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ABSTRACT

Anti-CRISPR (Acr) proteins encoded by
(pro)phages/(pro)viruses have a great potential to
enable a more controllable genome editing. However,
genome mining new Acr proteins is challenging due
to the lack of a conserved functional domain and the
low sequence similarity among experimentally char-
acterized Acr proteins. We introduce here AcrFinder,
a web server (http://bcb.unl.edu/AcrFinder) that
combines three well-accepted ideas used by pre-
vious experimental studies to pre-screen genomic
data for Acr candidates. These ideas include ho-
mology search, guilt-by-association (GBA), and
CRISPR-Cas self-targeting spacers. Compared to
existing bioinformatics tools, AcrFinder has the
following unique functions: (i) it is the first online
server specifically mining genomes for Acr-Aca
operons; (ii) it provides a most comprehensive
Acr and Aca (Acr-associated regulator) database
(populated by GBA-based Acr and Aca datasets);
(iii) it combines homology-based, GBA-based, and
self-targeting approaches in one software package;
and (iv) it provides a user-friendly web interface
to take both nucleotide and protein sequence files
as inputs, and output a result page with graphic
representation of the genomic contexts of Acr-Aca
operons. The leave-one-out cross-validation on ex-
perimentally characterized Acr-Aca operons showed
that AcrFinder had a 100% recall. AcrFinder will
be a valuable web resource to help experimental
microbiologists discover new Anti-CRISPRs.

INTRODUCTION

Acr (anti-CRISPR) proteins were first discovered in 2013
in Pseudomonas phages and prophages (1). Acr encod-
ing genes often form operons with HTH (helix-turn-helix)

domain-containing transcription suppressor genes (2,3)
that encode Aca (Acr associated) proteins (4,5). These
short Acr proteins (<200 aa) are made by phages/viruses
and other mobile genetic elements to inhibit the CRISPR-
Cas (clustered regularly interspersed short palindromic re-
peats [CRISPR]––CRISPR-associated genes) systems of
their prokaryotic hosts for successful invasion and survival.
Therefore, Acrs can turn off the CRISPR-Cas system of
their hosts, and thus are ‘naturally occurring off-switch’
of CRISPR–Cas systems. Hence, anti-CRISPRs have great
potential to serve as regulators/modulators of CRISPR–
Cas genome editing tools for safer and more controllable
genome engineering (6–9).

The research of anti-CRISPR is very young and grow-
ing at a remarkable rate. Since the first anti-CRISPR pa-
per published in 2013 (1), there have been ∼130 papers
published and available in PubMed as of February 2020,
but only four were exclusively bioinformatics work (10–13).
Clearly, there is a lack of bioinformatics resources for anti-
CRISPRs, although most of the 56 experimentally charac-
terized Acr protein families (Supplementary Table S1) had
been identified with the help of bioinformatics (7,13,14).
At present, the only three peer-reviewed bioinformatics re-
sources (Table 1) for anti-CRISPRs include two online
databases anti-CRISPRDB (12) and CRISPRminer (11), as
well as a Google Doc for unifying anti-CRISPR nomen-
clature (https://tinyurl.com/anti-CRISPR) (13). The anti-
CRISPRDB collects and presents experimentally charac-
terized Acr proteins and their homologs on the web. The
CRISPRminer focuses on CRISPR–Cas systems but also
has an anti-CRISPR annotation module, which contains
experimentally characterized Acr proteins, their homologs
and genomic neighborhoods. In addition, a standalone pro-
gram called Self-Targeting Spacer Searcher (STSS) was de-
veloped to detect if any spacers in a CRISPR array of a
genome target a protospacer in the same genome, a phe-
nomenon known as CRISPR spacer self-targeting (15). The
self-targeting idea, i.e., bacterial genomes having CRISPR
spacers and their targets (i.e., protospacers) in the same
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genome, has also been applied to searching for new Acrs
(16).

