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Background.  People living with human immunodeficiency virus (HIV) infection have higher risk for chronic kidney disease 
(CKD), defined by a reduced estimated glomerular filtration rate (eGFR). Previous studies have implicated epigenetic changes re-
lated to CKD; however, the mechanism of HIV-related CKD has not been thoroughly investigated.

Methods.  We conducted an epigenome-wide association study of eGFR among 567 HIV-positive and 117 HIV-negative male 
participants in the Veterans Aging Cohort Study to identify epigenetic signatures of kidney function.

Results.  By surveying more than 400 000 cytosine guanine dinucleotide (CpG) sites measured from peripheral blood mono-
nuclear cells, we identified 15 sites that were significantly associated with eGFR (false discovery rate Q value < 0.05) among HIV-
positive participants. The most significant CpG sites, located at MAD1L1, TSNARE1/BAI1, and LTV1, were all negatively associated 
with eGFR (cg06329547, P = 5.25 × 10–9; cg23281907, P = 1.37 × 10–8; cg18368637, P = 5.17 × 10–8). We also replicated previously 
reported eGFR-associated CpG sites including cg17944885 (P = 2.5 × 10–5) located between ZNF788 and ZNF20 on chromosome 19 
in the pooled population.

Conclusions.  In this study we uncovered novel epigenetic associations with kidney function among people living with HIV and 
suggest potential epigenetic mechanisms linked with HIV-related CKD risk.
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Human immunodeficiency virus (HIV) infection continues to 
be a major cause of morbidity and mortality around the world 
[1]. In 2016, approximately 36.7 million people worldwide 
were living with HIV, 1.8 million cases of incident HIV infec-
tion occurred, and 1.0 million people died from HIV-related 
diseases [2]. Although antiretroviral therapy (ART) is effective 
at suppressing viral replication and improves life expectancy, 
people with HIV (PWH) [2] are at increased risk for chronic in-
flammation, premature aging, and metabolic disorders [3] that 
are associated with renal impairment [4].

Chronic kidney disease (CKD), which emerged as a common 
complication of both HIV infection and its treatment, has been 
a critical cause of shortened life span in PWH [3]. The pathogen-
esis of HIV-related CKD is often multifactorial, linked to direct 

exposure to HIV viremia, superinfections, and the systemic im-
mune response to infection [3, 5], as well as to traditional CKD 
risk factors such as increased body mass index (BMI), hyper-
tension, diabetes, and cigarette smoking [6–9]. ART regimens 
may partially explain the higher burden of kidney dysfunction 
in PWH [10]. Apart from these observations, the underlying 
molecular mechanisms and pathophysiologic pathways of de-
veloping HIV-related CKD remain largely unknown. To further 
improve health outcomes for PWH, we need to better under-
stand the molecular mechanisms that contribute to the pro-
gression and onset of HIV-related CKD [11] and identify useful 
biomarkers.

In addition to genetic factors, including common and rare 
genetic variants, epigenetic modifications have a role in disease 
susceptibility [12]. DNA methylation (DNAm), the epigenetic 
modification most studied at the population level, has been as-
sociated with kidney disease traits [13]. Previous epigenome-
wide association studies (EWAS) identified numerous DNAm 
sites associated with estimated glomerular filtration rate (eGFR) 
[14–17], which is widely used to assess the filtration function 
of the kidneys and to diagnose CKD. However, the results were 
not consistent across studies, which included populations with 
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CKD of varying causes and degrees of severity. Epigenetic 
associations with eGFR and CKD have not been investigated 
among PWH.

HIV infection has also been associated with epigenetic variants 
and DNAm. Several EWAS have identified and replicated DNAm 
sites associated with HIV infection and viremia [18]. A recent 
study also reported epigenetic associations with diabetes among 
PWH [19]. Epigenetic clock, an emerging aging biomarker based 
on age-related DNAm [20], has been linked with HIV infection 
and suggested accelerated epigenetic aging among PWH [21–23].

