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SARS-CoV-2 is the deadly virus behind COVID-19, the disease that went on to ravage the world and caused the
biggest pandemic 21st century has witnessed so far. On the face of ongoing death and destruction, the urgent
need for the discovery of a vaccine against the virus is paramount. This study resorted to the emerging discipline
of immunoinformatics in order to design a multi-epitope mRNA vaccine against the spike glycoprotein of SARS-
CoV-2. Various immunoinformatics tools were utilized to predict T and B lymphocyte epitopes. The epitopes
were channeled through a filtering pipeline comprised of antigenicity, toxicity, allergenicity, and cytokine induc-
ibility evaluation with the goal of selecting epitopes capable of generating both T and B cell-mediated immune
responses.Molecular docking simulation between the epitopes and their correspondingMHCmoleculeswas car-
ried out. 13 epitopes, a highly immunogenic adjuvant, elements for proper sub-cellular trafficking, a secretion
booster, and appropriate linkers were combined for constructing the vaccine. The vaccine was found to be anti-
genic, almost neutral at physiological pH, non-toxic, non-allergenic, capable of generating a robust immune re-
sponse and had a decent worldwide population coverage. Based on these parameters, this design can be
considered a promising choice for a vaccine against SARS-CoV-2.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

After more than a century has passed since the 1918 influenza pan-
demic and after two other pandemics caused by the coronavirus family
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called the Severe Acute Respiratory Syndrome (SARS) and Middle East
Respiratory Syndrome (MERS) in the past two decades, the world has
been visited by a novel coronavirus. As of mid-April 2020, the Coronavi-
rus Disease (COVID-19) has reached 213 countries, areas and territories
of theworld infecting nearly twomillion people and leaving over a hun-
dred thousand dead since the first case of hospitalization on 12th De-
cember 2019 in Wuhan, China [1,2]. The causative entity for COVID-19
was named by the International Committee on Taxonomy of Viruses
(ICTV) on 11th February 2020 as “Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2)”, previously known as 2019-novel
Coronavirus (2019-nCoV) [3,4]. Coronaviruses are members of the sub-
family Coronavirinae (family: Coronaviridae) which consists of four
genera- Alphacoronavirus, Betacoronavirus, Gammacoronavirus and
Deltacoronavirus. Among the six zoonotic viruses known prior to identi-
fication of SARS-CoV-2 in 2019, only the SARS-CoV and MERS-CoV be-
longing to the Betacoronavirus genera were considered highly
pathogenic [5,6]. The virus has been reported to causeAcute Respiratory
Distress Syndrome (ARDS) in humans by infecting the upper and lower
respiratory tract. Even though the SARS-CoV-2 has been found to infect
principally via the respiratory tract from human to human, evidence
from multiple studies indicated the gastrointestinal tract to be another
potential route of infection [7–10]. Typical symptoms of the disease in-
clude fever, cough, dyspnea, diarrhea, fatigue and vomiting [11–15]. The
median incubation period of the virus and the median time from the
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first symptom to death are 3 days (with a range of 0 to 24 days) and 14
days (with a range of 6 to 41 days) respectively [16,17].

Like other coronaviruses, the SARS-CoV-2 is an enveloped virus with
a linear single-stranded positive-sense RNA (+ssRNA) as its genomic
material [18–20]. Its 29,881 bases long genome encodes at least four
major structural proteins, namely spike glycoprotein (S), membrane
protein (M), envelope protein (E), and nucleocapsid protein (N). The
virus also possesses a probable proofreading function using a Replica-
tion/Transcription Complex (RTC) [20–26]. In coronaviruses,
homotrimers of the S protein radiate from the virus surface giving the
virus a characteristic crown-like appearance and these crown-like
structures are what is behind their name (“corona” means crown in
Latin). In case of SARS-CoV-2, the S protein mediates viral entry into
host cells by binding to the host receptor, Angiotensin-converting En-
zyme 2 (ACE2) through the Receptor-binding Domain (RBD) of the S1
subunit. Upon S1-ACE2 binding, the cleavage of the S1-S2 fusion peptide
by the cellular protease, ‘Transmembrane Protease Serine S1Member 2’
(TMPRSS2) takes place. This is followed by the fusion of viral and host
membranes through the S2 subunit [27–32]. However, one study has
proposed that the cleavage of a furin dependent furin-cleavage site in
S protein takes place prior to membrane fusion [33]. TMPRSS2 expres-
sion is restricted to lung and gastrointestinal tract only, whereas ACE2
is found to be expressed in cells of other organs including liver, heart,
vascular endothelium, testis, and kidney [34–36].

High degree of contagiousness and community transmission of
COVID-19 leading to the World Health Organization's (WHO) declara-
tion of a Public Health Emergency of International Concern (PHEIC)
calls for immediate development of safe and effective prophylactics or
therapeutics. To date, there is no approved vaccine or drug in themarket
for the disease although some pre-clinical and clinical trials are under-
way [37]. As S protein plays a crucial role in viral fusion and entry, it is
widely considered as a prime target for the development of antibodies,
entry inhibitors and vaccines against SARS-CoV-2 by the scientific com-
munity [38–47]. In our study, we have also decided to target this S pro-
tein for designing an mRNA vaccine.

Conventional vaccine approaches, such as live attenuated and
inactivated pathogens and subunit vaccines successfully provide dura-
ble protection against infectious diseases [48,49], but the need for
more rapid development and large-scale production is hard to meet
through these means. Also peptide-based vaccines have been reported
to have lower immunogenicity indexes [50]. Although genetic immuni-
zation such as DNA vaccines showed promise [51], plasmid DNA
(pDNA) based delivery evokes safety concerns such as the possibility
of insertional mutagenesis. To address these complications, the rapidly
growing field of mRNA therapeutics can be a potent platform because
of its safety, comparatively low-cost of production, capability of rapid
development and higher efficacy. Except for a few rare cases of recom-
bination between single-stranded RNAmolecules [52,53], lack of geno-
mic integration and replication makes mRNA vaccines a non-infectious
agent [54,55]. On top of that, natural degradation and adjustable half-
life provides a strong safety advantage [55]. As mRNA vaccines do not
have to pass through nuclear envelope for translation, it possesses
higher efficacy over DNA vaccines [55,56]. Mere alteration of an mRNA
sequence can express a different protein havingnew indications and an-
tigens using the already established production process, resulting in
manufactural versatility, flexibility, time-saving and cost-reduction
[57,58]. Although mRNA vaccines come with inherent shortcomings
such as- instability, immunogenicity, delivery inefficiency [59,60],
these have been addressed by recent advancements in synthesis and
manipulation via structuralmodifications ofmRNA leading to some suc-
cessful outcomes [61–63].

