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ABSTRACT

The amount of biological data, generated with (sin-
gle cell) omics technologies, is rapidly increasing,
thereby exacerbating bottlenecks in the data anal-
ysis and interpretation of omics experiments. Data
mining platforms that facilitate non-bioinformatician
experimental scientists to analyze a wide range of
experimental designs and data types can alleviate
such bottlenecks, aiding in the exploration of (newly
generated or publicly available) omics datasets.
Here, we present BIOMEX, a browser-based soft-
ware, designed to facilitate the Biological Interpreta-
tion Of Multi-omics EXperiments by bench scientists.
BIOMEX integrates state-of-the-art statistical tools
and field-tested algorithms into a flexible but well-
defined workflow that accommodates metabolomics,
transcriptomics, proteomics, mass cytometry and
single cell data from different platforms and organ-
isms. The BIOMEX workflow is accompanied by a
manual and video tutorials that provide the neces-
sary background to navigate the interface and get
acquainted with the employed methods. BIOMEX
guides the user through omics-tailored analyses,
such as data pretreatment and normalization, di-
mensionality reduction, differential and enrichment
analysis, pathway mapping, clustering, marker anal-
ysis, trajectory inference, meta-analysis and others.
BIOMEX is fully interactive, allowing users to easily
change parameters and generate customized plots
exportable as high-quality publication-ready figures.

BIOMEX is open source and freely available at https:
//www.vibcancer.be/software-tools/biomex.

INTRODUCTION

The recent growth of unbiased high-throughput sequencing
and profiling technologies has revolutionized the generation
and analysis of biological data (1). The commoditization,
exponential growth and increased throughput of these tech-
nologies (2) has helped the community to develop break-
throughs in bioanalytical research. For example, using next
generation sequencing technologies, it is possible to analyze
whole genome and transcriptome sequences within an hour
(3). In addition, using mass spectrometry, thousands of pro-
teins and metabolites can be measured simultaneously (4,5).
Until recently, traditional profiling methods could be ap-
plied only to ‘bulk’ samples homogenized from whole tissue
or organ extracts. With the advent of single cell genomics,
transcriptomics and proteomics profiling technologies, in-
dividual cell contents can now be measured (6) allowing the
characteristics of individual cells to be studied (7,8), further
increasing the volume of data to analyze.

Availability of such large and complex datasets intro-
duces multiple challenges. Computational challenges re-
late to the handling, processing and analysis of the data;
new bioinformatics tools are continuously developed in
tandem with technological advances. Biological challenges
stem from the need to understand the biological significance
of the information in the data and require in-depth knowl-
edge of the biological question. Consequently, detailed bi-
ological interpretation of omics data requires a synthe-
sis of domain-knowledge and computational skills, which
continues to inspire interdisciplinary projects between re-
searchers with complementary expertise. Various tools ex-
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ist to meet the challenges related to analyzing omics data,
and can be loosely defined as workflow tools (e.g. Galaxy
(9), Taverna (10)), pre-processing tools (e.g. XCMS Online
(11), MaxQuant (12)), specialized tools and more broad
data analysis platforms. Easy-to-use data analysis platforms
that allow experimental scientists to autonomously ana-
lyze omics data have been highly successful as solutions
to bridge the gap between data generation and interpre-
tation (e.g. Perseus (13), EXPANDER (14), InstantClue
(15), MetaboAnalyst (16)). However, currently available
data analysis platforms mostly focus on analyses of bulk
omics data types, and in many cases they are not tailored
to support the pretreatment and analysis of a wide range
of omics experiments within the same interactive frame-
work (e.g. RNA-sequencing, gene expression microarrays,
metabolomics, proteomics), making the unified analysis of
all these varieties of omics data challenging. Moreover,
these tools do not scale, nor provide a structured data min-
ing workflow to explore single cell datasets (e.g. single cell
RNA-sequencing and mass cytometry).