Characterizing DNAm patterns related to CKD caused by 
HIV infection and antiretroviral therapy may offer insights into 
its pathogenesis and the potential for prevention or treatment. 
We utilized the EWAS approach to identify differential methyl-
ation related to the risk for HIV-associated CKD. We examined 
previously identified eGFR-associated DNAm sites and discov-
ered novel epigenetic associations with eGFR among PWH.

METHODS

Samples and Phenotypes

The phenotypic and epigenetic data were from the Veterans 
Aging Cohort Study (VACS), which is an observational, pro-
spective study of veterans in care at the Department of Veterans 
Affairs medical centers across the United States [18]. VACS was 
approved by the human research protection program of Yale 
University and the institutional research board committee at the 
Connecticut veteran healthcare system, West Haven campus. 
All VACS participants provided written consent.

We included 567 HIV-positive and 117 HIV-negative male 
participants who had both phenotypic and epigenome-wide 
DNAm data available in the VACS. A  questionnaire was 
completed by each participant at the baseline in order to collect 
clinical information, including the presence of chronic health 
conditions, information on cigarette smoking, use of medica-
tion, and antiretroviral treatment [23]. Total white blood cell 
counts and CD4 counts were enumerated at the time of pe-
ripheral whole blood sample collection [18, 23]. The eGFR was 
calculated from standardized creatinine levels, sex, race, and 
age using the CKD epidemiology collaboration equation [24]. 
All individuals with an eGFR less than 60 mL/min/1.73 m2 are 
classified as having CKD regardless of other evidence of kidney 
damage.

Epigenomic Data Generation, Processing, and Quality Control

Genomic DNA was extracted from whole blood samples using 
PAXGene collection tubes (QIAGEN, Hilden, Germany) 
and FlexiGene DNA extraction kits (QIAGEN). The blood 
samples for epigenetic analysis and estimation of eGFR were 
obtained at the same time point. The Illumina Infinium 
HumanMethylation450 Beadchip (450K; Illumina, San Diego, 
CA), which targets more than 480 000 DNAm sites (ie, cyto-
sine guanine dinucleotide [CpG]) in the human genome, was 

utilized for epigenome-wide profiling at the Yale Center for 
Genomic Analysis. All samples were randomly placed on each 
array and across arrays to reduce batch effects.

Quality control procedures were performed to exclude prob-
lematic samples and CpG sites from analysis. The following steps 
were taken: (1) intensity values with a detection P value ≥ .001 
were set to missing for each CpG site, and 927 CpG sites missing 
in more than 5% of the samples (ie, site-level missing rate >5%) 
were removed; (2) 35  605 probes were removed because they 
were within 10 base pairs from a single-nucleotide polymor-
phism (SNP); (3) 24 749 CpG sites were removed as they mapped 
to multiple genomic locations; and (4) all samples passed a call 
rate >95%. Following Illumina’s control probe scaling proce-
dure, all raw intensity values were quantile normalized using 
limma package in R.  Normalized intensity values were then 
used to generate a methylation score (β value = methylated al-
lele intensity/(unmethylated allele intensity + methylated allele 
intensity + 100) for each CpG site, ranging from 0 representing 
unmethylation to 1 for complete methylation.

DNAm age was calculated using a web-based calculator 
(https://dnamage.genetics.ucla.edu/) with preselected age-
related CpG sites and an algorithm developed by Horvath [25]. 
A t test was performed to assess the mean difference in DNAm 
age (ΔDNAm age = DNAm age – chronological age) between 
the HIV-positive and HIV-negative groups. Linear regressions 
were modeled to examine the association between DNAm age 
and chronological age, as well as eGFR.

Heterogeneous cell-type proportions across individuals is 
a well-established confounder in epigenetic epidemiological 
studies [26]. We calculated proportions of 6 cell types (CD4+ 
T cells, CD8+ T cells, natural killer T cells, B cells, monocytes, 
and granulocytes) in blood using an algorithm developed by 
Houseman et  al [27] (R minfi package). The proportions of 
these 6 leukocyte subtypes were projected based on the top 100 
cell-type–specific DNAm sites from a reference panel of known 
proportions. These estimated cell-type proportions were subse-
quently adjusted in the epigenetic association analyses.

