injections of Firefly D-Luciferin 

(Caliper Life Sciences; 3 mg/mouse). Bioluminescent images were taken five minutes later 

using the IVIS® 200 imaging system. Anesthesia was administered throughout image 

acquisition (isoflurane 1.5% in O2 delivered at 2 liters/min).
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METHOD DETAILS

CCL sensitivity profiling—Screening of 481 small molecules against 860 cancer cell 

lines has been described previously (Rees et al., 2016, Seashore-Ludlow et al., 2015). 

Briefly, CCLs were plated (500 cells/well) in their provider-recommended growth media in 

white, opaque tissue-culture-treated Aurora 1536-well MaKO plates (Brooks Automation) 

using a Multidrop Combi Reagent Dispenser (ThermoFisher). Compounds were added 24 

hours after plating using an Echo 555 (Labcyte Inc.), and cellular ATP levels were assessed 

after 72 hours of compound treatment using CellTiterGlo (Promega) on a ViewLux 

Microplate Imager (PerkinElmer).

Forty-seven additional cell lines were screened and processed using the same procedure. 

Small molecules were tested over a 16-point concentration range (twofold dilution) in 

duplicate. Compounds were added 24 hours after plating and cellular ATP levels were 

assessed after 72 hours of treatment using CellTiterGlo (Promega). All raw and analyzed 

viability data, as well as cell-line and compound meta-data, are available from the NCI 

CTD2 Data Portal (https://ctd2.nci.nih.gov/dataPortal/).

In all, area under concentration-response curves (AUCs) for 545 compounds across 907 

CCLs were included for analysis. Where duplicate CCLs were tested, AUC values were 

averaged, resulting in a total of 887 unique CCLs tested. For each small molecule, the AUC 

ZMAD was calculated in R.

Annotation of genomic features for cell lines with RTK-activating mutations were collated 

from the following references, and verified by the Cancer Cell Line Encyclopedia (https://

portals.broadinsti-tute.org/ccle/home) where possible: EOL1 (Griffin et al., 2003); 

NCIH1703 (Ramos et al., 2009); SW579 (McDermott et al., 2009); KASUMI1 (Larizza et 

al., 2005); MOLM13 and MV411 (Quentmeier et al., 2003); EBC1 (Lutterbach et al., 2007); 

SNU620 (Liu et al., 2014); HS746T (Asaoka et al., 2010); IM95 (Iwai et al., 2003); 

DMS114 and NCIH1581 (Weiss et al., 2010); JMSU1 and UMUC1 (Tomlinson et al., 2009); 

NCIH716 (Mathur et al., 2014); KATOIII and SNU16 (Lorenzi et al., 1997); KMS11 and 

OPM2 (Ronchetti et al., 2001); RT112 and RT4 (Williams et al., 2013).

Published Kd values of binding (Davis et al., 2011) and percent inhibition at 1 μM 

(Uitdehaag et al., 2014) were used to determine most relevant targets and to select follow-up 

inhibitors for further study.

Follow-up screening—Cells were plated and screened in 384-well format as described 

previously (Rees et al., 2016). Briefly, cells were manually plated in white, opaque tissue-

culture-treated plates (Corning) at 1000 cells/well, compounds were added (1:300 dilution) 

using a CyBi-Well Vario pin-transfer machine 24 hours after plating, and sensitivity was 

measured using CellTiterGlo 72 hours after the addition of small molecules. At least two 

biological replicates were done for each condition. See Key Resources Table (KRT) for 

small-molecule annotated targets and vendor information.

Small-molecule combination screening—Viability measurements were performed in 

384-well plates as described above. A 1:1 mixture of the top concentration of individual 
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compounds, followed by serial dilution (2-fold), was used for combinations, and compounds 

were added using a HP D300e Digital Printer.

CRISPR screening—Genome-scale CRISPR-Cas9 mediated screening has been 

described previously (Aguirre et al., 2016, Meyers et al., 2017). The GeCKO 19Q1 release, 

which includes an additional ten cell lines screened with the GeCKO library for a total of 43, 

was used (data available at the DepMap Portal: https://depmap.org/portal).