Immunoinformatics is a branch of bioinformatics that deals with the
computational analysis of immunological data. It is also a powerful
computational tool for designing vaccines [64]. By predicting appropri-
ate antigens, epitopes, carriers, and adjuvants for a vaccine,
immunoinformatics is able to reduce the timeframe and cost of vaccine
development [65]. Immunoinformatics approach has been followed for
designing vaccines against many infectious agents such as ebola virus,
Human Immunodeficiency Virus (HIV-1), Herpes Simplex Virus
(HSV)-1 & 2, sudan virus, Venezuelan equine encephalitis virus,
human norovirus, Staphylococcus aureus, Shigella spp. and so on
[66–73].

Someof the recently published bioinformatic studies on SARS-CoV-2
vary from ourwork in several ways. Two studies have selected epitopes
from SARS-CoV-2 domains homologous to SARS-CoV [74,75]. One of
them has identified the epitopes associated with previous experimental
success in SARS-CoV neutralization. However, practically, the antibodies
working against SARS-CoV (S230, m9396,80R) have been found to
show no cross-reactivity except for one case (CR3022) as of 14 June
2020 [76,77]. These findings stress the importance of focusing on the se-
quence of SARS-CoV-2 aswedid in our study. Besides, unlike these stud-
ies which took into consideration proteins other than S, we attended
only to the S protein because of its promising therapeutic importance
in previous cases of corona viruses [40,43,45,46]. Besides, in the afore-
mentioned studies, only potential epitopes have been predicted, but
no vaccine construct has been designed.

Two other studies also have designed vaccines for SARS-CoV-2 in an
approach similar to ours mainly differing in the fact that we opted for
more effective, flexible and safe approach of mRNA-vaccination rather
than peptide-based vaccines [78,79]. Contextually, Lucchese et al. [80]
sought out epitopes unmatched to human ones in order to minimize
the risk for cross-reactions and increase anti-viral specificity. In our
study, we also ensured avoiding human proteome cross-reactivity
while filtering the epitopes. Robson et al. [81] found out one conserved
region in coronaviruses using the programming language Q-UEL.

In this study, we aimed at designing a novel multi-epitope mRNA
vaccine consisting of Cytotoxic T Lymphocyte (CTL), Helper T Lympho-
cyte (HTL), Linear B Lymphocyte (LBL) epitopes derived from SARS-
CoV-2 spike glycoprotein, a highly immunogenic adjuvant and other
necessary elements through immunoinformatics.

2. Materials and methods

2.1. Workflow used for the study

Fig. 1 shows the workflow that has been followed in this study. The
analyses conducted in this study can be broken down into 9 sections - 1.
Retrieval of SARS-CoV-2 spike glycoprotein sequence 2. Prediction and
assessment of CTL epitopes 3. Prediction and assessment of HTL epi-
topes 4. Prediction and assessment of LBL epitopes 5. Multiple Sequence
Alignment of S protein sequences 6. Molecular docking between T lym-
phocyte epitopes and MHC alleles 7. Prediction of population coverage
8. Designing the vaccine construct 9. Prediction of antigenicity, allerge-
nicity, toxicity and physicochemical properties of the vaccine construct
10. In silico immune simulation.

2.2. Retrieval of SARS-CoV-2 spike glycoprotein sequence

TheVirus PathogenDatabase andAnalysis Resource (ViPR)wasused
to search the complete SARS-CoV-2 genomes [82]. From the results, the
FASTA sequence of the surface glycoprotein, also known as the spike
glycoprotein, from the “2019-nCoV WHU01” strain was downloaded.
This strain was isolated on 2nd January 2020 from Wuhan, China. The
GenBank [83] accession number of the protein was QHO62107.1.

2.3. Prediction and assessment of CTL epitopes

CTLs also known as CD8+ T cells play a cardinal role in the battle
against viral infections. The mechanism of CTL response against viruses
has been elucidated in great detail by various studies [84–87]. Class I
MHC-bound epitopes generated from degraded fragments of viral pro-
teins are recognized on the surface of infected cells by CTLs [88].



Fig. 1. Workflow used for designing the mRNA vaccine against SARS-CoV-2. The whole process can be divided into two parts, pre-vaccine construction and post-vaccine construction
analyses. Pre-vaccine construction analyses include the retrieval of spike glycoprotein sequence, prediction of T and B cell epitopes, population coverage prediction and molecular
docking between the T cell epitopes and their MHC alleles. Post-vaccine construction analyses include the antigenicity, allergenicity, toxicity and physiochemical assessments of the
vaccine construct and the simulation of immune response against the vaccine.
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Prediction of potential CTL epitopes is an essential andwidely used step
in in silico vaccine design [89–91]. There are various immunoinformatics
tools that are used for CTL epitope prediction. In this study, NetCTL v1.2
server was used for the prediction of 9-mer CTL epitopes for 12 MHC
class I supertypes, namely A1, A2, A3, A24, A26, B7, B8, B27, B39, B44,
B58, and B62. 0.75 was used as the threshold for epitope identification.
For any given protein, NetCTL v1.2 integrates information about
proteasomal cleavage, Transporter Associated with Antigen Processing
(TAP) transport efficiency, and MHC class I affinity to deliver its final
output [92]. Class I immunogenicity tool of the IEDB Analysis Resource
[93] was used to predict the immunogenicity of the CTL epitopes. Only
epitopes that showed a positive value for immunogenicity were kept
for the next stage of evaluation. Toxicity and allergenicity of the immu-
nogenic epitopes were checked using ToxinPred [94] and AllerTOP 2.0
[95] servers respectively. The non-toxic and non-allergenic epitopes
were subjected to VaxiJen server [96] for antigenicity evaluation. Epi-
topes showing antigenicity prediction values ≥0.5were considered anti-
genic. Using the consensus algorithm [97] in the IEDB server, MHC class
I allelic partners of the antigenic epitopes were predicted. A percentile
rank score ≤2 was considered for this study.