Here we present BIOMEX, a data mining software devel-
oped for the Biological Interpretation Of Multi-omics EX-
periments. BIOMEX integrates a range of publicly available
algorithms and field-tested data analysis approaches into
a well-defined and guided stepwise workflow that accom-
modates a wide variety of experimental designs and multi-
omics data, including metabolomics, transcriptomics, pro-
teomics, single cell RNA-sequencing and mass cytometry
experiments (Figure 1). The software is capable of handling
large-scale data such as single cell omics experiments, scal-
ing from tens to hundreds of thousands of cells.

BIOMEX aims to alleviate the bottlenecks in the biolog-
ical data-analysis-to-interpretation pipeline of omics exper-
iments (13,17): these bottlenecks have become prominent in
light of the increased need to understand the underlying bi-
ological phenomena that are now measureable at a much
higher resolution.

OVERVIEW

Functional requirements and design rationale

BIOMEX is designed to allow non-bioinformatician exper-
imental scientists to perform interactive data mining of bulk
and single cell omics datasets. We therefore defined the fol-
lowing functional requirements for the software:

1. To accommodate multi-omics data across select biolog-
ical species and computational platforms.

2. To allow users to interactively analyze complex experi-
mental designs using state-of-the-art and field-tested al-
gorithms.

3. To facilitate the re-use of publicly available data.
4. To provide a flexible, well-defined data analysis work-

flow.
5. To provide self-contained, non-technical background in-

formation to aid the meaningful use of each analysis
module.

6. To enable the generation of highly-customizable
publication-ready plots and figures.

BIOMEX is implemented in the open source R program-
ming language (https://cran.r-project.org/); the majority of
algorithms required for biological data mining are avail-
able through open source R packages. BIOMEX integrates
these algorithms and packages into a workflow, in which
parameters can be interactively tuned using the Shiny web
framework (https://shiny.rstudio.com/, the full list of pack-
ages used in BIOMEX is available in Supplementary Table
1) (18). Together, BIOMEX creates a workflow that allows
users to iteratively fine-tune complex analyses in order to
facilitate detailed biological interpretation through interac-
tive visualizations.

Manual and video tutorials

A comprehensive web manual that describes all functional-
ities, data formats, parameters and analyses related to the
workflow is provided within the BIOMEX software. The
manual guides the user through the step-by-step procedure
required to execute the workflow and is complemented with
video tutorials that introduce users to all interface elements
and software functionalities.

DATA IMPORT: DATA AND METADATA MATRIX

BIOMEX requires two files for each experiment, the data
and metadata matrix.

Data matrix

The data matrix contains typical omics (i.e. transcriptomics,
metabolomics, proteomics, mass cytometry) output in a text
(.txt) or comma separated values (.csv) format. The data file
is organized such that the first column contains feature iden-
tifiers (i.e. genes, metabolites, proteins), while the first row
contains descriptors (i.e. sample or cell IDs). The data ma-
trix can be uploaded as unprocessed gene expression values
(raw read counts, unique molecular identifier counts for sin-
gle cell RNA-sequencing, non-log transformed intensities
for microarrays) or absolute abundances for metabolomics
and proteomics data. Alternatively, BIOMEX accepts pre-
processed data (e.g. filtered and normalized, batch cor-
rected, etc.).

BIOMEX automatically checks the uniformity and com-
patibility of the data, while also dealing with irrelevant
(empty) observations and features. For transcriptomics and
proteomics, the feature (gene or protein) identifiers are
mapped to feature names to allow downstream interpreta-
tion of the results and further analyses.