Assessment and Adjustment of Potential Confounding Factors

We conducted multivariate linear regression to examine quan-
titative variables such as DNAm age, race, smoking status, 
diabetes, antihypertension drug usage, and 6 calculated cell 
types as predictors of eGFR, controlling for chronological 
age [28]. Variables with a P value  <  .05 were subsequently 
adjusted as covariates in the EWAS of eGFR. Previously estab-
lished predictors of eGFR (eg, smoking status, diabetes) were 
controlled in the EWAS model regardless of their P values.

Principle Components Analysis

To adjust for population stratification, we performed a principal 
components (PC) analysis using an analytical approach devel-
oped by Barfield et  al [29]. We created a pruned dataset that 
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kept only CpG sites within 50 base pairs of a SNP to approxi-
mate the genome-wide genetic variants. We calculated the PCs 
to measure population stratification using the prcomp function 
in R package Factoextra. Then, we included the top 10 PCs as 
covariates in the EWAS of eGFR.

Statistical Methods

For autosomal analysis among PWH, we used linear mixed 
regression models for the effect of methylation status at indi-
vidual CpG sites on eGFR with random effect for chip. The final 
adjusted models for the EWAS included age, race, BMI, average 
systolic blood pressure (SBP), hepatitis C virus (HCV) infec-
tion status, smoking status (current smoking vs noncurrent 
smoking), diabetes status, antihypertensive medication usage, 
calculated cell-type proportions, and top 10 PCs. For compar-
ison, we performed epigenetic association analyses among the 
HIV-positive and HIV-negative groups separately using the 
same covariates. Also, we estimated the interaction between 
HIV status and CpG sites by running the same regression 
model with an additional interaction term (HIV *β value) in 

the combined study population. To correct for multiple testing, 
we applied a false discovery rate (FDR) Q value of 0.05 and the 
conservative Bonferroni-corrected P value of .05 (nominal P 
value < approximately 10–7 given 480 000 CpG sites) as signif-
icance thresholds. We compared our findings with those from 
2 previously reported populations without HIV infection [15, 
17]. We also separately examined DNAm of 11 232 CpG sites on 
the X chromosome within the pooled sample using the statistic 
model as previously described [30].

RESULTS

After quality control, the analysis dataset included 412  583 
unique CpG sites in 567 HIV-positive and 117 HIV-negative 
participants. Characteristics of these groups are summarized 
in Table 1. All participants were males, with an average age of 
52.0 ± 8.0 years. More participants in the HIV-positive group 
self-reported black race than in the HIV-negative group (85% 
vs 62%). HIV-positive participants had a higher rate of HCV 
infection (58% vs 28%) but lower BMI (25.5 vs 30.7 kg/m2) and 

Table 1.  Demographic and Clinical Characteristics of the Veterans Aging Cohort Study Participants

Characteristic Total (N = 684) HIV Positive (n = 567) HIV Negative (n = 117) P Value

Estimated glomerular filtration rate (mL/min/1.73 m2) 98.4 ± 32.9 99.0 ± 34.0 95.6 ± 26.9 .243

Chronic kidney disease 56 (8%) 47 (8%) 9 (8%) .964

Age (years) 52.0 ± 8.0 52.0 ± 7.8 53.2 ± 8.8 .169

Body mass index (kg/m2) 26.4 ± 5.5 25.5 ± 4.7 30.7 ± 7.1 <.0001

Race/Ethnicity … … … <.0001

  White 88 (13%) 58 (10%) 30 (26%) …

  Black 554 (81%) 481 (85%) 73 (62%) …

  Hispanic 24 (3.5%) 15 (3%) 9 (8%) …

  Other 18 (2.6%) 13 (2%) 5 (4%) …

Smoking status … … … .028

  None 142 (20%) 115 (20%) 27 (23%) …

  Current 376 (55%) 324 (57%) 52 (44%) …

  Past 166 (24%) 128 (23%) 38 (23%) ...