2.4. Prediction and assessment of HTL epitopes

After proteolytic cleavage of viral antigens, antigen presenting cells
such as B cells, macrophages and dendritic cells present epitopes to
HTLs or CD4+T cells in the epitope-MHC class II complex form [98]. Al-
most all immunoinformatics studies for vaccine construction incorpo-
rate the prediction of HTL epitopes as part of their work [99–101]. In
our study, 15-mer HTL epitopes and their correspondingMHC class II al-
leles were predicted using the consensus algorithm of the IEDB MHC-II
binding tool [102]. Host species was selected as human. A percentile
rank ≤0.25 was considered for filtering the epitopes. Antigenicity of
the epitopes were then calculated using the VaxiJen server [96].
ToxinPred and AllerTOP 2.0 servers were used in subsequent order to
select the non-toxic and non-allergenic epitopes respectively. The re-
maining epitopes were then checked for their inducibility of
interferon-γ (IFN-γ), interleukin-4 (IL-4) and interleukin-10 (IL-10)
using the IFNepitope [103], IL4pred [104], and IL10pred [105] servers
respectively. Based on these criteria, only the antigenic and all three cy-
tokine inducing epitopes were selected for vaccine construction.

2.5. Prediction and assessment of LBL epitopes

B lymphocytes secrete specific antibodies in order to neutralize spe-
cific viral invaders. Through differentiation into long-lived plasma cells
andmemory B lymphocytes they ensure long term immunological pro-
tection [106–111]. Activation of B lymphocytes takes place through the
binding of B cell receptor to either soluble ormembrane bound epitopes
[112]. In vaccine design, reliable prediction of B lymphocyte epitopes
through the use of various computational tools plays an important
part [113,114]. B lymphocyte epitopes can be of two types-linear and
conformational [113]. In this study, iBCE-EL server was used for the pre-
diction of LBL epitopes [115]. Only the ones positively predicted to be
LBL epitopes by the server were chosen for further analysis. The antige-
nicity of the probable LBL epitopes was checked by the VaxiJen server
[96]. Epitopes having antigenicity values ≥0.5 were then evaluated for
toxicity and allergenicity using the ToxinPred [94] and AllerTOP 2.0
[95] servers respectively.

2.6. Multiple sequence alignment of S protein sequences

To check on whether the regions selected for epitopes have faced
anymutation, 200 randomly selected S protein sequences from 6 conti-
nents (Asia, Africa, Europe, Oceania, North and South America) were
downloaded from ViPR database and then aligned using Clustal
Omega server [116]. The results were viewed using MView multiple
alignment viewer [116].

2.7. Molecular docking between T lymphocyte epitopes and MHC alleles

Binding affinity of CTL and HTL epitopes for their corresponding
MHC alleles was evaluated using molecular docking simulation. At



Table 1
List of selected epitopes for vaccine construction.

Recognizing cell Epitope sequence

CD8+ cytotoxic T lymphocyte RQIAPGQTG
VVFLHVTYV
GVVFLHVTY
GQTGKIADY
QLTPTWRVY
IAIVMVTIM

CD4+ helper T lymphocyte DLPIGINITRFQTLL
B lymphocyte GVSPTKLNDLCF

IAPGQTGKIADY
QIAPGQTGKIAD
LVDLPIGINITR
DLPIGINITRFQ
PLVDLPIGINIT
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first, the MHC alleles were downloaded from the RCSB PDB [117,118]
and processed using the PyMOL software [119] for getting rid of unnec-
essary ligands. The structures were then energy minimized using the
Swiss-PdbViewer [118]. The epitopes were folded into their 3 dimen-
sional form using the PEP-FOLD 3.5 server [118]. They were then also
energy minimized using the Swiss-PdBViewer. The docking between
the epitopes and the MHC molecules were carried using Autodock
Vina [120] in PyRx [121]. PyRx, PyMOL and Discovery Studio [122]
were used for analyzing the binding affinity, pose and interactions re-
spectively. For MHC alleles which were not available in RCSB PDB, ho-
mology modelling was carried out using the SWISS-MODEL server
[123]. Ramachandran Plots and Z-scores obtained from the PROCHECK
[124] and ProSA [124] servers were used for the validation of the
models.

2.8. Prediction of population coverage

The geographical and ethnic diversity of the world encompasses the
diversity in distribution of MHC alleles. Therefore, a vaccine's coverage
depends upon the coverage of the MHC alleles that its epitopes recog-
nize.We analyzed the combined coverage of our T lymphocyte epitopes
using the IEDB population coverage toolwith the epitopes and their cor-
responding MHC class I and class II alleles as the input [125].

2.9. Designing the vaccine construct

A highly-immunogenic mRNA vaccine construct requires the pres-
ence of five main elements in the Open Reading Frame (ORF) - 1.
Kozak sequence 2. Epitopes 3. Adjuvant 4. Linkers (or spacers) and 5.
Stop codon. The start codon should be part of a Kozak sequence [126]
while the sequence surrounding the stop codon may be optimized
[127]. The criteria used in this study for an epitope to be included in
the vaccine construct are antigenicity, non-allergenicity, non-toxicity
and cytokine-inducing properties (for HTLs only). Alongwith appropri-
ate antigenic epitopes, a strong adjuvant can boost the adaptive im-
mune response [50,128,129]. In our design, co-stimulatory molecule
CD40 ligand (CD40L) has been added to the vaccine construct since its
inclusion was previously reported to be of significant impact and prom-
ise [58]. CD40L is able to activate professional Antigen Presenting Cells
(pAPCs) [130]. For our purpose, CD40L sequence was retrieved from
the UniProt database (UniProt ID: P29965) [131]. Selection of an appro-
priate epitope-specific linker (e.g., flexible, rigid, cleavable) is an essen-
tial step in designing an immunogenicmulti-epitope vaccine so that the
domains can work independently avoiding interaction and interference
between them [132,133]. We chose linkers based on their length and
Fig. 2. Multiple sequence alignment of S protein sequences. The epitope sequences selected f
mutation.
rigidity-flexibility properties and in accordance with some previous
studies [68,134–141]. However, the precise order and position of the
epitopes and spacers need to be elucidated through experimental
evidences.

The epitopes and the linkers have been combined in the following
ways-

- The adjuvant and the HTL epitopes were combined together by
GPGPG linkers.

- HTL and LBL epitopes were linked by (EAAK)2.
- Intra-LBL epitopes were spaced using (EAAK)2 or (EAAK)2E.
- LBL and CTL epitopes were linked by AAY.
- Intra-CTL epitopes were combined using AAY linkers.

