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C O R O N A V I R U S

Structure-based drug designing 
and immunoinformatics approach for SARS-CoV-2
Pritam Kumar Panda1*, Murugan Natarajan Arul2, Paritosh Patel3, Suresh K. Verma3, Wei Luo1, 
Horst-Günter Rubahn4, Yogendra Kumar Mishra5, Mrutyunjay Suar3, Rajeev Ahuja1,6*

The prevalence of respiratory illness caused by the novel SARS-CoV-2 virus associated with multiple organ failures 
is spreading rapidly because of its contagious human-to-human transmission and inadequate globalhealth care 
systems. Pharmaceutical repurposing, an effective drug development technique using existing drugs, could 
shorten development time and reduce costs compared to those of de novo drug discovery. We carried out virtual 
screening of antiviral compounds targeting the spike glycoprotein (S), main protease (Mpro), and the SARS-CoV-2 
receptor binding domain (RBD)–angiotensin-converting enzyme 2 (ACE2) complex of SARS-CoV-2. PC786, an 
antiviral polymerase inhibitor, showed enhanced binding affinity to all the targets. Furthermore, the postfusion 
conformation of the trimeric S protein RBD with ACE2 revealed conformational changes associated with PC786 
drug binding. Exploiting immunoinformatics to identify T cell and B cell epitopes could guide future experimental 
studies with a higher probability of discovering appropriate vaccine candidates with fewer experiments and higher 
reliability.

INTRODUCTION
A new coronavirus disease previously known as 2019-nCoV (2019 
novel coronavirus) but later known as SARS-CoV-2 (severe acute 
respiratory syndrome coronavirus 2) has recently emerged from 
China with a total of >4 million confirmed cases and > 300 thousand 
deaths worldwide (1). Similar to SARS-CoV, SARS-CoV-2 tends to 
transfer rapidly from human to human, distributed across multiple 
continents (2). Epidemiological studies help determine the health 
status of a nation and enable a better distribution of economic re-
sources. An epidemiological data source of Respiratory Viral Infec-
tions from Yale and BioRender scientific team shows that COVID-19 
(coronavirus disease 2019) has a high rate of hospitalization due to 
the high mortality rate as well as the declaration of SARS-CoV-2 as 
a pandemic by the World Health Organization. The community 
attack rate is way much higher in comparison to other respiratory 
viral infections, as shown in Fig. 1A. To mitigate this challenge, several 
researchers from all over the world try to develop or repurpose anti-
viral drugs through experimental and computational methods to 
diminish the fear of this pandemic outbreak.

The first reported genome sequencing of SARS-CoV-2 lead the 
researchers to determine a key target, the SARS-CoV-2 spike (S) 
glycoprotein for therapeutic and diagnostics (3). The S protein of 
SARS-CoV-2 [Protein Data Bank (PDB) ID: 6VSB] contains a re-
ceptor binding domain (RBD), which interacts with the peptidase 
domain of the angiotensin-converting enzyme 2 (ACE2) (4), thus 
mediates receptor recognition and membrane fusion (5). Research 
into finding appropriate drug compounds targeting the S protein 

RBD-ACE2 complex facilitated through virtual screening of drug 
compounds computationally is in pursuit to ensure potential treat-
ments (6). Another vital enzyme, i.e., SARS-CoV-2 main protease 
(Mpro) (PDB ID: 6 LU7) (7), that intercedes viral replication and 
transcription together with the absence of closely related homolog 
proteins in humans can be a potential target for therapeutics devel-
opment. In the mission to stop the outbreak, developing medical 
countermeasures using molecular modeling, virtual screening of 
drug candidates along with receptor-drug molecular dynamics (MD) 
simulation can facilitate the ease of finding antiviral drugs for 
SARS-CoV-2. The plan to reuse old drugs introduced for past outbreaks, 
e.g., MERS-CoV, SARS-CoV, Ebola, and HIV, could, therefore, 
accelerate the discovery process (8).

We have devised a similar strategy using in silico approaches 
that include (i) inhibition of the S protein, Mpro, and RBD-ACE2 
complex interaction using small molecules/antiviral drugs and (ii) 
immunoinformatics approach for designing specific epitopes of 
major histocompatibility complex (MHC) class I antigens for adaptive 
immunity using S protein and Mpro (Fig. 1B). Both the computa-
tional strategies could pave a path for the experimentalists and 
pharmaceutics companies to design drugs and vaccines for this 
SARS-CoV-2 in a short period. Repurposing of potential drug 
candidates having a broad-spectrum antiviral activity targeting the 
viral entry mechanism could be beneficial for clinical use. The 
current study deals with a similar strategy to find potential drug or 
vaccine candidates suitable for possible experimental studies target-
ing the infection pathway of SARS-CoV-2.

The key mechanism underlying the SARS-CoV-2 replication and 
maturation of the virion mediated through host cell attachment is 
illustrated in Fig. 1C. The interaction of spike protein (RBD) initiates 
the coronavirus attachment to the host cell to the host receptor 
through membrane fusion and endocytosis (Fig. 1C). Followed by 
the receptor binding, the release of the viral genome is accomplished 
by acid-dependent proteolytic cleavage of the S protein by a protease 
enzyme. The translation of the viral polymerase protein starts after 
using a RNA pseudoknot and a slippery sequence (5′-UUUAAAC-3′) 
that causes ribosomal frameshifting. The assembly of the viral replicase 
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complexes follows the translation and assembly by producing 
genomic and subgenomic RNAs. The genomic and subgenomic 
RNAs were produced through negative-strand intermediates and 
from which the subgenomic RNAs go through nested transcription. 
The spike (S), membrane (M), and envelope (E) proteins then 
undergo translation or assembly through insertion to endoplasmic 
reticulum (ER) that moves along a secretory pathway into the 
ER-Golgi intermediate compartment (ERGIC). There, viral genomes 
encapsidated by a (nucleocapsid) N protein bud into membranes of 
the ERGIC containing viral structural proteins, forming mature 

virions. Upon assembly, vesicles transport virions to the cell surface 
and induce exocytosis (9).

A variable number (6 to 11) of open reading frames (ORFs) are 
included in the coronavirus genome, which has a size from about 
26,000 to 32,000 bases. The first ORF codes 16 nonstructural proteins, 
covering almost 67% of the entire genome. The other ORFs include 
accessory proteins and structural proteins. The 5′ gene contains 
more than two-thirds of the orf1ab encoding orf1ab polyproteins. 
The 3′ gene comprises structural-protein encoding (S), envelope 
(E), membrane (M), and nucleocapsid (N) proteins (10). (Fig. 1D) 
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Fig. 1. Repurposed therapeutics for SARS-CoV-2 with broad-spectrum antiviral activities. (A) Epidemiological comparison of the recent outbreak SARS-CoV-2 with 
previous respiratory viral infections. N/A, not applicable. (B) In silico proposed analyses targeting trimeric S protein, Mpro, and trimeric S protein RBD-ACE2 complex. 
(C) Potential repurposed drug candidates for SARS-CoV-2 targeting viral entry mechanism. (D) Genomic organization of SARS-CoV-2 with structural domains representing 
Mpro and trimeric S protein (surface representation with the colors indicating secondary structure, i.e., blue,  strands; green, helix; brown, Coils for Mpro) (green, chain A; 
blue, chain B; red, chain C for trimeric S protein). The RBD of trimeric S protein involved in the interaction with the human host ACE2 enzyme is shown. (E) Virtual library 
screening workflow discerning repurposed antiviral drugs targeting trimeric S and Mpro of SARS-CoV-2. (F) Approaches to predict potential vaccine candidates (T cell and 
B cell epitopes) for SARS-CoV-2. Schematic representation of the major histocompatibility I (MHC) class I displaying antigenic peptides to CD8 T cells. The surface repre-
sentation of the human leukocyte antigen (HLA) MHC class I molecules bound to T cell epitopes (red color). IC50, median inhibitory concentration.