Although all the above four bioinformatics resources (Ta-
ble 1) can facilitate the research of anti-CRISPRs, none of
them can automatically identify Acr proteins from given
genomes. This task is difficult because all the 56 experi-
mentally characterized Acr protein families (https://tinyurl.
com/anti-CRISPR) are very divergent in sequence and most
do not contain any known Pfam domains (17). We recently
performed a large-scale survey of thousands of Acr ho-
mologs in 75 000+ bacterial genomes and suggested com-
bining three computational approaches in order to improve
the sensitivity of bioinformatics Acr discovery (10). These
three approaches include: (i) sequence homology search;
(ii) finding the more conserved Acr-associated (Aca) ho-
mologs that often sit next to Acr genes first and then
searching the Aca gene neighborhood for Acr candidates
(guilt-by-association or GBA approach); and (iii) search-
ing for Acr candidates in genomes with self-targeting spac-
ers. Particularly, the GBA and self-target approaches have
contributed to the discovery of most of the 56 published
Acr proteins.

After November 2019, two preprints became available
online in bioRxiv, which reported using machine learning
algorithms for bioinformatics discovery of new Acr pro-
teins (18,19) (Table 1). AcRanker (19) (published when
AcrFinder was under review) used amino acid compositions
of known Acr proteins (positive data) and non-Acr pro-
teins (negative data) to train an XGBoost classifier, which
can then be used to predict new Acr proteins given a pro-
teome input. AcrCatalog (18) defined and combined eight
sequence features, the most important of which include self-
targeting and directon (small protein encoding operons)
protein features, and trained a random forest (RF) classifier
for new Acr prediction. Millions of proteins from prokary-
otic viruses and pro-viruses of the GenBank databases were
examined using this RF classifier, and thousands of new Acr
families were predicted. These pre-computed Acr families
were used to build an online database called AcrCatalog,
while the RF classifier itself is unavailable.

Here, as a follow-up to our previous work (10), we de-
veloped a new standalone software package (https://github.
com/HaidYi/acrfinder) and a web server (http://bcb.unl.
edu/AcrFinder), AcrFinder, to allow for automated genome
mining for Acr-Aca operons. Compared to AcRanker, the
only tool that also provides a standalone package and web
server (Table 1), AcrFinder offers new utilities that: (i) allow
not only protein but also nucleotide sequence file as input,
(ii) identify not only Acrs but also their genomic neighbor-
hood (e.g. the operons that also contain Acas), (iii) provide
an Acr and Aca sequence databases, (iv) integrate Acr ho-
mology search, GBA and self-targeting in one software, and
(v) provide a more user-friendly web interface with much
more appealing graphic representation of the genomic con-
text of operons that contain the predicted Acr genes.

DATABASES OF ACR AND ACA

We downloaded the Fasta sequences of all experimentally
characterized Acrs from https://tinyurl.com/anti-CRISPR
(13) to form the Acr database. As shown in Figure 1 and

Supplementary Table S1, among the 56 Acr proteins, 52 are
shorter than 200 aa (44 are shorter than 150 aa); 32 have
their encoding genes co-localized adjacent to Aca genes and
all these Aca genes are shorter than 150 aa. All the 56 Acr
genes are located in short-gene operons meaning all genes
are on the same strand (i.e. running in the same direction),
encode short proteins (<200 aa), and most intergenic dis-
tances are <150 bp. Using the Acr database, we have further
built an Aca database.