For increased antigen presentation, sequences for two more ele-
ments have been reported to be useful, they are - 1. Signal peptide
(for secretion of translated epitopes that need to move out of the cell)
and 2. MHC I-targeting domain (MITD) (for directing CTL epitopes to
MHC-I compartment of the endoplasmic reticulum) [142–145]. There-
fore, we included tissue Plasminogen Activator (tPA) secretory signal
sequence and MITD in the 5′ and 3′ region of the ORF respectively.
The sequences for tPA (UniProt ID: P00750) and MITD (UniProt ID:
Q8WV92) were retrieved from the UniProt database. Instability being
a major concern for mRNA based therapeutics, having the elements
that are typically found in eukaryotic mRNAs is crucial [146,147]. So,
the incorporation of sequences for 5′ cap, poly(A) tail, and 5′ and 3′ Un-
translated Regions (UTRs) was necessary. The length of the poly (A) tail
holds significance, since too long or too short tails are associated with
translation inefficiency [148,149]. We proposed the length of the poly
(A) tail to be 120–150 bases long as it is considered to be optimum by
several earlier studies [150–152]. Poly (A) tails are found towork syner-
gistically with 5′m7G cap sequences [153]. Combination of β globin 5′-
UTR andα globin 3′-UTR being known to stabilize mRNAs [154], we in-
cluded those in our vaccine design.
2.10. Prediction of antigenicity, allergenicity, toxicity and physicochemical
properties of the vaccine construct

For predicting different properties of the vaccine construct, we used
the translated peptide form of mRNA vaccine i.e. the single-letter amino
acid sequence of the translated form of the ORF as the input. However,
tPA and MITD sequences were excluded as they were supposed to be
cleaved while entering the secretory pathway and the MHC I pathway
respectively. As antigenicity determines the ability of an antigen to
evoke an immune response and memory cell formation, the vaccine
candidate should be highly antigenic in nature. Therefore, the antigenic-
ity of the vaccine construct was predicted with VaxiJen 2.0 server [96]
and ANTIGENpro server [155]. Both of the methods being alignment-
free, VaxiJen 2.0 works based on various physicochemical characteris-
tics of the protein, whereas ANTIGENpro is a microarray analysis data
based server using machine learning algorithms. To predict whether
the vaccine construct was allergenic or not, we used AllerTOP 2.0 server
[95]. AllerTOP 2.0 predicts allergenicity based on a method using auto
cross-covariance (ACC) transformation of protein sequences into uni-
form equal-length vector. Toxicity of the vaccine construct was pre-
dicted using the ToxinPred server [94]. Various physiochemical
features such as amino acid composition, molecular weight, theoretical
Isoelectric point (pI), Instability Index (II), Aliphatic Index (AI), and
Grand Average of Hydropathicity (GRAVY) were assessed by using the
online web server ProtParam [156].
or vaccine design have been identified by boxes. None of them apparently contains any

uniprotkb:P29965
uniprotkb:P00750
uniprotkb:Q8WV92


824 I. Ahammad, S.S. Lira / International Journal of Biological Macromolecules 162 (2020) 820–837



Table 2
Selected T lymphocyte epitopes (CTL + HTL epitopes) and their corresponding MHC
alleles.

CTL epitopes MHC I binding alleles

RQIAPGQTG HLA-B*15:01, HLA-A*32:07, HLA-B*48:01, HLA-B*15:01
VVFLHVTYV HLA-C*06:02, HLA-A*02:03, HLA-A*02:06, HLA-A*68:02,

HLA-C*07:01, HLA-A*69:01, HLA-A*02:19, HLA-A*02:01,
HLA-A*02:11, HLA-A*68:23, HLA-A*02:16, HLA-A*02:02

GVVFLHVTY HLA-A*29:02, HLA-A*80:01, HLA-A*66:01, HLA-A*32:01
GQTGKIADY HLA-A*30:02
QLTPTWRVY HLA-A*29:02, HLA-A*80:01
IAIVMVTIM HLA-B*46:01, HLA-B*58:01, HLA-B*51:01, HLA-B*15:17,

HLA-B*53:01, HLA-B*35:01, HLA-C*03:03, HLA-B*57:01

HTL epitopes MHC II binding alleles

DLPIGINITRFQTLL HLA-DRB1*04:02

Table 3
CTL and HTL epitopes and their corresponding MHC alleles chosen for docking analysis.

T lymphocyte type Epitope sequence MHC alleles

CTL RQIAPGQTG HLA-B*15:01
VVFLHVTYV HLA-C*06:02
IAIVMVTIM HLA-B*46:01
QLTPTWRVY HLA-A*29:02
GQTGKIADY HLA-A*30:02
GVVFLHVTY HLA-A*32:01

HTL DLPIGINITRFQTLL HLA-DRB1*04:02
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2.11. In silico immune simulation

For estimation of the real-life immunogenic profile of the multi-
epitope mRNA vaccine, in silico immune simulation was carried out
using the C-ImmSim server [157]. For the prediction of epitopes and im-
mune interactions, this simulator uses Position-specific Scoring Matrix
(PSSM) and machine learning, respectively. According to most vaccines
currently in use, theminimum recommended interval between the first
and second dose is 4 weeks [158]. For our immune simulation, three in-
jections, each containing 1000 vaccine construct units, were adminis-
tered four weeks apart. C-ImmSim server uses a “time-step” scale for
calculating durations of simulations. In this scale, each time step is
equivalent of 8 h in real life. The total number of time steps for simula-
tion was set at 1050 with the points of the three injections were set at
time step 1, 84, and 168 respectively. Rest of the parameters was set
at default.
3. Results

3.1. Prediction and assessment of CTL epitopes

NetCTL v1.2 server predicted a total of 269 unique CTL epitopes for
12 MHC class I supertypes. 145 of them had been predicted to be posi-
tive in terms of immunogenicity by the IEDB class I immunogenicity
tool. Out of these 145 epitopes, all had been found to be non-toxic and
Table 4
Validation of the homology models.

Quality parameters MHC

HLA-

Z score −8.8
Ramachandran Plot Residues in most favored regions (%) 93.0

Residues in additional allowed regions (%) 6.6
Residues in generously allowed regions (%) 0.0
Residues in disallowed regions (%) 0.4
79 to be non-allergenic by the ToxinPred and AllerTOP 2.0 servers re-
spectively. VaxiJen analysis of the 79 immunogenic, non-toxic, and
non-allergenic epitopes revealed only 36 epitopes to be successful of
crossing the antigenicity threshold of 0.5. Out of these 36 epitopes,
most antigenic 6 (RQIAPGQTG, VVFLHVTYV, GVVFLHVTY, GQTGKIADY,
QLTPTWRVY, IAIVMVTIM) had been selected for vaccine construction
(Table 1). The IEDB MHC-I allele binding prediction tool returned 192
epitopes within the ≤2 percentile rank.