Panda et al., Sci. Adv. 2020; 6 : eabb8097     10 July 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 14

The cryo–electron microscopy structure of SARS-CoV-2 trimeric spike 
(S) glycoprotein (PDB ID: 6VSB) determined by Wrapp et al. (3) 
is considered to be a key target in therapeutics and diagnostics 
of this pandemic coronavirus spread. The spike protein is in a state 
of trimeric form with three RBDs and in metastable prefusion con-
formation that undergoes structural rearrangements to fuse the viral 
membrane with the host human cell membrane. The RBDs undergo 
hinge-like conformational movements when attached with the ACE2 
host receptor. The crystal structure of SARS-CoV-2 Mpro (PDB ID: 
6 LU7) consists of three domains, i.e., domains I and II have a 
chymotrypsin-like and two–-barrel fold conformations and domain III 
consists of five helices that adopt a globular structure (11). The 
coronavirus Mpro enzyme is essential for proteolytic maturation of the 
virus. It is a promising target for the discovery of small-molecule drugs 
that would inhibit cleavage of the viral polyprotein and prevent the 
spread of the infection.

There are currently no scientifically appropriate vaccinations or 
unique antiviral therapy for the prevention or treatment of COVID-19. 
The -interferon mixture and anti–HIV lopinavir/ritonavir (Kaletra) 
(12) medications have been used, but there is still a minimal cura-
tive benefit, and toxic side effects can occur (13). Remdesivir is also 
being explored for the treatment of COVID-19, a broad-spectrum 
antiviral developed by Gilead Sciences Inc., but validation from 
clinical studies is needed to demonstrate its effectiveness (14). On 
the basis of the recent research report, we computationally screened 
640 antiviral compounds from the ChEMBL (15) database against 
the S protein and Mpro using AutoDock Vina (Fig. 1E) (16). We 
have used UCSF (University of California at San Francisco) Chimera 
(17) and Discovery Studio Visualizer (18) for the postdocking analyses. 
An antiviral polymerase inhibitor PC786 bearing ChEMBL ID 4291143 
proved to be the best among all the antiviral drugs against both the 
target receptors. Apart from PC786, several other antiviral drugs, i.e., 
lorecivivint, tegavivint, and dolutegravir, also have better binding 
affinities toward S and Mpro.

Furthermore, we have also compared the binding affinities of the 
U.S. Food and Drug Administration (FDA)–approved drugs against 
these two target receptors, along with the RBD-ACE2 complex. The 
screened drugs were proven more effective than the FDA-approved 
medications in terms of binding affinities. We also combined the MD 
simulation with a virtual screening strategy to validate the binding 
strength of the PC786 drug in comparison to the FDA-approved drugs, 
i.e., zanamivir and lopinavir. Moreover, upon interaction with the 
PC786 drug, the trimeric S protein RBD in complex with ACE2 seems 
to change its conformation. ACE2 directly interacts with the RBD in 
a close conformation with high binding affinity in its native state, 
whereas, in the case of the PC786 drug bound to trimeric S protein, 
the RBD seems to interact with ACE2 in an open conformation.

In addition to the drug screening method, the application of 
immunoinformatics using a bioinformatics approach to the design 
of different vaccine candidates for SARS-CoV-2 serves as an alter-
native and promising approach (Fig. 1F). Active counteractions to 
the recent appearance and rapid expansion of the SARS-CoV-2 
entail the creation of data and resources to identify and track its 
spread and immune response. As of 27 January 2020, the Immune 
Epitope Database and Analysis Resource (IEDB) curated 581 linear 
and 81 discontinuous B cell epitopes along with 320 T cell epitopes 
for SARS-CoV-2 (19). Similarly, we have also predicted T cell and 
B cell epitopes using structural sequences of S and Mpro proteins of 
SARS-CoV-2 using IEDB resources (20). Independent detection of 

the epitopes using the vital proteins illustrates the high likelihood 
of identifying vaccine candidates for the immune responses to SARS-
CoV-2. These forecasts will promote the successful design of vacci-
nations against this high-priority virus.

RESULTS
Structure-based drug design approach: Screening 
of ChEMBL antiviral compounds
We have screened the ChEMBL database for antiviral drugs that 
have passed the Lipinski’s rule of five (RO5) for drug-likeliness 
(Fig. 1E). The structure-based drug design approach was taken into 
consideration using both the S protein and the Mpro of SARS-
CoV-2. The antiviral drugs obtained from the ChEMBL database 
have been listed in data file S1. High-throughput virtual screening 
of the antiviral drugs using a molecular docking approach resulted 
in a broad range of binding affinity toward both the receptors 
(Fig. 2, A and B), typically ranging from −1.5 to −11.5 kcal/mol. 
Among all the antiviral drugs, PC786 has been considered to have 
the highest binding affinity toward both the target receptors (Fig. 2C). 
The PC786 drug bearing ChEMBL ID 4291143 has already passed 
phase 1 and 2 clinical trials. It is a non-nucleotide inhibitor of re-
spiratory syncytial virus (RSV) polymerase that inhibits replication 
of both the A and B subtypes of acute RSV, thus interrupting the 
spread of infection within the respiratory tract. The inhalation 
administration of PC786 leads to high local airway concentration at 
a viral replication site with low systemic toxicity and, therefore, a 
low risk of systemic side effects. Via phase 1 research, PC786 shows 
excellent safety and tolerability. Preclinical and clinical pharmaco-
kinetic data show low systemic concentrations with prolonged lung 
retention (21). The molecular docking analysis also revealed that 
PC786 has the best binding affinity of −11.3 kcal/mol with S protein 
(fig. S1A) and −9.3 kcal/mol with the Mpro of SARS-CoV-2 (fig. S1K 
and Fig. 2C).