Western blotting—Western blotting was performed as previously described (Rees et al., 

2016). See Key Resources Table (KRT) for antibody and reagent details. Whole-cell lysates 

were prepared by incubating cell pellets for 30 minutes in 1% NP-40 (Sigma-Aldrich) lysis 

buffer containing freshly added Protease/Phosphatase Inhibitor Cocktail (Cell Signaling 

Technology, #5872). After incubation, lysates were spun at 4°C, 13,000 RPM for ten 

minutes and supernatant collected and quantitated using BCA assay (Pierce). Proteins were 

prepared with 4× sample buffer containing 5% 2-mercaptoethanol (Sigma-Aldrich) and 

heated to 95 °C for 10 min 20 μg per sample was loaded onto Novex NuPAGE or Bolt 4–

12% Bis-Tris Plus gels (Life Technologies) for electrophoresis. For NuPAGE gels, proteins 

were then transferred to PVDF membranes (EMD Millipore) using NuPAGE transfer buffer 

(Life Technologies), blocked for 30 min in 5% milk (Labscientific) in PBS-T or Odyssey 

buffer TBS-T (LICOR, Prod# 927), and incubated overnight at 4°C with primary antibody in 

1% milk in PBS-T, 5% BSA (Sigma Aldrich) in PBS-T, or Odyssey buffer with 0.2% Tween 

20. All primary antibodies were diluted to 1:1000, except for B-actin HRP (1:5000), Hsp90 

(1:3000), SMARCB1 (1:6000), FGFR1 (1:5000), and AKT (1:2000).

After 3×5 min washes in PBST-T or TBS-T, membranes were then incubated for one hour at 

room temp with either LICOR antibodies and visualization, or rabbit HRP-linked secondary 

antibodies (Jackson ImmunoResearch Laboraties) at 1:3000 in 1% milk in PBS-T, then 

washed again and visualized on HyBlot CL film (Denville Scientific) using SuperSignal 

West Pico or Femto chemiluminescence substrate (Thermo Scientific). For Bolt gels, dry 

transfer and antibody incubation (secondary antibody: 1:15000) were performed as 

described previously (Rees et al., 2016), with visualization using the LICOR imaging system 

according to the manufacturer’s instructions.

Three biological replicates of cells were prepared and run for each Western.

Phospho-RTK array—R&D Systems RTK Array (ARY001B) was used according to 

manufacturer’s protocol. To analyze basal phospho-RTK levels, parental rhabdoid cell lines 

were seeded in T75 flasks and harvested when confluent.

For analysis of phospho-RTK levels after compound treatment, rhabdoid cell lines were 

seeded at 2M cells/10 cM plate for 24 hr, then treated with compounds for three hours. 

Lysates were prepared with Halt Protease Inhibitor Cocktail (Thermo 78425), quantified 

using BCA assay (Pierce) and 450 μg of protein was used per array. Arrays were detected on 

HyBlot CL film (Denville Scientific).
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Compound treatment and protein analysis—Cells were plated at 400,000 cells/well 

in 6-well plates. At 24 hr, plates were treated with compounds (or DMSO) for the indicated 

time then harvested for western blotting. Two to three biological replicates were done for 

each condition.

Compound treatment and colony formation assay—Rhabdoid and control cell lines 

were seeded at 1,500 cells/well in 300 μL volume in 24-well plates. 24 hr after plating, 

DMSO or SHP099 was added to wells, with each concentration in duplicate. On day 4 of 

treatment, media was changed and SHP099 replenished. On day 10, cells were stained with 

crystal violet solution. Two biological replicates were done for each condition.

SMARCB1 retroviral expression—HEK293T cells were transfected with pBabe/FL-

SMARCB1 or pBabe/Empty Vector (EV) and pCL-10A1 packaging vector, and retroviral 

supernatants collected and infected into G402 cells as described (Wohrle et al., 2013). Media 

was changed at 24 hr after infection, and puromycin selection (5 μg/mL) was started at 48 hr 

after infection. After 48 hr selection, cells were plated at 2M cells/10 cM plate for another 

24 hr, then scraped (72 hr total puromycin selection) and prepared for Western blotting to 

confirm SMARCB1 re-expression and to probe RTK proteins. Three biological replicates 

were prepared and tested each for the empty vector (EV) and SMARCB1 add-back 

conditions

RNA-seq (SMARCB1 add-back)—Cells were harvested and prepared for RNA-seq as 

described previously (Wang et al., 2016). Two biological replicates were prepared each for 

the empty vector (EV) and SMARCB1 add-back conditions. On average, 22 million 75bp, 

single-end reads were generated for each sample.