Antihypertensive medication 497 (73%) 402 (71%) 95 (81%) .207

Hepatitis C virus 362 (53%) 329 (58%) 33 (28%) <.001

Diabetes 156 (23%) 115 (20%) 41 (35%) .001

Systolic BP 129.3 ± 14.5 129.3 ± 14.7 129.3 ± 13.1 .107

Diastolic BP 79.1 ± 9.5 79.4 ± 9.4 77.7 ± 10.3 .169

CD4 ... 425 ± 278 ... ...

Nadir CD4 counts ... 217 ± 7 ... ...

Antiretroviral therapya ... 472 (83%) ... ...

  Nonnucleoside reverse transcriptase inhibitor–based regimen ... 205 (36.2%) ... ...

  Protease inhibitor–based regimen ... 273 (48.1%) ... ...

  Ritonavir ... 93 (16.4%) ... ...

  Tenofovir ... 124 (21.9%) ... ...

HIV viral load (copies/mL) ... 75 (75–3400)b ... ...

Undetectable viral load (<200 copies/mL) ... 329 (58%) ... ...

DNA methylation age 53.1 ± 8.6 53.6 ± 8.6 51.1 ± 8.2 .003

Continuous variables were summarized as mean ± standard deviation, and categorical variables were summarized as count (%).

Abbreviations: BP, blood pressure; HIV, human immunodeficiency virus. 
aNonnucleoside reverse transcriptase inhibitors–based regimen includes efavirenz, nevirapine, rilpivirine, doravirine; protease inhibitor–based regimen includes indinavir, nelfinavir, lopinavir, 
fosamprenavir, tipranavir, darunavir, atazanavir.
bMedian (interquartile range). 
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lower prevalence of diabetes than HIV-negative participants. 
The eGFR was, on average, 3.4 mL/min/1.73 m2 higher in the 
HIV-positive group (Table 1 and Supplementary Figure 1), al-
though this result was not statistically significant (P = .24).

Race, BMI, antihypertensive medication use, SBP, and cell-
type proportions were significantly associated with eGFR (Table 
2). Because of previous evidence of eGFR association and ep-
igenetic modification, we also controlled for diabetes, current 
smoking, and HIV infection status as potential confounders in 
the EWAS of eGFR.

DNAm age was correlated with chronological age (r = 0.72, 
P < 2.2 ×  10–6) (Table 1). DNAm age was, on average, 1 year 
older than chronological age among the pooled study popula-
tion (P = .0002). The difference between chronological age and 
DNAm age (ie, ΔDNAm age) was significantly associated with 
HIV infection (P = 8.87 × 10–9), but the significance diminished 
after controlling for diabetes, current smoking, HCV infection, 
and cell-type proportions (P = .34). The ΔDNAm age was not 
significantly associated with eGFR before and after adjusting for 
all potential confounders in the pooled sample (P = .17 and .67).

Supplementary Figure 2a (Manhattan plot) and Table 3 pre-
sent 15 CpG sites significantly associated with eGFR among 
PWH at the FDR <0.05 level after adjusting for covariates. 
A  quantile–quantile (QQ) plot (Supplementary Figure 1b) 
comparing the observed P values to the expected P values for 

this EWAS indicates a low level of global inflation (inflation 
factor = 1.02); therefore, we did not further control for infla-
tion. Manhattan plots and QQ plots of the EWAS among HIV-
negative group and the pooled study population are shown in 
Supplementary Figure 2c–2f. Supplementary Figure 2d and 2f 
indicate a low level of global inflation for both the HIV-negative 
group and the whole study population (inflation factor = 1.00 
and 1.03). The test statistics and annotations of 15 epigenome-
wide significant CpG sites among PWH are summarized in 
Table 3. Thirteen of these 15 significant CpG sites were nega-
tively associated with eGFR (ie, hypermethylation was associ-
ated with reduced renal function). However, the significance of 
these sites was absent among the HIV-negative group (Table 3). 
Thirteen of the 15 eGFR-associated CpG sites identified within 
the HIV-positive group were also statistically significant among 
the pooled samples (Table 3). At an alpha level of 0.05, only 2 of 
13 CpG sites had significant interactions with HIV (cg06329547, 
P = .04; cg07796977, P = .04; cg07857040, P = .03).