The findings are the basis for the repurpose of the approved/
investigational small molecules against SARS-CoV-2 infection. We 
have also compared the relative binding affinities of screened anti-
viral compounds with the FDA-approved drugs using the two 
target receptors. The results showed superior binding affinities of 
computationally screened viral compounds, i.e., PC786, when com-
pared to those drugs under clinical trials (except the drug lopinavir) 
(Fig. 2D). Lopinavir has shown the highest binding affinity toward 
Mpro with the binding affinity of −9.5 kcal/mol, which is compara-
tively less than the PC786 drug. Similarly, remdesivir and zanamivir 
have shown high binding affinities toward trimeric S protein, i.e., 
−7.6 and −6.9 kcal/mol. It is known that remdesivir targets only a 
highly conserved RNA-dependent RNA polymerase in diverse RNA 
viruses, providing a basis for designing broad-spectrum antiviral drugs 
based on nucleotide analogs (14). Therefore, for further validation 
and comparison of the FDA-approved antiviral drugs with the best-
screened drugs, we used MD simulation along with molecular 
mechanics Poisson-Boltzmann surface area (MM-PBSA) calcula-
tions (fig. S1S and Fig. 2, E and F). The findings from the MD and 
MM-PBSA calculations are further explored in the MD section.

Molecular docking analyses of screened drugs  
against S and Mpro

Our in silico strategy enables us to design and screen the small molecules 
targeting the trimeric S protein that contains key structural domains 
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(Fig. 3A). Specifically, RBD plays a pivotal role in viral-host attach-
ment (3). These specific structural domains can be targeted with 
small molecules to disrupt the viral attachment to the host proteins. 
From the postdocking interaction analysis, PC786 has shown most 
favorable binding affinity toward RBD of all the chains in trimeric S 
protein. PC786 also targets the junction of the heptad repeat 1 (HR1)/ 
central helix (CH) domain. The specificity of PC786 binding to RBD 
of trimeric S protein could be of potential interest for experimentalists 
or clinicians for further validation. PC786 drug interaction with the 
trimeric S protein showed conventional carbon-hydrogen bonds 
with Gly413 of B chain and Asp427 and Cys379 of C chain, halogenic 

bond with Pro986 B chain, and alkyl bonds with Leu752 and Pro987 
(Fig. 3, B and C, and fig. S2A). The halogen bond with Pro986 indi-
cates that there is a net attractive interaction between an electro-
philic region associated with a fluorine atom and a nucleophilic 
region Pro986. -anion bond with Glu988 also has been observed for 
the same. Apart from PC786, lorecivivint and tegavivint also yielded 
good binding affinity of −10.7 kcal/mol, −10.2 kcal/mol in the case 
of trimeric S protein (fig. S1, B and C).

Lorecivivint is a phase 2 clinical trial anti-inflammatory drug 
that inhibits or even reverses the progression of osteoarthritis. 
Tegavivint is an antineoplastic drug that inhibits the Wnt/-catenin 
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Fig. 2. Virtual screening of potential antiviral drugs against S and Mpro proteins of SARS-CoV-2. (A) Box plot with normal distribution with two different groups of 
the same size (n = 640) showing the antiviral compounds binding affinities in kilocalorie per mole for trimeric S protein (green) and Mpro (blue) with optimal means and 
95% confidence intervals (CI). The outliers were shown in black spheres. IQR, interquartile range. (B) Two-dimensional (2D) scatter plot (blue color) showing the distribu-
tion of binding affinity scores in kilocalorie per mole for all the virtually screened n = 640 antiviral drugs against both trimeric S protein and Mpro. The two box and whisker 
plots (green color for S protein and blue color for Mpro) shows the distribution of binding affinity scores (kcal/mol) with median (m = −6.81 and –6.03 kcal/mol) for S protein 
and Mpro, respectively. A horizontal box chart represents the S protein scatter data. A vertical box chart represents the Mpro scatter data. (C) Bar chart showing the binding 
affinity scores (kcal/mol) for the selected antiviral compounds ranging from −7.5 to −12.0 kcal/mol) with 95% CI (green shade). The maximum binding affinity (high negative 
scores indicates maximum binding affinity) is shown. (D) Bar chart showing binding affinities scores in kilocalorie per mole for selected approved drugs. (E and F) Free 
energy terms obtained from MM-PBSA calculations relative to two selected drugs from virtual screening for Mpro and one for S protein in comparison to approved drugs.
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pathway with potential antineoplastic activity. Among the FDA-
approved drugs, zanamivir turned out to be the second best (next to 
remdesivir) having a binding affinity of −6.9 kcal/mol with S protein 
(fig. S1D). Zanamivir showed conventional hydrogen bodings with 
Asn978 and Val976 of A chain, and the rest of the key residues 
involved were from the C chain of trimeric S protein (Fig. 3, D and E, 
and fig. S2D). In the case of lorecivivint, there are many conven-
tional hydrogen bonds with interacting with the A chain of the 
S protein, i.e., the O atom and N atom of the lorecivivint forms bond 
with Arg1014 and Arg1019, respectively (fig. S2B). In the case of tegavivint, 
many alkyl bonds and an unfavorable donor-donor bond with 

Arg1014 of A chain seem to be formed during the interaction with 
the trimeric S protein of SARS-CoV-2 (fig. S2C). All the bonding 
patterns mentioned above that have been interacted with the spike 
protein are in the vicinity of the active site pockets, as illustrated in 
fig. S1I and data file S2. The target receptor hydrogen bonding and 
solvent accessible surfaces were depicted in fig. S1 (E to H).

The SARS-CoV-2 Mpro protein tends to show high binding affinities 
with PC786 with a binding affinity of −9.3 kcal/mol. JNJ-449095397 
(JNJ), which is an inhibitor for chronic obstructive pulmonary disease, 
also has high the binding affinity of −9.2 kcal/mol with the Mpro of 
SARS-CoV-2 (fig. S1L). The interaction analysis of the best-screened 
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Fig. 3. Antiviral drugs binding modes for S and Mpro. (A) Surface representation of the trimeric S protein of SARS-CoV-2 with structural domains. Schematic of S protein 
primary structure colored by the domain (below). NTD, N-terminal domain; RBD, receptor binding domain; S1/S2, S2’, protease cleavage site; HR1, heptad repeat 1; 
CH, central helix; CD, connector domain. (B and D) PC786 and zanamivir binding mode (yellow) to S protein (colors indicating chains). (C and E) Close-up view of PC786 
(yellow surface) and zanamivir (yellow sticks) binding to S protein chains (ribbons). Sky blue lines indicate hydrogen bonds. (F) Surface representation of the SARS-CoV-2 Mpro 
structural domains. The structure is represented by its secondary structure components (blue,  strands; green, helix; brown, coils). (G and I) PC786 and lopinavir binding 
mode (yellow) to Mpro. (H and J) Close-up view of PC786 (yellow surface) and lopinavir (yellow surface) binding to Mpro (ribbons). Sky blue lines indicate hydrogen bonds.
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drugs with Mpro revealed that the drugs mostly binds to junction of 
domains II and III that have two–-barrel fold conformations and 
five helices (Fig. 3F).