Metadata matrix

The second required file is the metadata file (.txt or .csv for-
mat) that contains all the auxiliary information about the
experimental design (variables). The metadata file is orga-
nized such that the first column contains descriptors match-
ing with the data file, while the first row contains the vari-
ables (e.g. factors, numeric, etc.). This file can be modified
interactively within the software.

https://cran.r-project.org/
https://shiny.rstudio.com/
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Figure 1. The BIOMEX workflow. The workflow guides the user through distinct analysis steps. The data (and metadata) need to be uploaded, and each
uploaded dataset must be annotated with the relevant information (i.e. the omics data type, technology, feature identifier, etc.). In the processing step, the
data is cleaned and consistency checks are performed to verify that the data was uploaded in the correct format. After the feature identifiers are mapped
to feature names, the data is filtered and normalized in the pretreatment step. Depending on the omics data type, the data can also be imputed or batch
corrected. Once the data is pretreated, it is ready for downstream analysis. The different analyses available in BIOMEX can be divided into five categories:
(i) quantification analyses quantify the abundance level of the features in the data (and metadata); (ii) exploratory analyses assist in understanding the
underlying structure of the data; (iii) pairwise analyses reveal the functional differences between groups; (iv) meta-analysis combines results from different
studies in a singular, unique and robust result and (v) auxiliary analyses (e.g. machine learning and survival analysis). Ultimately, all the analyses can be
saved in a self-contained folder that can be shared between scientists and results can be customized and exported either as tables or high quality publication-
ready figures. Abbreviations: TP, true positive, FN, false negative, TN, true negative, FP, false positive. Note: The term ‘features’ is used to indicate genes,
metabolites and proteins.
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Example datasets

We provide example datasets (the data and metadata matri-
ces) that are readily available to be uploaded into the soft-
ware. These example datasets encompass all the omics data
types supported by BIOMEX, and they include case stud-
ies (described below) available directly from the software via
the ‘Case studies’ section.

DATA ANALYSIS: ANALYSIS MODULES

The BIOMEX workflow contains 10 data analysis modules,
which are briefly described below.

Module 1: Data pretreatment

After data upload, the data is filtered to remove low qual-
ity features, normalized, and, if necessary, corrected for un-
wanted technical variation (e.g. batch effects) (19–22). Al-
gorithms for quality filtering, normalization and regression
are often omics-type specific: BIOMEX automatically sug-
gests applicable algorithms and parameter settings depend-
ing on the type of data being analyzed. For example, single
cell RNA-sequencing data can be corrected for batch effects
by using the mutual nearest neighbor (MNN) method (22).

The output of this module is a clean/corrected data ma-
trix that can be used for downstream analysis.

Module 2: Feature engineering

Complementing unbiased and automated methods, domain
knowledge can be used to craft new features from the ex-
isting features in the data to estimate biological variation
(e.g. from gene expression to pathway activity). During this
(optional) step, BIOMEX employs gene set variation anal-
ysis (23) (GSVA) to convert the features-by-observations
data matrix (output of module 1) into an engineered sets-
by-observations data matrix. The newly created engineered
data can then be used to perform downstream analysis, in-
cluding differential analysis. BIOMEX includes the KEGG
sets by default, but users can also upload custom sets. Alter-
natively, feature engineered data, created with independent
methods, can be directly uploaded to BIOMEX and subse-
quently used in downstream analysis.

Module 3: Visualization of trends

Feature magnitudes and trends are visualized in bar plots,
box plots, violin plots and density kernel estimation plots.
These plots are grouped based on the information present in
the metadata. The uploaded metadata can also be explored
through pie charts and horizontal bar plots.

Module 4: Unsupervised analyses

Unsupervised analysis aims to unbiasedly detect patterns
in the data. For dimensionality reduction and visualiza-
tion, BIOMEX includes Principal Component Analysis
(24) (PCA, flashPCA package (25)), t-distributed Stochas-
tic Neighbor Embedding (26) (t-SNE, Rtsne package)
and Uniform Manifold Approximation and Projection (27)

(UMAP, umap package). Also, BIOMEX supports K-
means, hierarchical and graph-based clustering (Seurat (21)
and FlowSOM (28) packages). The output of hierarchical
clustering can be visualized via dendrograms, and the asso-
ciated uncertainty can be assessed using multi-scale boot-
strap resampling (pvclust package (29)). BIOMEX provides
interactive heatmaps (heatmaply package (30)) to visualize
inherent associations between groups or clusters.