Rhabdoid cell line methylation profiling—DNA was extracted from rhabdoid cell 

lines using the Qiagen DNeasy Blood and Tissue Kit (Cat No. 69504) following 

manufacturer’s instructions, and 500ng of DNA was submitted to the St. Jude Hartwell 

Center for Methylation Profiling using Illumina Infinium Methylation EPIC (850K) 

BeadChip arrays. iDAT files were uploaded and analyzed using the Brain Tumor 

Methylation Profiler v11b4 version 2.0 (https://www.molecularneuropathology.org) 

providing methylation classifier results for each sample.

QUANTIFICATION AND STATISTICAL ANALYSIS

Xenogen® quantification and xenograft statistical analyses—The Living Image 

4.3 software (Caliper Life Sciences) was used to generate a standard region of interest (ROI) 

encompassing the largest tumor at maximal bioluminescence signal. The identical ROI was 

used to determine the average radiance (photons/s/cm2/sr) for all xenografts. Survival curves 

of time to tumor progression were generated by the Kaplan-Meier method. Log-rank tests 

were used to compare survival curves across all treatment groups.

Analysis of small-molecule combination screening—Synergy calculations to assess 

deviation from Loewe additivity were carried out as described previously (Seashore-Ludlow 

et al., 2015) in R using the ‘drc’ package to fit curves and calculate EC50, AUC and IC50 
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values (Ritz and Streibig, 2005). Combinations were excluded from synergy analysis when 

the maximal effect did not reach 0.5, precluding accurate estimation of IC50 values. At least 

two biological replicates were done for each condition.

Western blot and phospho-RTK array quantitation—Western blots were quantified 

in ImageJ (v1.50i, NIH) as described: (http://lukemiller.org/index.php/2010/11/analyzing-

gels-and-western-blots-with-image-j/). For phospho-RTK arrays, films were scanned, 

converted to grayscale, and quantified in ImageJ. A region of interest (ROI) was defined 

around the pair of reference dots in the upper left corner of the array. Using this ROI, Grey 

Mean Value was measured around the reference dots. The empty grey space directly above 

these dots was measured as a background control. Another ROI was defined for the pair of 

dots for each protein, and this ROI was also used to measure nearby empty space as a 

background control. The value for each pair of dots was subtracted from its corresponding 

background measurement. This result for each protein was then divided by the result from 

the reference spots, to normalize expression within each array. The resultant values were 

then visualized using a heat map.

RNA-seq analysis—Reads were aligned to the hg19 reference using RSEM v1.3.0 (Li 

and Dewey, 2011) (rsem-calculate-expression –bowtie2 –estimate-rspd –output-genome-

bam). The RSEM commands, rsem-generate-data-matrix and rsem-run-ebseq, were then 

used to determine differentially expressed genes.

Cancer cell line RNA-seq data were obtained from the Cancer Cell Line Encyclopedia 

(CCLE):

https://ocg.cancer.gov/ctd2-data-project/translational-genomics-research-institute-quantified-

cancer-cell-line-encyclopedia

Rhabdoid tumor expression samples—RNA-seq gene-level quantitation (count) data 

for 65 RT samples (Chun et al., 2016) were downloaded from the TARGET website (https://

ocg.cancer.gov/programs/target) and analyzed for differential expression using the DESeq2 

package in R (Love et al., 2014). Adjusted p-values were calculated using Benjamini-

Hochberg correction.

Microarray samples GSE70678 (Johann et al., 2016) GSE35493 (Birks et al., 2013), 

GSE64019 (Han et al., 2016), and GSE11482 (Gadd et al., 2010) were downloaded from 

GEO. Differential expression in GSE64019 was analyzed using GEO2R.

Data from Torchia et al. was provided by the study authors (Torchia et al., 2015) and 

processed using the limma R package, with normalization and background correction using 

the ‘neqc’ function (Shi et al., 2010, Ritchie et al., 2015).