PC786 showed conventional hydrogen bonds with Gln110 and 
many hydrophobic interactions with Phe134, Pro108, Ile249, Val202, 
Pro203, and Phe294 (Fig. 3, G and H), whereas JNJ showed conven-
tional hydrogen bonds with Lys137, Thr199, Tyr239, Asn277, and 
Met276 (figs. S1, K and L, and S2, E and F). In addition, lorecivivint 
also showed a better binding affinity of −8.9 kcal/mol that has a 
high binding affinity than FDA-approved drug lopinavir (figs. S1M 
and S2G) with conventional hydrogen and halogen bonds. In the 
case of FDA-approved drug lopinavir, Pro293, Val297, Val104, and 
Ile206 form hydrophobic interactions with the drug molecule 
along with two - bonds associated with Ile249 and Phe294 (Fig. 3, I and J, 
and figs. S1N and S2H). All the interacted residues in the Mpro pro-
tein were in the active site region, as shown in fig. S1J and data file 
S2. The target receptor hydrogen bonding and solvent accessible 
surfaces were depicted in fig. S1 (O to R). The final screened best 
antiviral and FDA-approved compounds with virtual screening bind-
ing affinity scores have been provided in data file S1. The therapeutic 
description of best selected antiviral drugs was also described in 
data file S1.

MD simulation with free energy (MM-PBSA) calculations
To validate the intrinsic atomic interaction and binding conformation 
of the best-screened antiviral drugs, we have used all atom-based 
MD simulation using GROMACS v.2019.2 (22) for 10 ns for the 
protein-drug conjugates. Figure 4 (A to S) illustrates the results 
from MD calculations, i.e., conformations of the proteins bound to 
the antiviral drugs and the molecular interactions antiviral drugs. 
We have taken PC786 and zanamivir with S protein (Fig. 4, A to H) 
and PC786, JNJ, and lopinavir with Mpro (Fig. 4, I to S). The clusters 
of the 10-ns simulated structures for S protein and Mpro conjugated 
with the drugs mentioned above were illustrated in figs. S3 (A and 
B) and S4 (A to C), respectively. We have taken the FDA-approved 
drugs zanamivir and lopinavir to compare with the virtually screened 
drugs against S protein and Mpro, respectively, as the binding affinities 
of the respective compounds is higher toward respective target 
receptors. We have compared the 10-ns simulated structure with 
the initial configuration (0 ns) using the structure comparison tool 
(MatchMaker) from UCSF Chimera to align the pair of protein chains 
that uses BLOSUM62 matrix and Needleman-Wunsch algorithm. 
Figure 4 (A and E) represents the overlap of 0- to 10-ns simulated 
structure of S protein bound to PC786 and zanamivir, respectively. 
Similarly, we have compared the simulated structure of Mpro bound 
to PC786, JNJ, and lopinavir that are illustrated in Fig. 4 (I, M, and Q), 
respectively.

The 10-ns MD simulation revealed that the trimeric S protein 
seems to be stable that showed root mean square deviation (RMSD) 
in the range of ~0.2 to ~0.5 nm in both the drug conjugates, i.e., 
PC786–trimeric S protein and zanamivir–trimeric S protein (Fig. 4D), 
respectively. The ligand (drug molecules) bound to trimeric S protein 
seems to fluctuate during the 10-ns simulation that varied in the RMSD 
range of ~0.15 to ~1.3 nm as shown in Fig. 4H for both systems, re-
spectively. PC786 showed a slight deviation in terms of its structural 
conformation (Fig. 4B) from which the stability of the drug can be 
delineated, whereas notable difference can be observed in the case of 
zanamivir (Fig. 4F). Similarly, root mean square fluctuation (RMSF) 
analysis also showed high fluctuations in zanamivir compared to PC786 

(fig. S3, E and F). The compactness of the S protein receptor upon 
binding with zanamivir has shown a substantial decrease in radius of 
gyration (Rg) values (fig. S3G). PC786 seems to retain the native 
bonding patterns (at 0 ns), whereas zanamivir showed substantial 
deviation in bonding patterns (Fig. 4, C and G), respectively. Moreover, 
the total interaction energies calculated from the average short-range 
Coulombic interaction energy and the short-range Lennard-Jones 
energy are higher in the case of zanamivir that shows a less binding 
affinity toward the target receptor (likely to deviate from its original 
orientation) (fig. S3, C and D).

Furthermore, to estimate the interaction free energies of the bio-
molecular interaction, the complex systems have been subjected to 
MM-PBSA calculations (23). The combination of MD with MM-PBSA 
incorporates conformational fluctuations and entropic contribu-
tions to the binding energy. The binding energy decomposition 
analysis divulged into various free energies associated with the ligand 
upon binding to the protein, e.g., EMM, Gpolar, and Gnonpolar, was 
calculated separately and later combined to predict the total energies 
of the individual components. The net contribution energy of the 
residues involved in the interaction to the drug molecules has been 
depicted in fig. S3H and data file S3. The energy components such 
as EMM, Gpolar, and Gnonpolar were calculated for 10 ns extracted 
at each 10-ps interval from the production trajectories. The binding 
energy Gbinding calculated from MM-PBSA calculation is higher in 
magnitude in the case of PC786 (−376.95 kJ/mol) as compared to 
zanamivir (−109.74 kJ/mol) (Fig. 2F).

A similar approach has been undertaken for Mpro as well, where 
we compared PC785 and JNJ with FDA-approved drug lopinavir as 
it showed high binding affinity. The RMSD of the Mpro protein 
tends to deviate more in the case of lopinavir as compared to PC786 
and JNJ (Fig. 4L). The ligand RMSD of PC786, JNJ, and lopinavir 
showed comparatively similar behavior in terms of RMSD (Fig. 4P) 
and can be visualized in Fig. 4 (J, N, and R), respectively. However, 
the RMSF of lopinavir tends to have more fluctuation as compared 
to PC786 and JNJ (fig. S4, F and G), whereas the compactness of the 
proteins remains the same in all three cases (fig. S4H). Figure 4 
(K, O, and S) shows the two-dimensional (2D) interaction plots of 
PC786, JNJ, and lopinavir interacted with Mpro after 10-ns simulation.