Module 5: Supervised analyses

Supervised pairwise analyses are used to explore quantita-
tive differences in expression or abundance levels between
groups (differential analysis). BIOMEX uses linear mod-
els (limma and MAST packages (31,32)) to describe the
relationship between expression levels of features between
two groups. This enables handling of complex experimen-
tal designs, and allows including covariates in the modeling
process. The magnitude of differential expression (log fold
change) and the P-values are provided for each feature, to-
gether with the false discovery rate adjusted P-values calcu-
lated with the Benjamini-Hochberg method (33). Volcano
plots are used to visually represent the differential analysis
results.

As an extension of pair-wise differential analysis,
BIOMEX includes marker analysis that can be used to de-
tect key discriminating features between multiple groups (or
clusters in single cell data). This analysis consists of a two-
step intra-dataset meta-analysis approach. First, BIOMEX
performs a differential analysis for each group against all
the other groups separately and filters out features that are
not consistently differentially expressed (34). Subsequently,
marker features are ranked using a product-based meta-
analysis (median-, sum- or P-value-based meta-analysis can
be used to rank features) (35).

Functional analysis of omics data can be performed in
BIOMEX using several tools. These include Gene Set En-
richment Analysis (36) (GSEA, clusterProfiler (37) pack-
age) used to perform the competitive set enrichment analy-
sis, and rotation gene set tests (ROAST) (38) to perform self-
contained set enrichment analysis. Results of such analyses
can be either displayed as a waterfall plot or a horizontal
bar plot. These analyses provide functional information re-
garding, for example, pathways or biological processes that
may be deregulated in a select set of conditions. The de-
fault setting in the software is to use the (metabolic) KEGG
pathway sets (39), but this can be changed by the user to
include other pathways or biological processes. BIOMEX
uses the KEGG pathways to map features in the data (genes,
proteins, metabolites) to well defined and constructed path-
ways using the pathview (40) package. The pathway visual-
izations are interactive and can be customized by the user
to incorporate a priori biological insight (e.g. irrelevant iso-
forms can be manually excluded).

Module 6: Single cell specific algorithms

Single cell data can be used to infer differentiation tra-
jectories using computational methods. BIOMEX includes
Monocle (41) and SCORPIUS (42) to infer branched and
linear cell trajectories, respectively. BIOMEX also uses lo-
cally estimated scatterplot smoothing (LOESS) regression
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to subsequently model the dynamic behavior of features
in pseudotime. As a second single cell-specific approach,
BIOMEX includes scmap (43) to project cluster identities
from a reference dataset to another non-clustered dataset
by calculating the similarities between cells of the non-
clustered dataset and the cluster centroids in the reference
dataset.

Module 7: Survival analysis

Survival analysis is implemented in BIOMEX in order to
link omics data to a disease outcome. For example, us-
ing The Cancer Genome Atlas (TCGA) (44) and other re-
sources, it is possible to infer the effect of deregulation of
a given gene to a treatment outcome or patient survival.
BIOMEX uses the Kaplan–Meier (45) test to generate the
survival functions, and the logrank test (46) to assess the
significance of those survival functions (survival package).

Module 8: Machine learning

Machine learning is a set of approaches that can model the
relationship between a set of variables (features) and in-
stances (observations) based on a given training dataset.
BIOMEX includes the ranger (47) implementation of the
random forest model to perform classification and regres-
sion tasks (48). Recursive feature elimination (RFE) (49)
is used as the feature selection method of choice to select
the most predictive features. The machine learning pipeline
is based on the caret package and includes cross-validation
strategies to assess the predictive performance of the model
(50).