Using a more stringent Bonferroni-corrected cutoff 
(corrected P  <  .05, nominal P  <  approximately 10–7), 3 CpG 
sites, cg06329547, cg23281907, and cg07796977, remained sig-
nificant. These 3 CpG sites (Supplementary Figure 3a–3c) are 
located within genic regions of mitotic arrest deficient like 1 
(MAD1L1), T-SNARE domain containing 1/ brain-specific 
angiogenesis inhibitor 1 (TSNARE1/BAI1), and DLG associ-
ated protein 2 (DLGAP2), respectively. CpG site cg06329547 
(MAD1L1) was hypermethylated among patients with lower 
eGFR, with a 1% increase in β value associated with a 2.61 
unit decrease in eGFR (95% confidence interval [CI], –3.48, 
–1.74; P = 5.25 × 10–9). CpG site cg23281907, located between 
TSNARE1 and BAI1, was inversely associated with eGFR, 
with a 1% increase in β value associated with a 2.29 unit de-
crease in eGFR (95% CI, –3.08, –1.49; P = 1.37 × 10–8). CpG 
site cg07796977 (DLGAP2) was also inversely associated with 
eGFR, with a 1% increase in β value associated with a 4.56 unit 
decrease in eGFR (95% CI, –6.51, –2.97; P  =  of 3.12 ×  10–8). 
Such significant associations were absent in the HIV-negative 
group. The regional plots (Supplementary Figure 3a–3c) showed 
all tested CpG sites in the neighboring regions of these 3 sites 
and additional association signals with eGFR within these re-
gions. There were 35 (6.2%), 14 (4.8%), and 13 (4.2%) CpG sites 
with P values < .05 in regions for cg06329547, cg23281907, and 
cg07796977, respectively. No statistically significant CpG sites 
were identified in the X chromosome.

 We attempted to replicate eGFR-associated CpG sites 
identified in previous EWAS. Smyth et  al [15] reported 23 
genes with at least 1 CpG site significantly associated with 
eGFR. However, Chu et  al [17] reported a lack of replica-
tion of Smyth’s findings and 18 novel eGFR-associated sites 
in a much larger EWAS of eGFR, including 2264 participants 
from the Atherosclerosis Risk in Communities Study and 
2595 participants from the Framingham Heart Study. Only 

Table 2.  Summary Statistics of Associations Between Covariates and 
Estimated Glomerular Filtration Rate Controlled for Age

Variable Effecta Standard Error P Value

Ageb –0.50 0.16 <.001

Black race 13.4 3.71 <.001

Body mass index –0.35 0.04 .129

Current smoking 2.3 3.11 .467

Antihypertensive drug use –8.5 2.89 .003

HIV 2.2 3.40 .521

Hepatitis C virus 5.2 2.55 .043

Diabetes –2.0 3.01 .508

CD4 <0.01 <0.01 .573

CD4 nadir <0.01 <0.01 .615

HIV viral load <0.01 <0.01 .851

Systolic blood pressure –0.2 0.09 .035

Diastolic blood pressure –0.1 0.13 .506

Cell-type proportion    

  CD8T cell 48.2 15.77 .002

  CD4T cell 19.0 19.79 .338

  Natural killer cell 29.4 23.07 .203

  B cell 110.6 25.71 <.001

  Monocyte –28.0 34.12 .413

  Granulocyte –41.2 9.98 <.001

Antiretroviral therapy –0.9 2.74 .751

DNA methylation age 0.1 0.21 .649

Abbreviation: HIV, human immunodeficiency virus.
aEffect is the beta coefficient from the linear regression model.
bThis regression model did not control for chronological age.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz240#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz240#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz240#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz240#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz240#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz240#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz240#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz240#supplementary-data
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1 site reported by Smyth et  al, cg17500228 in gene exocyst 
complex component 3 (EXOC3), showed an association with 
P <  .05 (Smyth, P = 1.57 ×  10–14; Chu, P =  .0002; VACS, P 
= .0095). We evaluated 17 CpG sites reported by Chu et al (1 
CpG site was excluded after quality control) in our study of 