3.2. Prediction and assessment of HTL epitopes

The IEDB MHC-II allele binding prediction tool returned 82 unique
epitopes that recognized 119 alleles in total within the ≤0.25 percentile
rank. Among them, 23 epitopesmet the VaxiJen threshold (≥0.5) for an-
tigenicity. All of the 23 antigenic epitopes had been found to be non-
toxic by the ToxinPred server. Only 6 of them had been considered as
non-allergenic by the AllerTOP 2.0 server. After considering the IFN-γ,
IL-4 and IL-10 inducibility using the IFNepitope, IL4pred, and IL10pred
servers respectively, only 1 epitope (DLPIGINITRFQTLL) was left which
had satisfied all the criteria (Table 1).

3.3. Prediction and assessment of LBL epitopes

iBCE-EL server predicted 117 probable LBL epitopes. Among them,
54met the VaxiJen criteria (≥0.5) for being antigenic. All 54 of these epi-
topes had been predicted to be non-toxic by ToxinPred server and 24 of
them had been predicted to be non-allergenic by AllerTOP 2.0 server.
Out of the 24, the most antigenic 6 epitopes (GVSPTKLNDLCF,
IAPGQTGKIADY, QIAPGQTGKIAD, LVDLPIGINITR, DLPIGINITRFQ,
PLVDLPIGINIT) had been selected for the construction of the vaccine
(Table 1).

3.4. Multiple sequence alignment of S protein sequences

Clustal Omega and MView multiple alignment viewer found zero
mutationswithin our selected 13 epitopes in 200 SARS-CoV-2 S proteins
(Fig. 2).

3.5. Molecular docking between T lymphocyte epitopes and MHC alleles

7 T lymphocyte epitopes recognized 32 MHC alleles in total. With
the exception of only two epitopes (GQTGKIADY andDLPIGINITRFQTLL)
the rest had more than one binding alleles. Some had even as high as 8
(IAIVMVTIM) or 12 (VVFLHVTYV) alleles (Table 2). Out of these 7 epi-
topes and their 32 allelic partners, we decided to perform molecular
docking between each epitope and one of their corresponding alleles
for a representative docking analysis. Table 3 shows the T lymphocyte
epitopes and their MHC alleles chosen for docking. Among the 7 MHC
alleles 3 had their crystallographic structures deposited at RCSB PDB.
These 3 alleles and their PDB IDs were- HLA-B*15:01 (PDB ID- 5V4M)
[159], HLA-C*06:02 (PDB ID- 5W6A) [160], and HLA-B*46:01 (PDB ID-
4LCY) [161]. The rest 4 alleles (HLA-A*29:02, HLA-A*30:02, HLA-
A*32:01, HLA-DRB1*04:02) were modelled using SWISS-MODEL. From
the validation data of the homology models of MHC alleles whose
alleles

A*29:02 HLA-A*30:02 HLA-A*32:01 HLA-DRB1*04:02

0 −8.84 −8.76 −5.42
92.2 93.1 94.0
7.4 6.5 5.4
0.0 0.0 0.6
0.4 0.4 0.0
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Table 5
Binding affinity (kcal/mol) between the epitopes and their corresponding MHC alleles.

Ligand Allele Binding affinity

VVFLHVTYV HLA-C*06:02 −9.9
IAIVMVTIM HLA-B*46:01 −8.3
GQTGKIADY HLA-A*30:02 −7.4
QLTPTWRVY HLA-A*29:02 −7.2
GVVFLHVTY HLA-A*32:01 −7.1
RQIAPGQTG HLA-B*15:01 −6.6
DLPIGINITRFQTLL HLA-DRB1*04:02 −3.7
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structureswere not available in RCSB PDB, it is obvious that in case of all
4 alleles over 90% residues belonged to the most favored regions in the
Ramachandran plot. They have also demonstrated pretty decent Z
scores (Table 4). Ramachandran plots and Z score diagrams revealed
that most of the amino acids of the homologymodels fell within the de-
sired zones (Fig. 3). Table 5 shows the molecular docking results ob-
tained from AutoDock Vina in terms of binding affinity. The epitope
VVFLHVTYV showed the strongest affinity (−9.9 kcal/mol) for its corre-
sponding MHC allele. Docking analysis shows that the epitope
VVFLHVTYV nicely fits into the epitope binding cleft of the HLA-
C*06:02 molecule (Fig. 4A, B). It has also been revealed that the epitope
had 6 types of interactionswith various residues of themolecule. The fa-
vorable interactions include conventional hydrogen bonds, salt bridges,
attractive charge interactions, and hydrophobic interactions. On the
contrary, the unfavorable interactions include acceptor-acceptor
clashes and positive-positive charge repulsions (Fig. 5). In terms of
number of interactions there were 7 conventional hydrogen bonds, 2
salt bridges, 2 attractive charge interactions, 11 hydrophobic interac-
tions, 1 acceptor-acceptor clashes, and 2 positive-positive charge repul-
sions. The length of the bonds ranged from 2.06 to 5.48 Å (Table 6).

3.6. Prediction of population coverage

Combined population coverage of the 7 T lymphocyte epitopes used
in this vaccine construction has been the focus of our IEDB population
coverage analysis. The distribution of their 32 corresponding MHC al-
leles in 17 geographical regions and 101 countries found in the IEDB da-
tabase has been evaluated. Fig. 6 depicts the region-wise coverage of the
alleles. The global coverage of our vaccine stands at 82.25%. European,
North American and African regions showed some of the highest re-
gional coverage while Central America and Oceania region showed
some of the least. In terms of country-specific coverage, European and
African countries have topped the list. Since the beginning of the
COVID-19 outbreak, Italy, Spain, France, and the United States have
Fig. 4.Docking between the epitope VVFLHVTYV and its correspondingMHC allele, HLA-C*06:0
representation of HLA-C*06:02 and ball and stick model of VVFLHVTYV.
been the hardest hit countries in the world till April 2020. So we were
especially interested in seeing how our vaccine coverage did with re-
spect to these countries. Our IEDB analysis showed that the vaccine
would cover 89.07%, 87.43%, 89.64%, and 85.65% of the population of
Italy, Spain, France and the United States respectively.

3.7. Vaccine construct design

The final entire construct of the vaccine contained the following ele-
ments in order from the N-terminal to C-terminal direction:

5′m7G Cap – 5′UTR–Kozak sequence – tPA (Signal peptide) – CD40L
(Adjuvant) – GPGPG linker –HTL epitope – EAAKEAAK linker – LBL epi-
tope – EAAKEAAK linker – LBL epitope – EAAKEAAK linker – LBL epitope
– EAAKEAAKE linker – LBL epitope – EAAKEAAKE linker – LBL epitope –
EAAKEAAKE linker – LBL epitope – AAY linker – CTL epitope – AAY
linker – CTL epitope – AAY linker – CTL epitope – AAY linker – CTL epi-
tope – AAY linker – CTL epitope – AAY linker – CTL epitope – AAY linker
– MITD sequence – Stop codon – 3′UTR – Poly (A) tail.