Module 9: Meta-analysis of bulk omics data

Integrative data analysis approaches have been successfully
used to analyze multiple datasets simultaneously to com-
pare the results of independent experiments (51,52). With
the availability of added-value databases, publicly available
preprocessed data can be easily accessed by scientists and
used to perform meta-analyses. In a meta-analysis, (i) a pair-
wise differential analysis is performed for each dataset inde-
pendently; (ii) we rank the features in each dataset by a met-
ric (e.g. fold change) and (iii) we combine the rank numbers
for all features using a product-based (or median-, sum- and
P-value-based) meta-analysis approach. As a result, we ob-
tain a ranked list of features, which are consistently differ-
entially expressed across all the selected comparisons (i.e.
differential analyses) in different datasets. The results can
be visually explored through violin plots.

Module 10: Single cell meta-analysis

Meta-analysis can also be performed by measuring the simi-
larity between clusters (53). This analysis, developed specif-
ically for single cell omics data, assesses the conservation
of cell phenotypes between different tissues, organs, stud-
ies, conditions, etc. BIOMEX performs the cluster similar-
ity analysis by combining the results obtained during the
marker set analysis. Similarity between the clusters present
in the marker set results are calculated using the pairwise

Jaccard similarity coefficients (54) for all clusters against
all other clusters. The output of this analysis is a similarity
score matrix, which describes quantitatively how each clus-
ter is similar to other clusters. PCA is applied to the pairwise
Jaccard similarity coefficient matrix to visually represent the
similarity between clusters.

DATA EXPORT: PLOTS AND TABLES

All the plots and tables (plotly, ggplot2 (55), DT pack-
ages) can be fully customized and exported in a vari-
ety of high quality formats (e.g. vectorized image for-
mat). BIOMEX saves all parameters and results in a self-
contained folder, which can be shared between users and
loaded into BIOMEX, improving the reproducibility of
analyses.

CASE STUDIES

To showcase the analysis modules implemented in
BIOMEX, we provide two case studies. A step-by-step
tutorial on how to reproduce the results obtained in both
case studies is available in the manual, which includes
all the parameters used to perform the analyses and to
generate the plots.