Rhabdoid cell line gene expression-based clustering—TPM expression data for 

57,820 genes and 1,165 cell lines generated by the DepMap project were downloaded from 

the DepMap Portal (https://depmap.org/portal, version 19q1; 

CCLE_depMap_19Q1_TPM.csv) The top 25% most variable genes were identified by those 

with the highest standard deviations of gene expression across all 1,165 cell lines. To 
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visualize the data, t-Distributed Stochastic Neighbor Embedding (tSNE) was performed 

using the FIt-SNE R package (Linderman et al., 2019). Next, the expression dataset was 

subsetted to only include rhabdoid tumor lines. The 25% most variable genes within 

rhabdoid tumors were identified as above. Next, tSNE was performed using the FIt-SNE R 

package (Linderman et al., 2019).

DATA AND CODE AVAILABILITY

Code available for processing small-molecule sensitivity screening data is available at 

https://github.com/remontoire-pac/ctrp-reference. Code available for processing genome-

scale CRISPR knockout data is available at https://github.com/cancerdatasci/. Any additional 

scripts or code written by the authors are available upon request from the corresponding 

author.

Original underlying data is available online from Mendeley Data DOI: 

10.17632/2vcpns9jgw.1:

1. Concentration-response curves from 30 RTK inhibitors across 16 RT CCLs (data 

underlying Figure 1b).

2. AUC values of AKT and MEK inhibitors in RT and control cell lines (data 

underlying Figure S1a).

3. Association of RTK dependencies and RTK transcript expression (data 

underlying Figure 2a, related to 1c, S1e).

4. Activity of RTK inhibitors in select non-RT CCLs (data underlying Figure S1d).

5. Scans of phospho-RTK arrays (data underlying Figure 2b, 3a, 3b)

6. Concentration-response curves of pairwise combination treatments of RTK 

inhibitors in RT cell lines (data underlying Figure 3c, d).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1). 
Receptor tyrosine kinases represent vulnerabilities within RT cell lines.

a) ZMAD AUC distributions for 49 annotated RTK inhibitors (and 432 non-RTK inhibitors) 

across 8 RT cell lines and 879 non-RT cell lines (see Figure S1a–c, Table S1). b) z-scored 

AUC values for 30 RTK inhibitors across 16 RT CCLs (see Table S1). c) CERES scores for 

7 RTK-encoding genes with a CERES score < −0.5 and ZMAD CERES < −2 (in RT relative 

to 35 non-RT CCLs) in ≥1 RT CCL (see Figure S1e, Table S3). Visualization and 

hierarchical clustering of rows and columns (1 – Pearson correlation) were performed using 

Morpheus (https://software.broadinstitute.org/morpheus/).
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Figure 2). 
RT CCLs express activated RTKs targetable by small-molecules.

a) CRISPR CERES scores and RNA levels for 6 different RTK-encoding genes across 43 

CCLs. RT CCLs are shown in blue (see Table S3). b) Heatmap of results of phospho-RTK 

array in 16 rhabdoid cell lines. Visualization and hierarchical clustering of rows and columns 

(1 – Pearson correlation) were performed using Morpheus (https://

software.broadinstitute.org/morpheus) (see Figure S2a). c) Fold-change of RTK pathway 

genes in RNA-seq in G402 cells with empty vector (EV) vs SMARCB1 re-expression after 

72 hours puromycin selection. p-values calculated using unpaired t test without assuming a 

consistent SD. ns, not significant; *p<0.05; **p<0.01; ***p<0.001. d) Western blots in EV 

and SMARCB1 G402 cells after 72 hours puromycin selection. Bar graph shows results 

from three biological replicates (mean + SEM) (see Figure S2b). e-f) Westerns blots on 3- 
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and 12-hour RTK inhibitor treatment in e) PDGFRA-expressing NCIH2004RT cells and f) 

MET-expressing TTC642 and MON cells (see Figure S2c–e).
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Figure 3). 
Combination of RTK inhibitors results in synergistic cell killing in RT CCLs.

a) TTC642 cells were treated with indicated inhibitors for three hours then subjected to 

phospho-RTK analysis with arrays. Relative phospho-RTK expression was quantified in 

ImageJ (see Figure S2d). b) Lysates from treated TTC642 cells were run for RTK pathway 

members by Western blot. Relative protein expression was quantified in ImageJ (see Figure 

S2d). (c-d) Pairwise combination treatments of 13 RTK inhibitors in c) TTC642 and d) 