We used Acr homologous gene neighborhood (GBA) to
identify HTH-domain containing proteins, as described in
our recent paper (10). In other words, genes that encode
HTH proteins and form short-gene operons with Acr ho-
mologs were identified as Acas. Briefly, the 56 Acr pro-
tein sequences were used as baits to DIAMOND (20) blast
against five different databases: (i) NCBI RefSeq bacterial
genomes (21); (ii) NCBI RefSeq archaeal genomes (21);
(iii) assembled viral/proviral contigs of the JGI IMG/VR
database (22); (iv) assembled human virome contigs of Hu-
VirDB (23); and (v) assembled human gut virome contigs
of GVD (24). Acr homologs (E-value < 1e−2 and sequence
length < 200 aa) in these databases were located in the ge-
nomic contigs and the Acr gene neighborhood was exam-
ined. Aca candidates were then identified within the Acr
operons (all genes are on the same strand and shorter than
200 aa) meeting the following criteria: (i) length < 200 aa;
(ii) contain a Pfam HTH domain (E-value < 1e−2 and
HTH coverage > 0.5); (iii) distance between the Aca candi-
date and the Acr homolog ≤ 3 genes. Aca candidate proteins
from the five databases were combined as the Aca-GBA-DB.

The Aca-GBA-DB was further supplemented with 42
published Aca proteins (named Aca-Pub-DB) to form the
final Aca database. The 42 published Aca proteins include
29 Acas surrounding the experimentally characterized Acr
proteins plus 13 Aca proteins identified in (25). In our evalu-
ation experiments, the Aca database (Aca-GBA-DB + Aca-
Pub-DB) was filtered to obtain different smaller sets of Aca
proteins corresponding to subsets of the 56 Acrs (see be-
low).

WORKFLOW

Given a new genome in nucleotide Fasta sequences,
AcrFinder will call gene prediction programs to generate
a protein sequence file and a GFF (general feature for-
mat with gene position information in the contigs) file. It
also allows users to submit a protein sequence file plus a
GFF file as input. As shown in Figure 2, the workflow
contains two independent routes. One route is Acr ho-
mology search (red arrows in Figure 2), which uses the
56 Acr proteins (http://bcb.unl.edu/AcrFinder/Download/
database/Known AcrDB.faa) as the query and the input
protein sequences as the subject for a DIAMOND search.
If an Acr homolog is found, the genomic operon that con-
tains the Acr homolog will be extracted, and its subtype will
be inferred according to its Acr query in the Acr database.

The other route (blue arrows in Figure 2) com-
bines Aca homology search, GBA, and self-targeting ap-
proaches, and contains three major steps. In step 1, pro-
teins of the Aca database (http://bcb.unl.edu/AcrFinder/
Download/database/AcrFinder AcaDB.faa) will be DIA-
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Table 1. Overview of current bioinformatics tools for Acr research

Name Resource provided Features Input Output

anti-CRISPRDB Database Experimentally characterized Acrs
and their homologs and BLAST
search

NA NA

CRISPRminer Database Experimentally characterized Acrs
and their homologs and genomic
context

NA NA

Acr nomenclature Google spreadsheets Experimentally characterized Acrs
and Acas nomenclature

NA NA

Self-Targeting Spacer
Searcher

Standalone package Workflow for self-targeting spacer
identification

List of genomes Self-targeting
spacers

AcrCatalog Database Predicted Acrs from decision tree
ML classifier + heuristic filtering

NA NA

AcRanker Web server and
standalone package

XGBoost ML classifier using AA
biases

Protein sequences Ranked protein list
(no Acr subtype)

AcrFinder Web server and
standalone package

Workflow combining Homology +
GBA + Self-targeting and
user-friendly website

Protein or DNA
sequences

Acr-Aca operons
(with Acr subtype)

Figure 1. Sequence properties of 56 experimentally characterized Acr proteins and their genomic context. Numbers in the pies are the number of proteins
or loci: (1) 52 out of the 56 Acr proteins are shorter than 200 aa; (2) all the 32 Aca proteins are shorter than 150 aa; (3) all the 56 Acr proteins are located in
genomic operons with all the genes in the operon running in the same direction (on the same strand); (4) 32 out of the 56 Acr genes have neighboring Aca
genes; (5) 30 Acr-Aca operons have all intergenic distances < 150 bp; (6) 43 out of the 56 Acr proteins have isoelectric point < 7. The detailed information
can be found in Supplementary Table S1.