The proposed mechanism of synthesis, delivery and action of our
vaccine has been presented in Fig. 7.

3.8. Antigenicity, allergenicity, toxicity and physicochemical evaluation of
the vaccine construct

Results of the antigenicity, allergenicity, toxicity and physicochemi-
cal analyses have been listed in Table 7.

Vaxigen and ANTIGENpro both predicted the vaccine to be antigenic
with scores of 0.6547 and 0.8504 respectively. AllerTOPpredicted the vac-
cine to be non-allergic. ToxinPred revealed it to be non-toxic. The
ProtParam server calculated the molecular weight of the construct as
~52 kDa, while 7.59 pI indicated the vaccine construct to be close to neu-
tral in nature. Total number of amino acidswere 478,while the number of
negatively and positively charged residues were similar (47 and 48 re-
spectively). In terms of instability, the IIwas computed to be 32.08, imply-
ing that the construct would retain its stability after expression (II of N40
indicates instability). The AI was calculated as 90.33, indicating the con-
struct to be thermostable. The Grand Average of Hydropathicity
(GRAVY)was calculated to benegative (−0.064),which indicated the hy-
drophilic nature of the vaccine. Based on these results, this multi-epitope
mRNAvaccine construct canbe predicted as a potential vaccine candidate.

3.9. Evaluation of the simulated immune response against the vaccine

As expected, the secondary and tertiary responses were higher than
the primary response (Fig. 8). Primarily, high concentrations of Immu-
noglobulin (Ig) M compared to IgG were detected. In both the
2 (A) Surface view of HLA-C*06:02 around ball and stickmodel of VVFLHVTYV (B) Cartoon



Fig. 5. Various interactions and bond length (in angstrom) between the epitope VVFLHVTYV and the residues of its corresponding MHC allele, HLA-C*06:02 (A) Conventional hydrogen
bonds (B) Hydrophobic interactions (C) Salt bridge, attractive charge interactions (D) Positive-positive repulsion (E) acceptor-acceptor clash.
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secondary and tertiary responses, typical high levels of immunoglobulin
activities (i.e., IgG1 + IgG2, IgM, and IgG + IgM antibodies) were evi-
dent with concomitant antigen reduction. This indicates the emergence
of immunological memory and thereby proficient immunity upon sub-
sequent exposures of the antigen. Moreover, several B-cell isotypes
were observed to be existent for a long period of time, suggesting the
potential for isotype switching and memory formation. A similarly
Table 6
Docking output between the epitope VVFLHVTYV and HLA-C*06:02 in terms of interactions.

Conventional hydrogen bonds Salt
bridge

Charge-Charge
interactions

Hydrophobic inte

Gln70 (2.36), Asn77 (2.30), Asn77
(2.06), Trp147 (2.49), Trp156 (2.69),
Thr163 (2.52), Trp167 (2.67)

Lys66
(2.98),
Lys66
(3.00)

Lys66 (2.98),
Lys66 (3.00)

Arg69 (4.93), Ala
(4.65), Trp156 (5
(5.47), Leu81 (4.9
elevated response was observed in the CTL and HTL populations with
their respective memory development. Additionally, an increase in
macrophage activity was observed while dendritic cell activity was
found to be consistent. High levels of IFN- γ and IL-2 were also obvious.
Besides, components of the innate immune system (e.g. epithelial cell)
were also active. Furthermore, a lower Simpson index (D) indicated a
possibility of a variety of immune responses.
ractions Acceptor-acceptor
clash

Positive-Positive
repulsion

73 (4.56), Trp97 (3.54), Trp97(4.15), Tyr99
.28), Trp156 (5.48), Tyr159 (4.65), Lys80
5), Tyr123 (5.32)

Tyr99 (2.87) Lys80 (4.70),
Lys146 (4.60)



Fig. 6. Population coverage of the selected T lymphocyte epitopes. Globally it covers 82.25% of theworld's population. The highest and lowest areas of coverage are East Africa (87.78%) and
Central America (7.16%) respectively.
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4. Discussion

Since the first successful case of mRNA therapeutics in 1990, mRNA
vaccines such as those against HIV-1, Zika, rabies, influenza virus etc.
have represented a versatile and highly effective subset of vaccine can-
didates [56,162–167]. Despite hurdles like instability of mRNA due to
degradation by ubiquitous RNases [59] and inherent immunogenicity
due to recognition by innate immune sensors [60,168–170], mRNA vac-
cine technology has made great progress.

Vaccines are capable of providing immunological memory that per-
sists for several years to several decades [171–173]. Stimulation of both
B and T lymphocyte mediated immune responses is considered crucial
for any successful vaccination strategy since it is able to provide a faster
andmore efficient immune response when the host encounters the tar-
get pathogen in the future [174]. The goal of vaccination is to trick the
body into thinking that it has been attacked by a pathogen and so gen-
erate an immune response that leads to the production of memory B
and T lymphocytes [175,176]. Generation of effector and memory B
and T lymphocytes depends upon the successful recognition of specific
target antigens, more specifically, parts of the specific antigens called
epitopes. Therefore, it is of great interest to predict B and T lymphocyte
epitopes on target antigens when it comes to designing vaccines [177].

CTL mediated cytotoxic activity is a crucial part of the immune re-
sponse to viral infections. Virus infected cells degrade some of the
viral proteins and present them to the CTLs in combination with MHC
class I molecules. Recognition of degraded parts of viral proteins called
epitopes by CTLs leads to the killing of infected cells through the release
of cytotoxic granules [178]. Filtering through various parameters, 6 CTL
epitopes have been extracted in this study for construction of a vaccine
against SARS-CoV-2 (Table 1).

Antigen-presenting cells display viral particles to HTLs in combina-
tion with MHC class II molecules which leads to the activation of HTLs.
Upon recognition of the epitopes, the HTLs secrete awide range of cyto-
kines and chemokines such as IFN-γ, IL-4, IL-10 etc.which play diverse
roles in the immune response against the invaders [179–182]. Once the
antigens are cleared, most effector T lymphocytes (meaning CTLs and
HTLs) perish but a small population of them survive this phase and
make up the reservoir of memory T cells [183–185]. Based on our anal-
ysis, one HTL epitope was selected for vaccine construction (Table 1).