G402 CCLs. FGFR inhibitors are highlighted in yellow. MET inhibitors are highlighted in 

blue. Red circles indicate synergistic interactions, with interactions exceeding a 99% 

confidence interval threshold surrounded by a black box. Inert combinations are indicated 

with black dots. Visualization was performed using the Corrplot package in R (see Figure 

S3).
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Figure 4). 
Preclinical testing of rhabdoid orthotopic xenografts.

a) Drug schedule selected for preclinical testing matched to relevant regimens used in 

patients. (b-e) Representative plot of tumor burden for TTC642 xenografts, as measured by 

bioluminescence over time, in a preclinical phase 2 study with the treatment groups listed 

compared to placebo control and DOXO+VCR (standard of care regimen used for rhabdoid 

tumor). Each line is a different mouse. f) Representative images and accompanying tumor 

micrographs from TTC642 xenograft mice with progressive disease in the placebo control, 

pazopanib, cabozantinib, and DOXO+VCR groups. Representative images of mice with 

stable disease in the lenvatinib group and a partial response shown for the CABO+DOXO

+VCR treatment group. g) Survival curves for the TTC642 xenografts for the 6 indicated 

treatment groups, p-value determined by log-rank tests for each survival group. h) Histogram 

of the percentage of CR, PR, SD, and PD as determined by bioluminescence criteria for both 
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TTC642 and A204 rhabdoid xenografts. The number of mice in each group is indicated. 

Abbreviations: CABO, cabozantinib; DOXO, doxorubicin; VCR, vincristine; PD, 

progressive disease; SD, stable disease; PR, partial response; CR, complete response; PAZO, 

pazopanib.
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Figure 5). 
SHP2/PTPN11 inhibition is an RTK-dependent vulnerability shared across RT cell lines.

a) Pooled cell-line screening of SHP099 at 8 concentrations in 274 cancer cell lines, 

including 14 RT lines. Cell lines containing BCR-ABL translocation (known to sensitize to 

SHP2 inhibition) are the most sensitive to SHP099 (lowest AUC). RT CCLs have a lower 

AUC than that of CCLs containing RTK activating mutations (known to sensitize to SHP2 

inhibition) or RAS/RAF mutations (known to create SHP2 independence). b) (Unpooled) 

validation screening SHP099 AUC (averaged across at least two replicates) correlates with 

CRISPR CERES scores for PTPN11 in RT cell lines and selected controls (see Figure S5a, 

Table S6). c) SHP099 treatment (3 hr) decreases phopho-ERK in a concentration-dependent 

manner in sensitive cell lines and has no effect in negative control A2058 cells (see Figure 

S5a). d) Crystal violet staining shows that ten-day treatment of cells with SHP099 decreases 

number of colonies in a concentration-dependent manner in sensitive cell lines and has no 
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effect in negative control A375 cells. e) Gene expression based tSNE clustering of 1,165 cell 

lines reveals that rhabdoid cell lines cluster together. f) Clustering of 21 RT cell lines (the 16 

cell lines characterized here, along with 5 more) alone does not reveal tissue-based 