MOND blasted against a protein Fasta file that contains
proteins encoded by short-gene operons that meet a set
of specific criteria (Figure 2). The resulting Aca operons
will be further filtered to remove those that have non-Aca
proteins containing CDD functional domains (26) (except
phage, HTH, and other mobilome domains). The reason is
that most known Acr proteins do not have conserved func-
tional domains and tend to be located next to mobile ge-
netic elements (MGEs). In step 2, the filtered Aca operons
will be further examined to look for putative MGEs in the
neighborhood, which relies on the homology search against
the PHASTER (pro)phage database (27) or against the mo-

bilome position-specific scoring matrix models of the CDD
database (26).

In step 3, CRISPRCasFinder (28) will be run on the in-
put nucleotide Fasta file to identify high-confidence (level 3
and 4) CRISPR-Cas loci. If no CRISPR-Cas loci are found,
AcrFinder will exit and produce no output from this route.
Otherwise, the spacers of CRISPR arrays will be searched
against the self-genome (with CRISPR-Cas loci masked)
using BLASTn for identical self-targeting hits. If there are
self-targeted protospacers found, then the Aca operons re-
sulted from step 1 will be examined to see if they are within
5,000bp up- or down-stream of the self-targeted protospac-
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Figure 2. AcrFinder workflow. Two major routes are included: (i) Acr homology search; once Acr homolog is found, the gene neighborhood is examined
to only keep those that are located in short-gene operons. (ii) Aca GBA route contains three major steps (described in the main text). The resulting Acr-Aca
operons are classified into three groups with different confidence levels.

ers. If yes, these Aca operons will likely encode Acr proteins,
and thus be labeled as ‘high confidence’ Acr-Aca operons,
and inferred to target the CRISPR-Cas locus with the self-
targeting spacer. If not, they will be labeled as ‘medium
confidence’ Acr-Aca operons, and inferred to target the
CRISPR-Cas locus with the self-targeting spacer. If there
are no self-targeted protospacers found in the genome, then
the Aca operons resulted from step 1 will be labeled as ‘low

confidence’ Acr-Aca operons. If any of the Acr-Aca operons
also contain homologs of known Acr proteins, they will also
be indicated in the result.

PERFORMANCE EVALUATION

AcrFinder describes a bioinformatics workflow. The Acr
homology search route only looks for homologs of known
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Table 2. Leave-one-out evaluation of AcrFinder on genomes containing 8
Acr proteins*

Prophage hits
within n genes
up- or
down-stream

Min. # of
prophage hits

Found
positives

Total
positives Recall

n = 5 1 5 8 62.5%
0 8 8 100.0%

n = 10 1 7 8 87.5%
0 8 8 100.0%

* Detailed experiment results can be found in Supplementary Table S2.

Acrs. We have evaluated the performance of the Aca GBA
route by leave-one-out experiments. Specifically, out of
the 56 experimentally characterized Acr proteins, eight
(AcrIF4, AcrIF6, AcrIE4-F7, AcrIIA2, AcrIIA3, AcrIIA4,
AcrIIA12, AcrIIA21) are from genomes with complete
CRISPR-Cas systems and have neighboring Aca proteins
(Supplementary Table S1). For each (denoted as A) of
these eight Acrs in the Acr database, we created a new
Aca database by removing Aca candidates derived from A
(see above). AcrFinder was then run with this filtered Aca
database on the genome that contains A to see if it can be
found. The result (see Table 2 and its expanded version Sup-
plementary Table S2) shows that all the eight Acrs can be
identified in their corresponding leave-one-out experiments
(i.e. recall = 100%). As expected, the size of the Acr gene
neighborhood and the minimum number of prophage hits
are two important parameters that affect the recall. When
required to have at least one prophage hit within 10 genes
up- and down-stream of the Acr gene, seven of the eight
tested genes can be found by AcrFinder (recall = 87.5%).