HIV-positive and HIV-negative participants. We replicated 
cg17944885 located between zinc finger family member 788 
(ZNF788) and zinc finger protein 20 (ZNF20; P = 2.5 × 10–5) 
after multiple testing correction in the pooled population 
(Table 4). There were 5 additional sites with P values < .05 

Table 3.  Top-ranked Cytosine Guanine Dinucleotide Sites Exhibiting Differential DNA Methylation for Estimated Glomerular Filtration Rate 

Cytosine Guanine 
Dinucleotide 
Sites Chromosome Position Gene

HIV Positive HIV Negative Total
Interaction  
P Valueβ SE P Value β SE P Value β SE P Value

cg06329547 7 1937739 MAD1L1 –260.6 44.4 8.28 × 10–9 358.6 482.5 .46 –253.8 42.9 5.25 × 10–9 .04

cg23281907 8 143509556 TSNARE1/BAI1 –228.5 40.6 3.1 × 10–8 –133.3 148.9 .37 –219.9 38.2 1.37 × 10–8 .19

cg07796977 8 962467 DLGAP2 –456.2 81.1 3.12 × 10–8 488.6 319.7 .13 –414.7 77.4 1.20 × 10–7 .04

cg17355919 5 1331538 CLPTM1L –438.2 84.3 2.93 × 10–7 –65.4 244.6 .79 –403.2 79.0 4.40 × 10–7 .21

cg14088090 1 43738485 TMEM125 –408.0 78.8 3.3 × 10–7 –72.8 75.3 .34 –211.7 55.8 1.62 × 10–4 .18

cg10657250 4 156136570 NPY2R –531.0 103.3 3.94 × 10–7 389.4 250.6 .12 –459.8 95.0 1.62 × 10–6 .10

cg08198773 8 1697536 DLGAP2/CLNB –490.7 97.2 6.2 × 10–7 –77.6 213.9 .72 –429.5 86.8 9.55 × 10–7 .09

cg18368637 6 144179905 LTV1 –181.4 36.4 8.93 × 10–7 –166.0 95.0 .09 –185.8 33.7 5.17 × 10–8 .17

cg00296643 2 234371504 DGKD –416.9 84.1 9.93 × 10–7 219.0 373.7 .56 –378.5 79.5 2.39 × 10–6 .28

cg03658275 6 129285274 LAMA2 –162.0 33.2 1.39 × 10–6 –88.0 58.8 .14 –150.7 28.9 2.53 × 10–7 .09

cg03012642 2 21346892 APOB –439.0 90.0 1.44 × 10–6 49.5 390.8 .90 –432.6 85.2 5.12 × 10–7 .15

cg11796565 19 13205681 NFIX 89.8 18.5 1.52 × 10–6 28.4 37.7 .45 79.9 16.6 1.74 × 10–6 .07

cg17344906 19 13202507 NFIX 115.3 23.7 1.61 × 10–6 46.9 49.0 .34 101.1 21.1 2.06 × 10–6 .36

cg17461641 1 164023978 … –322.7 66.6 1.68 × 10–6 –232.8 124.4 .07 –309.3 59.0 2.19 × 10–7 .03

cg07857040 16 1582219 IFT140 –349.4 72.3 1.77 × 10–6 7.1 165.8 .97 –285.3 65.2 1.40 × 10–5 .10

The epigenetic association model was adjusted for age, race, body mass index, average systolic blood pressure, HIV-infection, hepatitis C virus, smoking, diabetes, antihypertensive medi-
cation use, cell-types proportions, and top 10 principle components.

False discovery rate Q < 0.05. Interaction P value is the P value for the cytosine guanine dinucleotide × HIV status term in the multiple regression model.

Abbreviation: HIV, human immunodeficiency virus; SE, standard error.