clustering.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

B-actin Rabbit mAb (HRP Conjugate) Cell Signaling Cat#5125; RRID: AB_1903890

CoxIV (3E11) Cell Signaling Cat#4850; RRID: AB_2085424

Hsp90 Cell Signaling Cat#4874S; RRID: AB_2121214

GAPDH (14C10) Cell Signaling Cat#2118; RRID: AB_561053

GAPDH (D4C6R) Cell Signaling Cat#97166S; RRID: AB_2756824

SMARCB1/SNF5 Bethyl Cat#A301-087; RRID: AB_2779664

p-PDGFRα (Tyr754) (23B2) Cell Signaling Cat#2992 ; RRID: AB_390728

p-PDGFRα (Tyr762) Cell Signaling Cat#12022; RRID: AB_2636868

PDGFRα Cell Signaling Cat#3164; RRID: AB_2162351

p-PDGFRβ (Tyr751) Cell Signaling Cat#3161; RRID: AB_331053

PDGFRβ Cell Signaling Cat#3162; RRID: AB_331111

VEGFR1 (clone Y103) Abcam Cat#ab32152; RRID: AB_778798

VEGFR2 Cell Signaling Cat#2479; RRID: AB_2212507

p-Gab1 (Tyr307) Cell Signaling Cat#3234; RRID: AB_2221302

Gab1 Cell Signaling Cat#3232; RRID: AB_2304999

p-Met (Tyr1003) (13D11) Cell Signaling Cat#3135; RRID: AB_2285325

p-MET (Tyr1234/1235) (D26) XP Cell Signaling Cat#3077; RRID: AB_2143884

p-MET (Tyr1349) (130H2) Cell Signaling Cat#3133; RRID: AB_2181539

Met (D1C2) XP Cell Signaling Cat#8198; RRID: AB_10858224

p-EGFR (Tyr1068) D7A5 XP Cell Signaling Cat#3777; RRID: AB_2096270

p-EGFR (Tyr992) Cell Signaling Cat#2235; RRID: AB_331708

p-EGFR (Tyr1045) Cell Signaling Cat#2237; RRID: AB_331710

EGFR Cell Signaling Cat#4267; RRID: AB_2246311

p-FGFR1 (Tyr653/654) Cell Signaling Cat#3471; RRID: AB_331072

FGFR1 (D8E4) Cell Signaling Cat#9740; RRID: AB_11178519

FGFR2 (Bek, C-17) Santa Cruz Cat#sc-122; RRID: AB_631509

FGFR3 Cell Signaling Cat#4574; RRID: AB_2246903

p-FRS2-alpha (Tyr436) Cell Signaling Cat#3861; RRID: AB_2231950

p-AKT (Thr308) Cell Signaling Cat#9275; RRID: AB_329828

p-AKT (Ser473) Cell Signaling Cat#9271S; RRID: AB_329825

AKT Cell Signaling Cat#9272; RRID: AB_329827

p-MEK1/2 (Ser217/221) Cell Signaling Cat#9154P; RRID: AB_2138017

MEK1/2 Cell Signaling Cat#9122; RRID: AB_823567

p-p70 S6K (Thr389) (108D2) Cell Signaling Cat#9234; RRID: AB_2269803

p70 S6K (49D7) Cell Signaling Cat#2708; RRID: AB_390722

SHP2 (SH_PTP2) (B-1) Santa Cruz Cat#sc-7384; RRID: AB_628252
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REAGENT or RESOURCE SOURCE IDENTIFIER

Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (197G2) Cell Signaling Cat#4377T; RRID: AB_331775

p44/42 MAPK (Erk1/2) (137F5) Cell Signaling Cat#4695; RRID: AB_390779

Anti-mouse IgG Antibody, HRP-conjugated secondary Cell Signaling Cat#7076; RRID: AB_330924

Anti-rabbit IgG Antibody, HRP-conjugated secondary Cell Signaling Cat#7074; RRID: AB_2099233

Goat Anti-Mouse IgG Antibody, IRDye 680RD Conjugated LI-COR Biosciences Cat#926-68070; RRID: AB_10956588

Goat Anti-Rabbit IgG Antibody, IRDye 800CW Conjugated LI-COR Biosciences Cat#926-32211; RRID: AB_621843

Chemicals, Peptides, and Recombinant Proteins

CellTiter-Glo Luminescent Cell Viability Assay Promega Cat#G7573

Protease/Phosphatase Inhibitor Cocktail Cell Signaling Cat#5872

Halt Protease Inhibitor Cocktail Thermo Cat#78425

2-mercaptoethanol Sigma-Aldrich Cat# M6250; CAS Number: 60-24-2

TRIzol Reagent Life Technologies Cat#15596018

cabozantinib (gene name of protein targets: FLT3;KDR;MET;RET) SelleckChem S1119; CAS: 849217-68-1

dasatinib (EPHA2;KIT;LCK;SRC;YES1) SelleckChem S1021; CAS: 302962-49-8

Nintedanib (FGFR1;FGFR2;FGFR3;FLT1;FLT3;KDR; 
PDGFRA;PDGFRB)