Bulk data: exploration of the TCGA cholangiocarcinoma
dataset

To provide an illustrative example on how bulk data can be
analyzed, we explored a publicly available TCGA dataset
(TCGA-CHOL) on cholangiocarcinoma (CCA), a cancer
from the bile duct that represents the second most com-
monly diagnosed primary liver tumor (56). Even when di-
agnosed at an early stage, CCA is a very aggressive ma-
lignancy with poor patient outcome and limited treatment
opportunities (56). According to their anatomical location,
CCAs are classified as intrahepatic, hilar-perihilar and dis-
tal, which represent respectively 88.2%, 5.9% and 5.9% of
the patients in this analysis (Figure 2A). Dimensionality re-
duction (PCA) and correlation heatmap analyses showed
that biopsies from normal tissue have a clearly distinct tran-
scriptomic signature compared to intrahepatic CCA resec-
tions (Figure 2B, C). Although there is a strong inter tu-
mor sample heterogeneity between patients (Figure 2C), we
aimed at determining transcriptomic similarities that could
be involved in overall CCA pathogenesis. Enrichment anal-
ysis of normal versus intrahepatic CCA samples indicated
that cell cycle and extracellular matrix (ECM)-receptor in-
teraction gene sets were the most upregulated (Figure 2D).
Consistently, differential gene expression analysis showed
that several key mitotic checkpoints (e.g. CDK1, E2F1,
CDC45, SFN) and mitotic spindle assembly/control genes
(e.g. CDC20, CDC25, TUBB3), as well as numerous genes
encoding laminin, integrin, collagen and ECM-secreted
proteins (e.g. SPP1, COMP, TNC) were upregulated in
the tumor samples (Figure 2E–G and not shown). To ex-
plore whether this signature was conserved across the other
classes of CCA, we performed a meta-analysis of normal
versus tumor samples from intrahepatic, hilar-perihilar and
distal CCAs. We identified two genes, namely CEACAM5
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Figure 2. Cholangiocarcinoma TCGA data analysis results. (A) Overall histological type percentage of the TCGA cholangiocarcinoma dataset. (B) PCA
of normal and intrahepatic tumor samples. (C) Clustered heatmap based on the correlation of normal and intrahepatic tumor samples. (D) Competitive
enrichment analysis of normal versus intrahepatic tumor samples using the gene sets related to the ‘Environmental Information Processing’ and ‘Cellular
Process’ KEGG pathway maps. The upregulated gene sets are shown in red, the downregulated gene sets are shown in blue. Note: There are two enriched
KEGG gene sets related to Hippo signaling, indicated separately in the figure. Hippo signaling (1): KEGG Hippo signaling pathway; Hippo signaling (2):
KEGG Hippo signaling pathway––multiple species. (E) Differential analysis of normal versus intrahepatic tumor samples shown in a volcano plot. The
significantly different genes (P < 0.05) are shown in blue, the non-significant genes are shown in grey. (F) Barplot visualization of SPP1 expression in normal
and intrahepatic tumor samples. The error bar represents the standard error. (G) Boxplot visualization of SFN expression in normal and intrahepatic tumor
samples. The box represents the range between the first quartile (Q1) and the third quartile (Q3), the horizontal line represents the median, the whiskers
represent the interquartile ranges (IQR, 1.5 × IQR below Q1 and 1.5 × IQR above Q3). (H) Meta-analysis of intrahepatic, hilar-perihilar and distal tumor
types. Each violin plot represents the differential analysis of normal versus the corresponding tumor type. The top 2 most consistently upregulated genes
(CEACAM5 and AFAP1-AS1) are highlighted. (I) Survival analysis based on MMP11 gene expression of intrahepatic tumor samples. All the results shown
in the figure can be directly explored in the BIOMEX ‘Case studies’ section. The parameters used to generate these plots can be found in the manual.
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Figure 3. Endothelial cell atlas data analysis results. (A) t-SNE plot of ECs from three murine tissues (heart, liver, lung). (B) UMAP of liver tissue showing
the endothelial cell clusters as described in the EC atlas. (C) Clustered heatmap showing the top 5 marker genes for each cluster. Colors represent row-wise
scaled gene expression with a mean of 0 and a standard deviation of 1 (Z scores). (D) Number of cells for each cluster in liver ECs. (E) Differentiation
trajectory of the classic EC phenotypes (arteries, capillaries, veins) in liver. (F) PCA on the pairwise Jaccard similarity coefficients between the top 50 marker
genes of the classic EC phenotypes (arteries, capillaries and veins) in heart, lung and liver. (G) Sankey diagram showing the scmap cluster projection of the
EC atlas liver data on the Tabula Muris EC liver data. All the results shown in the figure can be directly explored in the BIOMEX ‘Case studies’ section.
The parameters used to generate these plots can be found in the manual.

and AFAP1-AS1, ranking in the top 2 in a product-rank
meta-analysis (Figure 2H). Interestingly, CEACAM5 (car-
cinoembryonic antigen, CEA) is a well-established prognos-
tic marker in CCA (57), while the long non-coding RNA
AFAP1-AS1 has been linked to metastasis (a process requir-
ing complex ECM remodeling) and cancer cell proliferation
in CCA. Hence, the meta-analysis results further supported
the importance of cell proliferation and ECM-cell adhesion
in CCA.

A crucial step during invasion and metastasis is the re-
modeling of the ECM by proteolytic degradation, involv-
ing matrix metalloproteinases (MMPs) as pivotal actors.
Interestingly, MMP11 has been correlated to poor sur-
vival in several cancer types including CCA (58), breast
and pancreatic cancers. Consistently, we found that high
MMP11 expression was correlated to poor survival in pa-
tients with intrahepatic CCA (P-value = 0.0015) (Figure
2I). Together, these findings show that cell proliferation and
ECM adhesion/remodeling are conserved features across
the CCA classes. Hence, (novel) insights can be derived by
exploring publicly available data, showcasing the potential
and value of BIOMEX.