In addition to the true positive Acr and its associated
operon, AcrFinder also found more Acr-Aca operons in
each genome (Supplementary Table S3). Are these all false
positives and can we calculate a precision for AcrFinder?
To calculate a precision, one has to create a reliable nega-
tive Acr dataset so as to clearly define false positives and
true negatives. AcRanker built the negative Acr dataset by
excluding all proteins in a proteome that share > 40% se-
quence identity to all known Acr proteins. The negative
dataset was only used for training the AcRanker classifier
but was not used for calculating a precision (19). The reason
is that the 56 experimentally characterized Acr families only
represent a very tiny fraction of all the possible Acr families
that exist in prokaryotes and their viruses (7), and a genome
can encode multiple Acr proteins that share no sequence
similarity. Indeed, we previously have found that one bac-
terial genome can contain multiple Acr homologs present
in different operons (10). The recent AcrCatalog paper (18)
also made similar observation in viral genomes. Even differ-
ent experimentally characterized Acrs can be present in one
genome. For example, as shown in Supplementary Table S1,
Listeria monocytogenes J0161 (GCF 000168635.1) contains
two Acr-Aca operons (AcrIIA2-AcrIIA1 and AcrIIA4-
AcrIIA1) that are distant from each other in the genome;
Moraxella bovoculi 58069 (GCA 000988605.1) has four dif-
ferent Acr genes in one operon (AcrVA1, AcrVA2, AcrIC1
and AcrVA3). Therefore, like AcRanker, we decide not to
calculate a precision. However, we provide all the predicted

operons ranked in three levels according to whether they
have self-targeting spacer targets adjacent to the Acr-Aca
operons, or do not have self-targeting spacer in the genome
at all. If any of the operon also contains homologs of known
Acr proteins, it will also be indicated. We also filter the Acr-
Aca operons to make sure none of the Acr candidates in the
operons contain conserved CDD domains (Figure 2).

Additionally, to compare with AcRanker (19), we have
built a smaller Aca-GBA-DB using only 18 experimentally
characterized Acr proteins (AcrIE1 to AcrIE4, AcrIF1 to
AcrIF10, and AcrIIA1, AcrIIA2, AcrIIA4, AcrIIA5) as the
baits for GBA finding Aca candidates, and a smaller Aca-
Pub-DB with Acas adjacent to only these 18 experimen-
tally characterized Acr proteins. We chose these 18 Acr pro-
teins because the AcRanker web server was also trained on
these proteins. Therefore, using the same training set we
can equitably compare the performance of AcrFinder and
AcRanker. We ran AcrFinder and AcRanker on genomes
that contain four recently characterized Acrs that also have
neighboring Acas, namely AcrIE4-F7, AcrIIA3, AcrIIA12
and AcrIIA21. As AcRanker ranks all the proteins in the
input proteomes, the result (Table 3) shows the four Acr
proteins were ranked 78th, 10th, 5th and 159th in their cor-
responding protein lists. Therefore, two of the four tested
Acr proteins were ranked in the top 10. Unlike AcRanker,
AcrFinder finds short-gene operons that contain at least
one Aca homolog in a genome with CRISPR–Cas systems.
Table 3 shows that AcrFinder was able to find Acr-Aca
operons of two (AcrIE-IF7 and AcrIIA3) of the four tested
Acrs. Hence, on the independent dataset, AcRanker and
AcrFinder had similar performance. It should be noted that
AcrFinder also correctly inferred the Acr subtypes for the
tested proteins, while AcRanker only ranked the proteins
without subtype inference (Table 1 and Table 3).