SelleckChem S1363; CAS: 228559-41-9

Ki8751 (KDR;KIT;PDGFRA) SelleckChem S1363; CAS: 228559-41-9

sunitinib (FLT1;FLT3;KDR;KIT;PDGFRA;PDGFRB) SelleckChem S1042; CAS: 341031-54-7

lenvatinib (FLT1;FLT3;KDR;KIT;PDGFRA;PDGFRB) SelleckChem S1164; CAS: 417716-92-8

axitinib (FLT1;FLT3;KDR;KIT;PDGFRA;PDGFRB) SelleckChem S1005; CAS: 319460-85-0

AZD4547 (FGFR1;FGFR2;FGFR3) SelleckChem S2801; CAS: 1035270-39-3

OSI-930 (KDR;KIT) SelleckChem S1220; CAS: 728033-96-3

KW-2449 (AURKA;FLT3) SelleckChem S2158; CAS: 1000669-72-6

SGX-523 (MET) SelleckChem S1112; CAS: 1022150-57-7

lapatinib (EGFR;ERBB2) SelleckChem S1028; CAS: 388082-77-7

foretinib (KDR;MET) SelleckChem S1111; CAS: 849217-64-7

quizartinib (FLT3) SelleckChem S1526; CAS: 950769-58-1

imatinib (ABL1;BCR;KIT) SelleckChem S2475; CAS: 152459-95-5

infigratinib (FGFR1;FGFR2;FGFR3) SelleckChem S2183; CAS: 872511-34-7

tandutinib (FLT3;KIT) SelleckChem S1043; CAS: 387867-13-2

cediranib (FLT1;FLT4;KDR) SelleckChem S1017; CAS: 288383-20-0

crizotinib (ALK;MET) SelleckChem S1068; CAS: 877399-52-5

pazopanib (FLT1;FLT3;KDR;KIT;PDGFRB) SelleckChem S1035; CAS: 635702-64-6

erlotinib (EGFR;ERBB2) SelleckChem S1023; CAS: 183319-69-9

tivozanib (FLT1;FLT3;KDR) SelleckChem S1207; CAS: 475108-18-0

glesatinib (FLT1;FLT3;KDR;MET) SelleckChem S1361; CAS: 875337-44-3

allitinib (EGFR;ERBB2;ERBB4) SelleckChem S2185; CAS: 1050500-29-2

vandetanib (EGFR;KDR) SelleckChem S1046; CAS: 443913-73-3

PD173074 (FGFR1;FGFR2;FGFR3;KDR) SelleckChem S1264; CAS: 219580-11-7

CP-673451 (PDGFRA;PDGFRB) SelleckChem S1536; CAS: 343787-29-1
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REAGENT or RESOURCE SOURCE IDENTIFIER

crenolanib (PDGFRA;PDGFRB;FLT3) SelleckChem S2730; CAS: 670220-88-9

masitinib (KIT;PDGFRA;PDGFRB) SelleckChem S1064; CAS: 790299-79-5

ponatinib (ABL1;PDGFRA;KDR;FGFR1;SRC;KIT) SelleckChem S1490; CAS: 943319-70-8

SHP099 (PTPN11) MedChemExpress HY-100388; CAS: 1801747-42-1

DOXOrubicin HCl injection, USP (for mice) Sagent Pharmaceuticals 25021-207-05

Vincristine Sulfate Injection, USP Hospira 61703-309-16

Pazopanib free base MedKoo Biosciences 202161; CAS: 444731-52-6

Cabozantanib free base MedKoo Biosciences 200595; CAS: 849217-68-1

Levantinib mesylate MedKoo Biosciences 201080; CAS: 857890-39-2

Critical Commercial Assays

Human Phospho-RTK Array R&D Systems Cat# ARY001B;

DNeasy Blood and Tissue Kit Qiagen Cat#69504

RNeasy MinElute Cleanup Kit Qiagen Cat#74204

TruSeq Total RNA Sample Prep Kit Illumina Cat# 20020597

Deposited Data

Dose-response curves from 30 RTK inhibitors across 16 RT cell 
lines

This paper DOI: 10.17632/2vcpns9jgw.1

Density plots of AUC values of AKT and MEK inhibitors This paper DOI: 10.17632/2vcpns9jgw.1

Association of RTK dependencies and RTK transcript expression This paper DOI: 10.17632/2vcpns9jgw.1

Activity of RTK inhibitors in select non-RT CCLs This paper DOI: 10.17632/2vcpns9jgw.1

Scans of phospho-RTK arrays This paper DOI: 10.17632/2vcpns9jgw.1

Dose-response curves of pairwise combination treatments of RTK 
inhibitors in RT cell lines

This paper DOI: 10.17632/2vcpns9jgw.1

Experimental Models: Cell Lines

A204 (Sex: F) Broad Biological Samples 
Platform (BSP)