The total interaction energy of lopinavir is very high compared 
to PC786 and JNJ (fig. S4, D and E). The binding energies Gbinding 
of PC786 and JNJ (−179.79 and −177.56 kJ/mol) are higher in mag-
nitude as compared to lopinavir (−131.49 kJ/mol) (Fig. 2E). The 
net contribution energy of the residues involved in the interaction 
to the drug molecules has been depicted in fig. S4I and data file S3. 
The contributions from van der Waals interactions are −247.146 
and −233.90 kJ/mol to the total binding free energies of PC786 with 
S protein and Mpro, respectively, suggesting that the complexation 
process is driven by hydrophobic interactions. If we compare the 
known antivirals, the contributions from van der Waals interactions 
are −92.82 kJ/mol in the case of zanamivir with S protein, whereas 
lopinavir has a van der Waals contribution of −188.88 kJ/mol with 
Mpro. In both the cases, i.e., S and Mpro, PC786 binding free energy 
and van der Waals contributions are higher than all the other known 
antiviral compounds that determine its specificity. Thus, the binding 
free energy calculations confirmed the favorable binding of antiviral 
drugs with the SARS-CoV-2 S and Mpro proteins and demonstrate 
the use of computational screening and free energy calculations on 
compounds from open-source chemical space toward successful 
research in drug design.
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Fig. 4. MD simulation of the proposed antiviral drugs bound to trimeric S protein and Mpro. The green panel shows the MD simulation results for S protein drug 
conjugates, and the blue panel represents the Mpro protein drug conjugates. (A and E) Surface representation of the trimeric S protein from 10-ns simulation (gray, initial 
configuration of trimeric S protein at 0 ns; cyan, 10-ns simulated structure) (B and F) Conformations of the antiviral drugs with S protein, i.e., PC786 and zanamivir (yellow 
sticks), respectively, after 10-ns simulation. (C and G) 2D representation of the drug interaction (key residues involved in the interaction mechanism. Green circles repre-
senting conventional hydrogen bonds; pink, alkyl bonds; violet, - bonds; orange, pi-anion bonds; yellow; pi-sulfur bonds). (D) RMSD plot for the trimeric S protein 
during the 10-ns simulation. (H) RMSD plot of the antiviral drugs. (I, M, and Q) Surface representation of the Mpro from 10-ns simulation (gray, initial configuration of Mpro 
protein at 0 ns; cyan, 10-ns simulated structure). (J, N, and R) Conformations of the antiviral drugs with Mpro, i.e., PC786, JNJ, and lopinavir (yellow sticks), respectively, 
after 10-ns simulation. (K, O, and S) 2D representation of the drug interaction [critical residues involved in the interaction mechanism; refer to (C) and (F) for leg-
ends]. (L) RMSD plot for Mpro proteins conjugated with drugs during 10-ns simulation. (P) RMSD plot of the antiviral drugs.
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Conformational changes of trimeric S protein RBD-ACE2 
complex upon interaction with antiviral drugs
The trimeric S protein RBD mediates receptor recognition and 
membrane fusion upon interaction with the ACE2 enzyme 
(Fig. 5A). The trimeric S protein S1 subunit that contains the RBD 
directly binds to the host receptor ACE2, which may exploit host 
infection. The S protein S2 subunit is mainly responsible for mem-
brane fusion that is exposed and is cleaved by the ACE2 protease 
domain that is critical for viral infection. Initially, we have per-
formed an ensemble docking of best-screened drugs obtained from 
virtual high-throughput screening (Fig. 5B) with the complex struc-
ture. The ensemble docking provides us similar results obtained 
using single target receptors, i.e., S protein and Mpro. Again, PC786 
was proven to be having a higher binding affinity toward the com-

plex as well (−12.1 kcal/mol) (Fig. 5C). Furthermore, we have checked 
the binding affinity of PC786 with another configuration of the com-
plex of RBD-ACE2 involving only the RBD (chain A) of trimeric S 
protein interacted with ACE2 (fig. S5, A and B). The binding affinity 
of −12.1 kcal/mol was obtained majorly involving residues of ACE2 
protein. His374 and His505 of ACE2 form conventional hydrogen 
bonding with the PC786 drug (fig. S5C). The full trimeric S protein 
RBD-ACE2 complex conjugated with PC786 drug results in forming 
conventional hydrogen bonding with Cys379 with the binding affinity 
of −11.3 kcal/mol (fig. S5, D to F).

Next, we performed a protein-protein interaction analysis be-
tween the trimeric S protein and ACE2 using the PatchDock server 
(24). We have also used the FireDock server for further refinements 
of the complexes. We observed a significant conformational change 
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Fig. 5. Structural basis of the RBD-ACE2 complex protein-protein interaction. (A) Schematic illustration of the viral entry mechanism of SARS-CoV-2. (B) Structural 
representation of the trimeric S protein RBD interaction inhibition with ACE2 by repurposed antiviral drugs. (C) Bar plot depicting binding affinities (kcal/mol) of selected 
antiviral drugs from virtual screening to RBD-ACE2 complex. (D) ACE2 binding to trimeric S protein RBD in a closed conformation. (E and G) Key residues involved in the 
interaction mechanism. Blue-colored residues are from ACE2 enzyme and green-shaded residues from trimeric S protein (F) Open conformation of antiviral drug (PC786) 
conjugate RBD-ACE2 complex.
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between the native trimeric S protein RBD-ACE2 complex and the 
PC786 drug conjugate complex. When the full trimeric S protein 
RBD binds to ACE2, closed conformation with the highest binding 
affinity of −40.6 kcal/mol with key residues involved has been ob-
served as depicted by Yan et al. (Fig. 5D) (25). The closed confor-
mation involves Asp615, Thr376, Lys417, Tyr453, Cys488, Gly404, Tyr508, 
Tyr421, and Tyr453 of the RBD of S protein and Tyr613, Glu23, Ala386, 
Ala384, Tyr613, Ala614, Ser19, Tyr20, Lys26, Lys353, Gln388, Lys475, and 
Arg559 of the ACE2 subunit (Fig. 5E). The closed conformation mostly 
involves hydrophobic residues that play a pivotal role in signal trans-
duction processes/signaling cascade.

When PC786 binds to the RBD of the S protein, upon interaction 
with ACE2 enzyme, the conformation changed from close to open 
with the least binding affinity of −6.7 kcal/mol according to the 
protein-protein interaction analysis that may affect viral attachment and 
infection (Fig. 5F). The residual changes observed in this complex 
interaction generally involve Asn343, Ala344, Arg355, Arg357, Ser399, 
Lys424, Tyr453, Val512, Lys129, and Ser155 of the RBD and N-terminal 
domain as well. ACE2 enzyme involves Thr608, Asp609, Trp606, Ser602, 
Asn250, Glu238, Asp597, Glu589, Ser602, Asp157, and Asp136 in which 
most of the residues are from the C-terminal domain of ACE2 upon 
interaction with the drug conjugate complex (Fig. 5G). The analyses 
mentioned above can be attributed to a predictable conclusion that, 
when the small-molecule inhibitor binds to the S protein, it sub-
stantially affects the binding to the ACE2 domain, which may be 
helpful to reduce the chances of the signal cascading process in 
host viral infection. Again, to confirm that we have also considered 
the FDA-approved drug zanamivir for protein-protein interaction 
analysis, the analysis revealed that, when zanamivir binds to the 
RBD-ACE2, the interaction remains in closed conformation with 
a score of −25.1 kcal/mol, which is more or less similar to the native 
complex of RBD-ACE2 (fig. S5, G to I). The higher binding affinity 
reveals that ACE2 strongly binds to the RBD of trimeric S protein 
that can mediate the cascade of viral replication. Upon binding 
of antiviral drugs, the binding affinities were less in comparison 
to the native complex for which PC786 proved to be better from 
our analyses.