Single cell data: re-analysis of the endothelial cell atlas
dataset

To provide an illustrative example on how single cell data
can be analyzed, we selected heart, liver and lung endothe-
lial cells (ECs) from the recently published murine EC atlas
scRNA-seq dataset (59). We intended to showcase a logical
sequence of analyses that a BIOMEX user can employ to
(re-)analyze single cell data.

ECs line the lumen of blood vessels and are known to be
heterogeneous along the vascular tree. Consistently, dimen-
sionality reduction and visualization using PCA and t-SNE
indicated that ECs from the lung, heart and liver vascular
beds have a distinct transcriptional profile (Figure 3A). To
explore heterogeneity of ECs within a single vascular bed,
we performed dimensionality reduction using UMAP to vi-
sualize the subclusters as they were detected in the EC atlas
(59) (Figure 3B). Next, we performed rank-product based
marker set analysis, and visualized the top 5 marker genes
for each cluster using a heatmap (Figure 3C). Marker genes
were consistent with previously described markers of (sub-
lineages of) arterial, capillary, venous, lymphatic and pro-
liferating ECs (59). Quantification of the number of cells
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per cluster showed that capillary ECs constitute the major-
ity of the liver single cell population (Figure 3D). Further,
unbiased linear trajectory inference reconstructed a pheno-
typic continuum of arterial, capillary and venous pheno-
types, consistent with the known anatomical topography of
liver ECs (Figure 3E). To explore whether the cluster sig-
natures are conserved across tissues, we performed a sim-
ilar analysis for the lung and heart ECs (not shown), and
subsequently performed a Jaccard similarity analysis. This
analysis revealed that marker genes of arterial, capillary and
venous phenotypes are conserved across vascular beds (Fig-
ure 3F). Finally, we used scmap to project liver ECs from an
independent reference dataset (Tabula Muris dataset (8)),
onto the cluster identified in the EC atlas liver ECs (Figure
3G).

Together, this sequence of relatively simple analysis steps
shows the power of the BIOMEX workflow to easily explore
single cell datasets in detail.

CONCLUSION

To facilitate bench scientists in solving the computational
problems arising from omics experiments, we designed and
developed BIOMEX, a data mining software for the Biolog-
ical Interpretation Of Multi-omics EXperiments. BIOMEX
aims to alleviate the data-analysis-to-interpretation bottle-
necks, lowering the barriers needed to extract the biologi-
cal information embedded in omics measurements. With its
user-friendly, highly interactive web-like interface, users can
address complex biological questions by using advanced
computational tools and fine-tune the analyses in real time.
In addition, its design is unconstrained and allows multi-
omics data to be simultaneously uploaded and analyzed
into one unified framework, providing a well-defined work-
flow to analyze, interpret and visualize large-scale data such
as single cell measurements. BIOMEX also aids the explo-
ration of datasets generated from publicly available profil-
ing efforts (e.g. Tabula Muris (8), Human Cell Atlas (60),
The Cancer Genome Atlas (44)), repositories (e.g. Array-
Express (61), Gene Expression Omnibus (62)) and added-
value databases (e.g. EndoDB (63)). Furthermore, it facili-
tates the shareability of results, reproducibility of analyses
and execution of meta-analyses between different experi-
ments. Due to its convenient user interface and comprehen-
sive manual, BIOMEX could also be used as a didactical
tool to introduce researchers to the field of biological data
science.

To further promote detailed data mining of (single cell)
omics datasets accessible to non-bioinformatician experi-
mental scientists, we made BIOMEX freely available for
Windows and Linux at https://www.vibcancer.be/software-
tools/biomex. The source code is deposited at https://
bitbucket.org/ftaverna/biomex.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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