Table 4.  Replication Analysis of Estimated Glomerular Filtration Rate–associated DNA Methylation Identified in Non–human Immunodeficiency Virus 
Samples

Cytosine Guanine  
Dinucleotide Sites

Chromo-
some Position Gene

Meta-analysis of ARIC and FHS

VACS VACS VACS

HIV Positive HIV Negative Total

P Value β P Value β P Value β P Value

cg17944885 19 12225735 ZNF788/
ZNF20

1.228 × 10–23 –169.00 5 × 10–4 –165.10 .050 –176.9 2.5 × 10–5

cg23597162 7 28102341 JAZF1 2.82 × 10–19 –135.07 8 × 10–4 –181.78 .004 –130.9 1 × 10–4 

cg04036920 11 33562503 C11orf41 2.387 × 10–15 –38.29 .309 10.97 .894 –42.0 .211 

cg00501876 3 39193251 CSRNP1 3.623 × 10–15 13.92 .827 –240.05 .045 –20.7 .703 

cg00994936 19 1423902 DAZAP1 3.259 × 10–11 76.82 .131 10.07 .917 70.7 .112 

cg16428517 16 3317428 MEFV/
ZNF263

1.166 × 10–10 –193.11 .016 –248.22 .058 –224.2 .001 

cg11950754 1 53782077 LRP8 2.006 × 10–10 –23.88 .630 –20.63 .775 –30.1 .460 

cg12065228 1 19652788 PQLC2 2.196 × 10–10 33.58 .242 33.21 .602 33.9 .186 

cg10750182 10 73497514 C10orf105 4.962 × 10–10 –4.99 .943 –297.96 .056 –23.2 .706 

cg09022230 7 5457225 TNRC18 5.222 × 10–10 14.70 .744 28.57 .727 13.6 .727 

cg19942083 12 7070562 PTPN6/
PHB2

7.174 × 10–10 75.67 .017 45.80 .595 80.9 .005 

cg06158227 15 43662311 TUBGCP4 8.482 × 10–10 –230.16 .008 –3.75 .978 –196.4 .007 

cg27660627 16 89461803 ANKRD11 9.939 × 10–10 –175.70 .002 45.92 .618 –125.6 .010 

cg12116137 17 1576449 PRPF8 5.277 × 10–9 –8.32 .755 91.34 .028 5.8 .796 

cg04460609 4 16532808 LDB2 7.854 × 10–9 –27.98 .401 –64.95 .343 –31.5 .283 

cg19497511 2 238609807 LRRFIP1 3.451 × 10–8 –14.49 .772 16.16 .888 –2.7 .951 

cg22515589 17 79426432 BAHCC1 6.437 × 10–8 25.79 .748 43.31 .713 26.9 .682 

Abbreviations: ARIC, Atherosclerosis Risk in Communities Study; FHS, Framingham Study; HIV, human immunodeficiency virus; VACS, Veterans Aging Cohort Study.
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(cg23591762, cg16428517, cg19942083, cg06158227, and 
cg27660627). All 17 associations in our study showed direc-
tionality consistent with those reported by Chu et al [17].

DISCUSSION

HIV type 1 viremia and its corresponding treatment are known 
to be responsible for the development of CKD and decreased 
eGFR [4]. Previous reports demonstrated that HIV infection 
was associated with DNAm age [31]. We hypothesized that 
epigenetic aging may contribute to aging-related pathologies 
of CKD. DNAm age, a marker of biological aging, was signif-
icantly older than the chronological age (P = .0002). However, 
the difference between DNAm age and chronological age was 
not associated with either HIV or eGFR after adjustment for 
covariates, suggesting that epigenetic aging might not be an in-
dependent path between HIV and eGFR.