Immunoinformatics approach for designing T cell and  
B cell epitopes
In addition to the drug screening approach, integrating immuno
genomics using a bioinformatics approach to design various treat-
ments and finding potential candidates in the form of a drug or 
peptide for SARS-CoV-2 could help during this pandemic out-
break. This immunoinformatics approach could help in designing 
new vaccines and can overcome the problem of experimentation 
and time-consuming development process. The discovery of epitope 
is a key first step in antigen-targeted immunotherapy against viral 
diseases (26). Several studies have proposed strategies to achieve 
this in the past decade, particularly in the light of antiviral immuno-
therapy (27). The current strategy mainly focuses on identifying B cell 
epitopes using key structural proteins, i.e., S and Mpro of SARS-CoV-2 
(28). The epitopes identified using the structure-based approach are 
expected to be most valuable leads. The implied in silico method 
identifies human leukocyte antigens (HLAs) and T cell epitopes 
(29). That specifies the selection of potent vaccine candidates associated 
with the transporter associated with antigen processing (TAP) 
molecules. The designed peptides determined through the immunoin-
formatics approach served as a foreign substance for the human 

host cells, thus producing inflammation, demonstrating an allergic 
reaction. The present study was undertaken to design T cell and 
B cell epitope–based peptide vaccines against SARS-CoV-2 using 
the immunoinformatics approach. The approach can serve as a 
fast-track approach for experimentalists to validate the prediction. 
The query for SARS-CoV-2 structural and nonstructural proteins 
resulted in a few pieces of evidence, and thus not much information 
was obtained. Since the S and Mpro proteins were available for 
SARS-CoV-2, structure-based epitope design was taken into con-
sideration. Both the structural protein, i.e., S protein, and the non-
structural protein, i.e., Mpro, were antigenic in nature according 
to VaxiJen 2.0 (30). The server predicted both the proteins to be 
antigenic based on an overall protective antigen prediction score of 
0.4512 and 0.4159, respectively, which is beyond the threshold 0.4. 
The NetCTL 1.2 web server (31) was used for both the structures 
to predict CD8+ T cell epitopes based on MHC binding affinity, 
C-terminal cleavage affinity, TAP transport efficiency, and NetCTL 
prediction scores (Fig. 6A). The study unraveled six T cell epitopes 
for the spike protein and eight T cell epitopes for the Mpro pro-
tein based on a combined score of NetCTL.

The selection is thus chosen to be the best T cell epitopes keeping 
in mind the MHC binding affinity and can interact with MHC alleles 
creating an effective immune response. The conservancy of the 
T cell epitopes is thus necessary to design effective vaccines and can 
provide immunization effectively. MHC class I immunogenicity 
score also revealed some significant insights to select the epitopes 
as high score designates the probability of eliciting an immune 
response. The selected best T cell epitopes with residue number-
ing, e.g., WTAGAAAYY, CVADYSVLY, TSNQVAVLY, KTSVDCTMY, 
STECSNLLL, LTDEMIAQY and SEDMLNPNY, TANPKTPKY, 
QTFSVLACY, GSVGFNIDY, DYDCVSFCY, GTDLEGNFY, TVN-
VLAWLY, and LLEDEFTPF, of the spike (Fig. 6D) and Mpro 
(Fig. 6E) proteins respectively were further subjected for MHC class 
I binding and processing analysis according to IEDB resources. The 
epitopes were also evaluated for MHC binding affinity, C-terminal 
cleavage affinity, TAP transport efficiency, proteasome score, and 
MHC [median inhibitory concentration (IC50)] < 200 nm for ensur-
ing high immune response and higher affinity. For the processing of 
MHC-I, the IEDB analytics method produces an average score for 
the intrinsic ability of each epitope to be a T cell epitope dependent 
on the proteasomal synthesis, TAP transport, and MHC-I binding 
capacity (tables S1 and S2).

Before being introduced to the T cells on the cell’s plasma membrane, 
the protein is reduced by the cytosolic proteases to tiny peptides in 
the proteasome, and MHC-I also forms a complex with the peptides. 
Then, the MHC-I peptide complex is transferred by heat shock 
proteins and transport-associated proteins to ER. However, the 
higher the overall score of the epitopes with the HLA alleles assures 
appearance to the T cell, so it significantly relies on a positive im-
mune response. Eliciting an effective immune response relies not 
only on a positive identification by HLA molecules with substantial 
affinity to epitopes but also on the score for antigenicity and immuno-
genicity. Therefore, the epitopes identified by the vast number of 
HLA alleles that provide the highest immunogenicity, antigenicity, 
and safety for humans were flagged as possible epitopes for a robust 
immune response (tables S1 and S2). Distribution of MHC class I 
HLA alleles differs across various geographic areas and ethnic groups 
across the world. Therefore, when planning an efficient vaccine, ac-
count must be taken of population coverage. A substantial community 
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Fig. 6. Immunoinformatics approach for finding potential T cell and B cell epitopes. (A) Box plot depicting NetCTL scores for predictions of cytotoxic T lymphocyte 
(CTL) epitopes for rational vaccine design against SARS-CoV-2 S protein (green) and Mpro (blue). (B) Bar chart plot showing T cell epitope–HLA class I antigens interaction 
energy scores predicted using ClusPro 2.0 server. (C) Combined population coverage analysis of the T cell epitopes predicted from S protein and Mpro of SARS-CoV-2. 
(D and E) CTL epitopes (blue and yellow colors) identified from S protein (green color, chain A of trimeric S protein) and Mpro, respectively. (F) Schematic of CTL epitopes 
binding to MHC class I molecules (representing peptide-binding groove present in between two  domains and one 2-microglobulin domain. 3D representation of T cell 
epitopes identified from the PEP-FOLD server for S protein and Mpro of SARS-CoV-2, respectively. (G and H) T cell epitopes, e.g., TSNQVAVLY and GSVGFNIDY of S protein 
and Mpro interaction with HLA-A*01:01 molecules, respectively. The T cell epitopes bind in the cleft (peptide-binding groove) between the two  domains. (I and J) Identified 
linear B cell epitopes using BepiPred and ElliPro analyses. The B cell epitopes were represented in yellow color on both trimeric S protein and Mpro. (K and L) Predicted 
discontinuous epitopes (surface presentation) from DiscoTope analysis using trimeric S protein and Mpro.
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density was noticed for the best selected epitopes selected in vari-
ous geographic regions of the world for both the S and Mpro T cell 
epitopes (Fig. 6C). The S protein T cell epitopes were majorly found to 
be evident in the European region (fig. S6A). In contrast, Mpro T cell 
epitopes are distributed majorly in the East Asian region (fig. S6B).

The B cell epitope is an appropriate portion of an antigen that is 
detected in a humoral reaction by either a particular B cell receptor 
or the elicited antibody (32). There are two major groups of B cell epi-
topes: (i) the B cell epitope continuous and the linear (ii) B cell epitope 
discontinuous or conformational (33–35). Most B cell epitopes 
have been shown to be conformational epitopes, and the amount of 
this epitope reaches 90%. The detection of antigenic protein B cell epi-
topes is the main phase in the design of epitope-dependent vaccines, 
based on B cell epitope prediction methods, e.g., BepiPred and 
ElliPro, which are linear B cell epitope prediction methods that 
combinedly predicted 94 linear epitopes using the S protein sequence 
(Fig. 6I and fig. S6, I and J) and 17 linear epitopes for Mpro protein 
(Fig. 6J and fig. S6, L and M).