UTILITIES

AcrFinder is provided as a standalone program and a web
server. Genome sequences in fna, gff and faa formats are
taken as input. Only one fna file as input is also accept-
able; in that case, the gff and faa file will be generated
by running Prodigal (29). Genomes of Archaea, Bacte-
ria, and (pro)Viruses are all allowed. (pro)Viruses will not
run CRISPRCasFinder (28), MGE search and CDD fil-
tering; Archaea will run CRISPRCasFinder with a spe-
cial Archaea flag (-ArchaCas). The AcrFinder standalone
program (https://github.com/HaidYi/acrfinder) outputs a
folder, where two files and three sub-folders are found.
The two files contain the homology-based and GBA-based
search results. The three sub-folders include: (i) input files;
(ii) CRISPRCasFinder result files; (iii) all the intermediate
result files.

On the AcrFinder web server, the job submission page
has an option to let the users try out the sample data (Fig-
ure 3A). A help page is available to provide the detailed in-
structions on how to use the web server, particularly the in-
terpretation of the data in the result page. A typical bac-
terial genome submission will finish ∼2 min. A result web
link and a job ID are provided while the job is running. The
result page has data tables to show the member genes in
the identified Acr-Aca operon, as well as the genomic po-

https://github.com/HaidYi/acrfinder
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Table 3. Independent evaluation of AcrFinder and AcRanker on genomes containing 4 Acr proteins (not in the training set)

Acr family AcrIE4-F7 AcrIIA3 AcrIIA12 AcrIIA21

Acr ID WP 064584002.1 WP 014930691.1 WP 003731276.1 WP 000384271.1
Neighboring Aca ID WP 064584003.1 WP 014930689.1 WP 003722518.1 WP 000134666.1
GCF ID GCF 001654435.1 GCF 000210795.2 GCF 009807465.1 GCF 002197205.1
Proteome size 6716 2822 2938 2153
CRISPR-Cas subtype(s) TypeIF TypeIIA + TypeIB TypeIB TypeIIA
AcRanker rank 78th 10th 5th 159th
AcrFinder subtype AcrIE4-IF7 AcrIIA3 - -
Total # of AcrFinder predicted
loci*

5 10 10 6

* AcrFinder condition: up- or down-stream prophage hits n = 10, Min. # of prophage hits = 1, DIAMOND search mode = –more-sensitive and E-value
< 0.01 and query coverage > 0.8.

Figure 3. AcrFinder web server case study. The URL of this case study is http://bcb.unl.edu/AcrFinder/result.php?jobid=1583809584. In this case study,
we submitted the fna, faa, and gff files of the RefSeq bacterial genome assembly (GCF 000210795.2), which is known to encode AcrIIA3. (A) is the
job submission page, where users can choose different parameters (default values are shown in the text fields). Clicking on ‘Run An EXAMPLE’ will
initiate this case study job, which will take ∼2 minutes to finish. The result page will contain five major sections: (B) is the Guilt-by-Association result in a
table, which has 17 columns with a variety of information including the inferred Acr subtype (the screenshot only shows the left nine columns); (C) is the
JBrowse view of the GBA loci (genes in the loci are highlighted in yellow background); (D) is the Homology-based Acr search result in a table, which has
12 columns with a variety of information including the best known Acr homolog (the screenshot only shows the left six columns); (E) is the JBrowse view
of the homology-based loci (genes in the loci are highlighted in yellow background); (F) is the result of CRISPRCasFinder result in a table (parsed to keep
only high confidence CRISPR-Cas loci).

sitions, strand, sequence, length, isoelectric point, molec-
ular weight, if adjacent to MGE/prophage, if match with
known Acr or Aca proteins, and if adjacent to self-targeting
CRISPR spacers. Jbrowse is used to graphically display the
gene neighborhood. Figure 3 shows the result page of an
example bacterial genome input as a case study.