For the EWAS of eGFR among PWH, we identified 15 sig-
nificant CpG sites, including 3 significant sites (located in or 
close to MAD1L1, TSNARE1/BAI1, and DLGAP2) that passed 
Bonferroni correction. MAD1L1 functions as a homodimer and 
codes mitotic-arrest deficient 1 (MAD1) protein, which inhibits 
maturation and expansion of T-lymphocytes, and is targeted 
by human T-cell leukemia virus type 1 during virus transfor-
mation [32]. Defects in MAD1L1 are involved in the develop-
ment and/or progression of various types of cancer including 
kidney carcinomas [33]. Reduction of MAD1 may play a role 
in modulating specific immune responses to HIV, which might 
be involved in the mechanisms of HIV-associated immune-
mediated kidney diseases. Interestingly, both MAD1L1 and 
TSNARE1 were estimated to be associated with susceptibility 
to schizophrenia and bipolar disorder [34, 35]. Schizophrenia 
has been associated with a nearly 25% increase in the risk of 
developing CKD [36]. Both MAD1L1 and TSNARE1 might be 
key effectors in the development of schizophrenia-related CKD, 
which might have pathogenetic pathways that are similar to 
those of other types of CKD. BAI1 appears to be a mediator of 
the p53 signal in suppression of glioblastoma [37]. Coherently, 
the tumor suppressor protein p53 strongly alters HIV type 1 
replication [38].

Though the cause–consequence relationships among methyl-
ation of these genes, kidney function, and neurological diseases 
are unclear, it is possible that some of the observed epigenetic 
associations are consequences of CKD rather than predictors. 
On the other hand, DNAm of several identified genes, in-
cluding laminin subunit alpha 2 (LAMA2), apolipoprotein B 
(APOB), and neuropeptide Y receptor Y2 (NPY2R), are asso-
ciated with metabolic diseases [39–41] that can contribute to 
renal impairment.

Similar to the recent study by Chu et al [17], we had limited 
success in replicating the CKD-associated CpG sites reported by 
Smyth et al, except for cg17500228 in gene EXOC3. EXOC3 was 

previously established to be a key effector in HIV-1 Nef protein-
mediated enhancement of nanotube formation [42]. It has been 
suggested that the Nef protein plays a pathogenetic role in HIV-
associated nephropathy [3]. Of 17 significant sites implicated in 
the EWAS by Chu et al, cg17944885 (ZNF788/ZNF20) showed a 
significant association with eGFR in our study. Five other candi-
date sites showed associations with a P value < .05 in our study, 
lending support to protein tyrosine phosphatase, nonreceptor 
type 6 (PTPN6) and ankyrin repeat domain 11 (ANKRD11) as 
promising candidate genes for further experimental evaluation 
[17]. In our replication analysis, the lack of significant associa-
tion but with consistent directionality of previously implicated 
CpG sites could be due to lack of statistical power (particularly 
among the HIV-negative group), differences in the severity or 
causes of CKD, differences in confounding, or a combination 
of these factors.

A potential limitation of our study is that we measured 
DNAm in peripheral blood rather than in kidney tissues. 
Direct evaluation of DNAm in kidney tissues is not feasible in 
human population–based studies [15]. Recently, similar trait-
associated methylation of CpG sites in blood and target tissues 
has been found, supporting the use of DNAm in blood as an 
indicator of methylation in other tissues [17]. The 450K array 
platform restricts the epigenome-wide coverage compared to 
the newer array (eg, EPIC850K array) or whole methylome 
sequencing and is limited to measure 5-mC, not other types of 
modifications such as 5-hmC. Additionally, the etiology among 
HIV-associated CKD can be heterogeneous, which may in-
crease false negatives in EWAS.

Our study is a first step in investigating the relationships 
among HIV infection, DNAm, and CKD. The VACS pro-
vided a unique opportunity to investigate the epigenomic as-
sociation with eGFR among PWH. We replicated previously 
reported associations of eGFR with methylation of EXOC3, 
PTPN6, and ANKRD11, which supports the belief that CKD 
in PWH may have similar causes as in the HIV-negative pop-
ulation. The identified epigenetic associations of MAD1L1, 
TSNARE1/BAI1, and DLGAP2 suggest that there may be some 
unique mechanism for HIV-related CKD. Further studies to 
examine the role of these epigenetic changes in the complex 
mechanism for development and progression of HIV-related 
CKD are warranted.
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