DiscoTope analysis gave propensity scores of the individual residues 
to be evaluated as a discontinuous B cell epitope as depicted in data 
file S4 and Fig. 6 (K and L). Likewise, other B cell epitope prediction 
methods such as Chou-Fasman beta-turn prediction, Emini surface 
accessibility prediction and Kolaskar and Tongaonkar antigenicity 
also unraveled some B cell epitope regions that could be of a potential 
interest for researchers in designing new vaccines for SARS-CoV-2. 
Currently, the vaccinations are mainly based on immunity from 
B cells. But recently, vaccine based on T cell epitope has been pro-
moted as the host will produce a powerful immune response by 
CD8+ T cell against the infected cell (Fig. 6F). With time, because of 
antigenic drift, every foreign particle will escape the response of the 
antibody memory; however, the immune response of T cells also 
provides long-lasting immunity.

The predictive antigenicity system of Kolaskar and Tongaonkar 
assesses the antigenicity of a particular epitope. The antigenicity 
depends on the physiochemical properties of amino acids present in 
the epitopes. The average antigenic propensity of the protein was 
1.037 with a maximum of 1.261 and a minimum of 0.866 in the case of 
S protein, and an average antigenicity of 1.042 with a minimum 0.844 
and a maximum 1.220 was predicted for the Mpro protein (fig. S6, 
E and H), respectively. The Chou-Fasman beta-turn prediction is a 
method useful for selecting protein regions to be synthesized to pro-
duce antipeptide antibodies cross-reacting with the parent protein. As 
illustrated in fig. S6 (C and F), the predicted B cell epitopes can be 
experimentally synthesized with a -turn propensity to produce an-
tipeptide antibodies for both S protein and Mpro, respectively. The 
Emini surface accessibility prediction of the B cell epitopes provides 
evidence that the epitopes found on the surface can be easily accessed 
by the antibodies and thus elicits an effective immune response. 
Figure S6 (D and G) represents the epitopes predicted above the 
threshold value with a maximum propensity of 5.960 and 8.294 in 
both S and Mpro proteins, respectively.

MHC class I molecules and T cell epitope interaction analysis
In addition to the designing of T cell epitopes, we have predicted the 
3D model of the selected epitopes both for S and Mpro proteins using 
the PEP-FOLD (36) web-based server for de novo peptide structure 
prediction to analyze the interactions with particular HLAs, respec-
tively (Fig. 6F). To ensure the binding between HLA molecules and 
the predicted epitopes, the protein-peptide docking was performed using 

ClusPro2.0 (37) (Fig. 6B). The protein-peptide interactions revealed 
that T604-Y612 binds to the peptide-binding groove of MHC class I 
HLA-A*01:01 molecules with an interaction energy of −289 kcal/mol 
(Fig. 6G). Similarly, the T cell epitope derived from Mpro, i.e., G146-Y154, 
also predicted to show high binding affinity (−341.8 kcal/mol) 
toward MHC class I HLA-A*01:01 molecules (Fig. 6H). On the basis 
of IEDB MHC-I binding analysis and NetMHCpan, various HLA 
class I antigens were selected for the receptor molecules on the ba-
sis of the availability of the PDB structures. For the T cell epitopes 
derived from S protein, all the selected T cell epitopes bound to the 
peptide-binding groove (cleft) of the MHC class I (HLA-A) antigens 
(fig. S7A). Once a peptide is bound to MHC class I HLA complexes 
and presented on the cell surface, CD8+ T cell epitopes can be de-
tected. Epitope conformation in the HLA-A and HLA-B grooves is 
of paramount importance not only for epitope affinity and stability 
but also for epitope interactions. Similar HLA-based epitope inter-
actions were analyzed for the Mpro proteins and found evident in-
teractions in the peptide binding groove of MHC class I antigens 
(fig. S7B). The corresponding epitope HLA class I antigens docking 
energies have been illustrated in Fig. 6B. The interaction energies 
obtained for the S- and Mpro-based epitope interactions with HLA-A 
and HLA-B suggested that most of the epitopes have good binding 
affinities toward HLA-A class I molecules. Although, detailed studies 
based on the interactions have not been explored in this context.

DISCUSSION
The quick and efficient development of active antiviral agents for 
therapeutic use is exceptionally challenging because traditional drug 
development methods usually take years of research and cost billions 
of dollars. Repurposing approved pharmaceutical drugs and drug ap-
plicants provide an alternative approach for rapid identification of 
potential medication leads and expeditious management of evolving 
viral infections. In the current study, the combined drug designing and 
immunoinformatics approach provide a detailed understanding of 
the vital structural domains involved in either acting as a substrate-
binding site or epitope recognition site. Research teams in companies 
and universities are currently developing more than 90 vaccines against 
SARS-CoV-2 (38). At least eight types of coronavirus are being tested, 
relying on different viruses or viral parts (38). The structure-based 
immunoinformatics approach may help identify vital structural domains 
and active sites that can provide a basis for development of  protein-
based vaccines targeting mainly spike glycoprotein of SARS-CoV-2. 
We do acknowledge several limitations in validating our in silico 
proposed work due to the lack of experimental support. However, the 
strategies mentioned above can reduce the resources and expenses 
for researchers involved directly with the experimental and clinical 
studies, with a higher probability of obtaining the desired responses 
and fewer trials and recurrences of mistake. Our strategy will reduce the 
translational distance between preclinical test results and clinical 
outcomes, and thus help to address a major challenge for the rapid 
development of practical treatment approaches for the ongoing 
SARS-CoV-2 pandemic.

MATERIALS AND METHODS
Protein structure retrieval
We have retrieved the crystal structures of prefusion SARS-CoV-2 
spike glycoprotein with an RBD (S) (PDB ID: 6VSB) and the Mpro in 
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complex with an inhibitor N3 (PDB-ID: 6 LU7) from PDB. For the 
complex interaction analyses with RBD of S protein, we have taken 
the structure of native human ACE–related carboxypeptidase (ACE2) 
(PDB ID: 1R42). We have used UCSF Chimera and Discovery Studio 
Visualizer to visualize and analyze the interactions.

Virtual screening and molecular docking
The antiviral drug compounds were retrieved from the ChEMBL 
database with a search query term “antiviral drugs” and “coronavirus” 
that resulted in 640 chemical compounds with the corresponding 
filters for data availability, e.g., SMILES and Structure Data File formats. 
We have screened the antiviral drug molecules for RO5 violations 
and refined them to get 3D coordinates using the Open Babel command-
line tool. All the structures that have passed the RO5 rule have been 
subjected for further refinement using MarvinSketch. The drug 
compounds and the corresponding target receptors, e.g., 6VSB and 
6 LU7, were submitted for virtual screening using AutoDock Vina. 
The virtually screened best compounds were then docked with the 
target receptors again to ensure the conformation poses and bind-
ing affinities. We have performed blind docking as the location of 
binding site is unknown for both target receptors. The grid for the 
target receptors was set to 126 Å by 126 Å by 126 Å with a spacing 
of 1.000 Å. The interactions were visualized using Discovery Studio 
Visualizer. Furthermore, we have again docked the best-screened 
compounds to the complex of RBD-ACE2 in two conformations: (i) 
partial chain A–RBD of S protein with ACE2 complex and (ii) full 
trimeric S protein with ACE2 complex using AutoDock Vina.