DISCUSSION

Anti-CRISPR (Acr) proteins are now being employed to
develop various biotechnological tools with significant ap-
plications (8,30–32). Bioinformatics sequence analysis has
assisted the discovery of most of the 56 known Acr fami-
lies, which target 9 of over 30 different CRISPR-Cas sub-
types (33). No bioinformatics tools were available for auto-

mated genome mining for new Acr proteins until November
2019, when AcRanker became online (19). AcRanker is the
only tool currently available to allow online data submis-
sion. However, hosted on PythonAnywhere the AcRanker
web server has very limited functions. Users can only up-
load a protein Fasta sequence file and the result is returned
as a three-column file (sequence ID, rank, and score). Un-
fortunately, any Fasta sequences can be ranked even if they
are from unrelated sources (e.g. plants or animals or false
sequences), and no help/readme is provided to help under-
stand what the score means and what cutoff value should
use.

AcrFinder provides a web service that surpasses and dif-
fers significantly from AcRanker and AcrCatalog in many
ways (Table 1), in particular the tabular and graphic repre-

http://bcb.unl.edu/AcrFinder/result.php?jobid=1583809584


W364 Nucleic Acids Research, 2020, Vol. 48, Web Server issue

sentation of the genomic contexts of Acr-Aca operons with
a lot of useful information to users (Figure 3). AcRanker
suggested identifying prophages first and then submitting
prophage regions for better ranking. AcrCatalog (18) imple-
mented a number of heuristic filters before and after the RF
classifier prediction, such as prophage identification, HTH
search, and self-targeting spacer search. All these pre- and
post-filtering steps require advanced bioinformatics skills
but are not provided within AcRanker and AcrCatalog clas-
sifiers. They are, however, implemented and fully automated
in AcrFinder’s GBA route, together with an Acr homol-
ogy search function. Within AcrFinder’s standalone soft-
ware and web server, various parameters can also be ad-
justed and explored by users with different levels of com-
puter skills to achieve better and more meaningful Acr pre-
dictions. To rank the predicted Acr-Aca operons, in addi-
tion to the three levels of confidence, we have also provided
two metrics that could be useful to users: (i) Acr homology
identity (Acr Hit|pident column, Figure 3B); (ii) Aca ho-
mology identity and E-value (Acr/Aca column, Figure 3B).
The first metric is useful when there are homologs of known
Acrs in the predicted operons. The second metric applies to
all identified operons as they have to encode at least one
protein homologous to Aca. Another indirect metric is in
the MGE/Prophage column of Figure 3B, which provides
the BLAST E-value of any encoded proteins in an operon
that are homologous to an MGE or prophage.

AcrFinder also has limitations. First, it relies on Aca ref-
erences to locate short-gene operons, where new Acr can-
didates are potentially present. However, as shown in Sup-
plementary Table S1, some of the more recently character-
ized Acrs do not have Acas in proximity (e.g. AcrVA genes
and many AcrIIA genes found in lytic phages or themselves
containing an HTH domain). Second, AcrFinder requires
that genomes have complete CRISPR-Cas systems to be
mined for Acr-Aca operons. However, we and others have
recently found that Acr homologs are present in genomes
without complete CRISPR-Cas systems (10,34). Therefore,
AcrFinder will not be able to find operons without Acas
within or Acr-Aca operons from genomes without complete
CRISPR-Cas systems. It should be mentioned that these
limitations are due to the design of AcrFinder workflow,
which intends to reduce false positives. As mentioned above,
AcrCatalog implemented a number of filters that include
the presence of HTH proteins in the Acr gene neighborhood
and the presence of CRISPR-Cas and self-targeting spac-
ers in the target genome, which were shown to be extremely
critical to remove false positives (18). Our future improve-
ment of AcrFinder will incorporate novel machine learning
or deep learning algorithms in the pipeline that can partially
overcome these limitations, as well as develop a quantitative
measure (e.g. a score or P-value) to better rank the predicted
Acr-Aca operons.

We plan to update AcrFinder at least once a year, to add
newly characterized Acr sequences into the Acr database
and create the new Aca-GBA-DB and Aca-Pub-DB to form
the updated Aca database.
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