Using B cell receptors which are basically membrane-bound immu-
noglobulins, B lymphocytes bind to antigenic epitopes found on the sur-
face of target cells and subsequently internalize, process and present
them to T cells [186]. The processed epitopes are presented in combina-
tion with MHC class II on the surface of B lymphocytes and are recog-
nized by HTLs possessing a cognate T-cell Receptor (TCR). This leads
to the differentiation of B lymphocytes into antibody secreting plasma
cells [187–189]. These antibodies are extremely important in neutraliz-
ing pathogens [190]. Alternatively, the activated B lymphocytes might
initiate germ line center reactions that leads to the generation of mem-
ory B cells and long lived plasma cells [191]. In this study, 6 LBLs have
been identified as suitable for including in the vaccine construct
(Table 1).

Primarily, we used the “2019-nCoV WHU01” strain for epitope pre-
diction. But SARS-CoV-2 being an RNA virus additional mutations are
unavoidable [192]. To address this situation, we conductedmultiple se-
quence alignment of randomly selected 200 SARS-CoV-2 S proteins
from all over the world covering all but one (Antarctica) continents.
The result showing nomutation in our selected epitope area (Fig. 2) in-
dicates the vaccine design to be efficacious. Since it is anmRNA vaccine,
the vaccine construct can be modified following the filtering principle
we have employed in case of possible future mutation within the epi-
tope regions.

Molecular docking is a key bioinformatics tool that is widely utilized
to predict the binding affinity and pose between a ligand and its corre-
sponding receptor [193–196]. Not just in computational drug design,
molecular docking has also become an integral part of vaccine design
studies. In immunoinformatics, one crucial use of molecular docking is
the simulation of binding between T lymphocyte epitopes and their re-
spective MHC molecules [197–199]. The binding affinity between a re-
ceptor and its ligand can be defined by the energy released during



Fig. 7. Proposedmechanism of synthesis, delivery and action of the mRNA vaccine against SARS-CoV-2. At first, the PCR template DNA or linearized plasmid DNA containing the designed
vaccine sequences is transcribed in vitro in amedia containing RNA polymerase and nucleotide phosphates. This results in amixture of double stranded RNAs and other aberrant products.
Therefore, chromatographic purification (such as FPLC) is carried out to obtain themRNAwith desired content and length. After vector-mediated delivery into the body, themRNA transits
to the cytosol. In the cytosol, the cellular translationmachinery synthesizes proteinswhich undergo post-translationalmodifications, resulting in properly folded, fully functional proteins.
The secretory signal andMITD sequences direct thepeptides to specific compartments of the endoplasmic reticulumandGolgi body for efficient secretion (LBL) andpresentation byMHC-I
(HTL) and MHC-II (CTL).
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spontaneous bond formation between the two and the lower the en-
ergy, the more tightly bound the receptor is to its ligand [200,201].
Our selected 7 T lymphocyte epitopes had 32 correspondingMHCalleles
(Table 2). We subjected each of these CTL and HTL epitopes and one of
their corresponding alleles tomolecular docking (Table 3). 4 out of the 7
alleles of our epitopes did not have their 3 dimensional structures avail-
able in RCSB PDB database. Therefore, we had to model these receptor
molecules using the SWISS-MODEL server. The quality of the models
was judged based on Ramachandran Plots and Z scores. In structural bi-
ology, Ramachandran plots are considered as one of the most pivotal
concepts. It categorizes the amino acids of any given 3 dimensional pro-
tein structure into 4 groups - amino acids in most favored regions,
amino acids in additional allowed regions, amino acids in generously
allowed regions, and amino acids in disallowed regions. For any protein
model to be considered a good model, over 90% of its amino acids need
to be in the most favored regions [202,203]. In our case, all 4 of the
models satisfied this condition and so could be considered reliable
(Table 4). Another indicator of protein model quality is the Z score. A
Z score plot describes how a model compares with experimentally de-
termined protein structures of similar size from different sources (X-



Table 7
Antigenic, allergenic, toxicity and physiochemical assessments of the translated protein
form of mRNA vaccine translated peptide.

Features Assessment Remark

Number of amino acids 478 Suitable
Molecular weight 52,222.98 Average
Chemical formula C2346H3713N619O695S16 –
Theoretical pI 7.59 Slightly basic
Total number of negatively charged
residues (Asp+Glu)

47 –

Total number of positively charged
residues (Arg + Lys)

48 –

Total number of atoms 7389 –
Instability Index (II) 32.08 Stable
Aliphatic index (AI) 90.33 Thermostable
Grand Average of hydropathicity
(GRAVY)

−0.064 Hydrophilic

Antigenicity 0.6547 (VaxiJen) Antigenic
0.8504 (ANTIGENpro) Antigenic

Allergenicity Probable non-allergen
(AllerTOP 2.0)

Non-allergen

Toxicity Non-toxin (ToxinPred) Non-toxic
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ray, NMR) [204]. All our models fell within the acceptable zone in the Z
score plots (Fig. 3). Based on the molecular docking of our selected epi-
topes with their corresponding alleles, we have found out that the epi-
tope VVFLHVTYV possessed the highest binding affinity for its
corresponding MHC allele, HLA-C*06:02 (Table 5) and exhibited a
wide array of interactions (Table 6). It bound successfully to the epitope
binding pocket of HLA-C*06:02 (Fig. 4) and took part in bond formation
with neighboring residues (Fig. 5).

In vaccine design, careful consideration needs to be put on the pop-
ulation coverage of the T lymphocyte epitopes. The presence of over a
thousand human MHC alleles around the globe is a factor that must be
addressed because only those who possess a particular MHC allele rec-
ognizing the epitopes in our vaccine construct will launch an immune
response when exposed to the vaccine [125]. In this study, the com-
bined coverage of the CTL and HTL epitopes was checked to predict
the effectiveness of our vaccine across various geographical regions of
theworld. The IEDB population coverage tool predicted a decentworld-
wide coverage (Fig. 6) while higher degree of coverage was predicted
for countries that saw the most devastating effects of the SARS-CoV-2
pandemic.