MD simulation
MD simulation using GROMACS v.2019.2 has been performed for 
the complex molecules (drug bound proteins). We obtained the 
topologies for all the small antiviral molecules from the PRODRG 
database. We have optimized the parameters of the target receptor 
and the drug molecules using the GROMOS96 54a7 force field. The 
complex systems were placed in a periodic cubic box solvated with 
simple point charge solvent molecules. Periodic boundary condi-
tions with a 15-Å cutoff for nonbonded interactions were applied, 
with the particle mesh Ewald method applied to account for the 
long-range electrostatic interactions. The system was neutralized 
with Na+ counterions to attain equilibration. Energy minimization 
and equilibration were carried out in three steps as follows: (i) We 
minimize the whole system containing ions, solvent, protein, and 
ligand for up to 50,000 steps using a steepest-descent algorithm. 
(ii) Constraints were added to protein and the ligand dimer for 
100 ps during heating using NVT (number of atoms, volume, tem-
perature) ensemble with leapfrog integrator and linear constraint 
solver holonomic constrains. (iii) NPT ensemble was used at constant 
pressure (1 bar) and temperature (300 K) for 100 ps using a time 
step of 2 fs for equilibration phase 2. The SHAKE algorithm was 
used to constraint hydrogen to heavy atom bonds. The MD produc-
tion phase for all the systems has been simulated for 10 ns with a 
time step of 2 fs. Furthermore, after 10-ns simulation, the protein-
ligand interaction energy was evaluated to compute the nonbonded 
interaction energy and short-range nonbonded energies, which 
were quantitatively reproduced with energy profiles generated by 
GROMACS tools. Furthermore, we used MM-PBSA to calculate the 
polar and nonpolar solvation energies with corresponding binding 
energy decomposition of the complexes. MM-PBSA calculates the 
free energy of the docked complex (the binding free energy of the 

protein with ligand in a solvent medium) where the general expres-
sion of the term can be depicted as

	​  ​G​ binding​​ = ​G​ complex​​ − (​G​ protein​​ + ​G​ ligand​​)​	 (1)

where Gcomplex is the total free energy of the protein-ligand complex 
and Gprotein and Gligand are total free energies of the isolated protein 
and ligand in solvent, respectively.

	​​ G​ x​​ = 〈 ​E​ MM​​ 〉 − TS + 〈 ​G​ solvation​​ 〉​	 (2)

where x is the protein or ligand or protein-ligand complex. ⟨EMM⟩ is 
the average molecular mechanics potential energy in a vacuum. TS 
refers to the entropic contribution to the free energy in a vacuum 
where T and S denote the temperature and entropy, respectively. 
The l term ⟨Gsolvation⟩ is the free energy of solvation.

	​ E = ​E​ bonded​​ + ​E​ nonbonded​​ = ​E​ bonded​​ + ( ​E​ vdW​​ + ​E​ elec​​)​	 (3)

where Ebonded is bonded interactions consisting of bond, angle, 
dihedral, and improper interactions. The nonbonded interactions 
(Enonbonded) include both electrostatic (Eelec) and van der Waals 
(EvdW) interactions depicted using a Coulomb and Lennard-Jones 
potential function, respectively.

Moreover, the free energy of solvation, which is the energy re-
quired to transfer a solute from a vacuum into the solvent, has been 
calculated including polar and nonpolar solvation energies that can 
be depicted as

	​​ G​ solvation​​ = ​G​ polar​​ + ​G​ nonpolar​​​	 (4)

where Gpolar and Gnonpolar are the electrostatic and nonelectrostatic 
contributions to the solvation free energy, respectively.

Protein-protein interaction
To predict the conformational changes upon binding of ACE2 to 
the trimeric S protein RBD, we have used PatchDock and FireDock 
for protein-protein interaction analysis. UCSF Chimera was used 
for the post protein-protein interaction analyses.

Antigenicity and T cell epitope identification
We have retrieved the protein FASTA sequence of SARS-CoV-2 
isolate Wuhan-Hu-1, complete genome sequence bearing ID 
NC_045512.2 for the epitope screening. The prediction of protec-
tive antigens and subunit vaccines was evaluated using VaxiJen 2.0 
with default parameters. The NETCTL 1.2 server was used for the 
T cell epitope identification. The method integrates MHC-I binding, 
proteasomal C-terminal cleavage, TAP transport, and combinatorial 
scores for the prediction of epitopes. For MHC-I binding, IEDB 
tools have been used to get the best selected epitopes based on the 
stabilized matrix base method and inhibitory concentrations (IC50) 
values for peptide binding to MHC-class I molecules. Furthermore, 
the selected epitopes were further processed to obtain the specificity 
to TAP transport, proteasomal cleavage, TAP transport, and MHC-I. 
The web-based tool IEDB has been used for population coverage 
analysis.
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Immunogenicity prediction
The IEDB MHC class I immunogenicity tool and the European 
Molecular Biology Open Software Suite (EMBOSS) were used for 
immunogenicity prediction. The algorithm prediction was based on 
immunogenicity and antigenic scores.

T cell epitope structure prediction
The selected T cell epitopes were subjected to the PEP-FOLD server 
to predict the 3D structure to be able to perform the protein-peptide 
interaction with HLA-A and HLA-B class I molecules.

B cell epitope prediction
IEDB resources were used to classify B cell antigenicity such as 
Kolaskar and Tongaonkar antigenicity scale, Emini surface usability 
prediction, Karplus and Schulz versatility prediction, and BepiPred 
linear epitope prediction analysis. The Chou-Fasman beta-turn 
prediction tool is used as the antigenic sections of a protein belong 
to the -turn areas. We have also used ElliPro and DiscoTope to 
predict linear and discontinuous peptides, respectively.

Molecular interaction of epitopes to HLA class I molecules
The T cell epitopes were further processed for interaction analysis 
using HLA class I molecules using ClusPro 2.0. ClusPro 2.0 was based 
on ranking models by cluster size where the ligands were rotated 
70,000 conformations. The server also predicts the cluster size and 
interacting members and gives best models with the lowest energies.

Statistical analysis
All statistical data analyses were performed in Origin 2018. Linear 
curve fitting has been performed using independent and dependent 
variables with the goal of defining a “best fit” model of the relation-
ship. Use of weighted least-square method to fit a linear model 
function to specified data has been performed. Box plots, scatter 
plots, and bar graphs have been depicted to represent the data.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/28/eabb8097/DC1
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