RRID: CVCL_1058

BT12 (F) Roberts Lab RRID: CVCL_M155

BT16 (Sex: M) Roberts Lab RRID: CVCL_M156

CHLA266 (F) Roberts Lab RRID: CVCL_M149

G401 (M) BSP RRID: CVCL_0270

G402 (F) BSP RRID: CVCL_1221

KD (F) Franck Bourdeaut RRID: CVCL_U757

KPMRTRY (M) Yasumichi Kuwahara RRID: CVCL_7051

KYM1 (F) BSP RRID: CVCL_3007

MON (F) Franck Bourdeaut RRID: CVCL_M846

NCIH2004RT (M) Roberts Lab RRID: CVCL_U759

TM87 (M) Roberts Lab RRID: CVCL_8001

TTC549 (F) Roberts Lab RRID: CVCL_8005

TTC642 (M) Roberts Lab RRID: CVCL_8006

TTC709 (M) Roberts Lab RRID: CVCL_8007

TTC1240 (F) Timothy Triche RRID: CVCL_8002
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REAGENT or RESOURCE SOURCE IDENTIFIER

A375 (F) BSP RRID: CVCL_0132

A673 (F) Stegmaier Lab RRID: CVCL_0080

A2058 (M) ATCC RRID: CVCL_1059

CAL120 (F) BSP RRID: CVCL_1104

LUDLU1 (M) BSP RRID: CVCL_2582

MeWo (M) BSP RRID: CVCL_0445

MKN45 (F) BSP RRID: CVCL_0434

MV411 (M) BSP RRID: CVCL_0064

T47D (F) BSP RRID: CVCL_0042

U2OS (F) BSP RRID: CVCL_0042

HEK293T (F) ATCC RRID: CVCL_0063

Experimental Models: Organisms/Strains

Athymic nude immunodeficient mice (female) Jackson Laboratories Strain code 007850

Recombinant DNA

pBabe/FL-SMARCB1 Robert Kingston Sif et al., 1998

pBabe/Empty Vector Robert Kingston Sif et al., 1998

pCL-10A1 Retrovirus Packaging Vector Wohrle et al., 2013; Novus 
Biologicals

Cat# NBP2-29542

Software and Algorithms

ImageJ v1.50i NIH https://imagej.nih.gov/ij/; 
RRID:SCR_003070

Prism 8 GraphPad http://www.graphpad.com/

Spotfire v7.0.1 TIBCO http://www.tibco.com

MatLab R2018a Mathworks http://www.mathworks.com

CTRPv2.0 MatLab curve-fitting procedures Rees M.G., Seashore-Ludlow 
B., Clemons P.A. (2019) 
Computational Analyses 
Connect Small-Molecule 
Sensitivity to Cellular 
Features Using Large Panels 
of Cancer Cell Lines. In: 
Ziegler S., Waldmann H. 
(eds) Systems Chemical 
Biology. Methods in 
Molecular Biology, vol 1888. 
Humana Press, New York, 
NY

https://doi.org/
10.1007/978-1-4939-8891-4_14; 
https://github.com/remontoire-pac/
ctrp-reference

R v3.6 R Foundation for Statistical 
Computing

https://www.r-project.org/foundation/

RSEM v1.3.0 Li and Dewey, 2011

‘Fit-SNE’ R package for t-SNE visualization Linderman et al. 2019

‘DESeq2’ R package v1.24.0 for differential expression Love et al., 2010

‘limma’ R package v3.40.2 for mRNA expression processing Shi et al. 2010

‘drc’ package v3.0-1 for curve fitting Ritz and Streibig, 2005

Brain Tumor Methylation Profiler v11b4 version 2.0 DKFZ https://
www.molecularneuropathology.org

Other
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REAGENT or RESOURCE SOURCE IDENTIFIER

NuPAGE 4-12% Bis-Tris Protein Gels, 1.0 mm, 17-well Thermo Fisher Scientific Cat# NP0329BOX

Bolt 4-12% Bis-Tris Plus gels Life Technologies Cat# NW04120BOX

PVDF membrane EMD Millipore Cat# IPVH00010

Licor Odyssey buffer TBS-T LICOR Cat# 927

HyBlot CL film Denville Scientific Cat# E3012
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