While developing an mRNA-vaccine, important factors such as
mRNA manufacturing, quality control, formulation, immunological
and physicochemical properties of the vaccine as well as the translated
form of the peptide come into question. For successful cellular uptake,
immune stimulation and induction of long-term memory, emphasis
should be put on designing the vaccine construct in a way that avoids
interaction with RNA-sensors. For ensuring Good Manufacturing Prac-
tice (GMP), some perspectives such as cost-effectiveness are major is-
sues. Industrially, mRNA is obtained by in vitro transcription of DNA
(linearized plasmid DNA or PCR template) containing a recognition
site for RNA polymerase attachment [205–207]. This mRNA preparation
contains double-stranded RNA (dsRNA) contaminants [208], which
being a potent Pathogen-associated Molecular Pattern (PAMP) result
in robust type I interferon production. This leads to the inhibition of
translation [209] and the degradation of cellular mRNA and ribosomal
RNA [210]. To solve this problem, purification of mRNA using High-
performance Liquid Chromatography (HPLC) has resulted in increase
of translation upto 1000-fold [208]. A chromatographic purification
technology named PUREmessenger has obtained highly pure mRNA
transcripts by elimination of contaminating shorter or longer transcripts
[55]. However, the highest level of protein production has been re-
ported when the mRNA was both HPLC-purified and nucleoside-
modified [208]. Apparently, the transcription step in mRNA vaccines
makes the production more expensive compared to DNA vaccines. But
in practice, it is actually less costly in the long run because of higher
transfection rate.

Developing an effective and safe adjuvant requires an intricate bal-
ance between immunogenicity and safety because of the risk of unde-
sired level of host immune system activation and inflammatory
responses in some cases. Several approaches showed promise in this as-
pect, such as those using protamine and cytokine granulocyte macro-
phage colony-stimulating factor (GM-CSF) [57,211–218]. Besides,
when administered naked, mRNA itself has been reported to be self-
adjuvanting [57]. But in vivo degradation makes it a poor approach.
We included co-stimulatory molecule CD40L considering its ability to
stimulate pAPCs and thereby induce immune response molecules
[58,130]. However, excluding the adjuvant would certainly reduce
time and costs. Therefore, further experimentation can tell whether
the inclusion was absolutely necessary. Optimum spacers with a bal-
ance between flexibility and rigidity also contribute to the proper func-
tioning of the mRNA vaccine by preventing inter-domain interactions.
[132,133]

During in vitro transcription, mRNA can be capped co-
transcriptionally using enzymatic action of vaccinia virus capping com-
plex [219,220] or “Anti-reverse” Cap Analogs (ARCAs) [221–224]. Poly
(A) tails have been found to work synergistically with 5′ m7G cap se-
quences with optimum length being 120–150 base pairs
[147,150–153]. For increased translation and stability, 5′ and 3′ UTRs
need to flank the mRNA ORF [225–227]. Globin UTRs are commonly
used for in vitro transcription of mRNA. Incorporation of both the
Xenopus β globin 5′ and 3′-UTRs have been found to increase transla-
tional efficiency by about 1000-fold [228]. We decided to use a combi-
nation of β globin 5′-UTR and α globin 3′-UTR, which had been
known to stabilize mRNAs [154,229]. Sequences surrounding the stop
codonmight be optimized and the Kozak sequence also demands atten-
tion [126,127].

Inclusion of sequences for a secretory signal as well as those that
contain directional information regarding specific compartments of en-
doplasmic reticulum (e.g. MHC I), have been associated with higher ef-
ficiency of mRNA and DNA based vaccines [143–145]. Enrichment of G:
C content has been shown to increase steady-state mRNA levels in vitro
[230] and protein expression in vivo [231]. In some species, codon bias
i.e. replacement of rare codons with frequently used synonymous co-
dons have been associated with both efficiency [232] and probable ad-
verse effect [230,233,234]. But it does not correlate with tRNA levels
and gene expression in humans [235,236]. Therefore, it has been
avoided in our mRNA vaccine designing. Incorporation of naturally oc-
curring chemically modified nucleosides, such as pseudouridine [237],
and 1-methylpseudouridine [238] has been reported to enhance
in vitro translation. Its efficacy is based on escaping Toll-like Receptor
(TLR) 7, 8 and other innate immune sensors [239,240] and thus reduc-
ing type I interferon signaling [241]. However, whether it can have an
impact upon in vivo translation remains to be tested.

mRNA formulation and administration are also crucial factors for an-
tigen expression. Recently, Lipid Nanoparticle (LNP) has emerged as a
promising vector for mRNA vaccines. Route of administration is also a
contributing factor here. Intramuscular and intradermal delivery of
mRNA–LNPs has been shown to result in three-fold more persistent
protein expression than intravenous delivery. As sustained antigen
availability during vaccination drives higher antibody titres and pro-
nounced immune responses, higher half-life can contribute to higher
potency of the vaccine. [63,164,242–244]. In the case of our vaccine, in-
tranasal administration is a probable option, as the virus has been re-
ported to infect the respiratory tract. After incorporation into the
cytosol, mRNA comes into contact of the cytosolic translation complex.
After translation and post-translational modifications, the vaccine gets
ready to generate immune response (Fig. 7). The translated form of
our mRNA construct was predicted to be almost neutral, stable, highly
antigenic, non-allergenic and hydrophilic, thermostable in nature by
various in silico tools making it a potential candidate for a vaccine.
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In silico immune response simulation showed an overall increase in
immune responses following repeated exposure to the antigen
(Fig. 8). The higher B and T-cell activity and lasting of B cell memory
for several months indicated humoral immunity; which is essential for
complementing the immune response. High levels of IFN-γ and IL-2
production during repeated exposure indicated cell mediated immune
response. The cytokine IFN-γ being involved in B-cell proliferation and
Ig isotype switching [245,246], it can support a humoral response as
well. Moderate levels of IL-10 and IL-4 activity were observed since IL-
10 and IL-4 positive HTL epitopes were selected and incorporated into
the vaccine construct. Dendritic cell and macrophage activities and
Simson index were found to be up to the mark. This profile of the vac-
cine suggests immune memory development and, thereby, natural im-
mune protection against SARS-CoV-2.

Instead of beginning with the laboratory-based expensive and
time-consuming methods, immunoinformatics provides the advan-
tage of low cost and fast identification and screening of epitopes
and designing a vaccine. In the face of worldwide transmission of
the COVID-19 pandemic at an alarming rate, rapid and high-yield
technologies like mRNA vaccine production is the one to meet the
challenge. Our immunoinformatics based approach for designing a
multi-epitope mRNA vaccine against the spike glycoprotein of
SARS-CoV-2 have demonstrated that this novel vaccine candidate
can be a useful tool in mankind's arsenal against the deadly virus.
This can only come to fruition after further validation of its perfor-
mance in vitro and in vivo through coordinated action between the
relevant quarters.
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