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Behavior-dependent directional tuning
in the human visual-navigation network
Matthias Nau 1,2✉, Tobias Navarro Schröder 1, Markus Frey 1,2 & Christian F. Doeller 1,2✉

The brain derives cognitive maps from sensory experience that guide memory formation and

behavior. Despite extensive efforts, it still remains unclear how the underlying population

activity unfolds during spatial navigation and how it relates to memory performance.

To examine these processes, we combined 7T-fMRI with a kernel-based encoding model of

virtual navigation to map world-centered directional tuning across the human cortex. First, we

present an in-depth analysis of directional tuning in visual, retrosplenial, parahippocampal

and medial temporal cortices. Second, we show that tuning strength, width and topology of

this directional code during memory-guided navigation depend on successful encoding of the

environment. Finally, we show that participants’ locomotory state influences this tuning in

sensory and mnemonic regions such as the hippocampus. We demonstrate a direct link

between neural population tuning and human cognition, where high-level memory processing

interacts with network-wide visuospatial coding in the service of behavior.
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Human scene-processing and navigation regions interface
between the lower-level sensory and higher-level cognitive
domain. They gradually construct world-centered

mnemonic representations of the environment, a cognitive
mapping process thought to culminate in the medial temporal
lobe (MTL)1–7. Areas such as the retrosplenial5 and the para-
hippocampal cortex represent the spatial layout8 and 3D struc-
ture9 of the currently viewed scene, as well as its relative
openness10 or boundaries11. Downstream regions like the
entorhinal cortex and the hippocampus use this information to
derive a stable representation of the world and one’s own posi-
tion, direction, and speed in it12,13. Together, such spatial
representations are often referred to as cognitive map, and are
thought to fundamentally shape our memories and guide beha-
vior14. To understand this process, we believe that it is critical to
study the neural population activity of these regions in a natur-
alistic setting and in light of the behavior they support.

A critical challenge the brain needs to solve to map the
environment is keeping track of our own direction as we move.
Previous studies revealed directional representations and
activity related to heading perception in several areas, including
the medial parietal lobe and retrosplenial cortex15–18,
the parahippocampal gyrus17,19–23, the entorhinal/subicular
cortex region16,22–25, the thalamus18, and the superior parietal
cortex26,27. Most of these studies used dedicated and con-
strained directional judgment- and mental imagery tasks, and
often examined direction in a self-centered frame of reference.
To date, it remains unclear how cognitive mapping is mediated
by the scene-processing and navigation network, and how
active spatial behavior and memory relate to environmental
processing in this pathway.

Here, we used 7T functional magnetic resonance imaging
(fMRI) to monitor human brain activity during naturalistic
virtual navigation in a spatial memory task (Fig. 1). Inspired by
prior successes of encoding models in characterizing fMRI
responses in other domains28,29, we then developed an iterative
kernel-based encoding model (Fig. 2) of the participants’
navigation behavior (Supplementary Fig. 1A–C) to map direc-
tional tuning across the human cortex. In this framework,
voxels are considered to be directionally tuned if their activity
can be predicted based on world-centered virtual head direction
(vHD), i.e., the direction a participant is facing within the
virtual arena at each moment in time. We analyzed the impact
of spatial memory performance and locomotory states on this
tuning, focusing on scene-processing and navigation regions
due to their proposed involvement in cognitive mapping2–4.
These regions include the early visual and retrosplenial cortex,
the parahippocampal gyrus, the entorhinal cortex, as well as the
hippocampus.

Our objectives were twofold. First, we aimed to quantify and
map directional tuning in the human scene-processing and
navigation network during active spatial behavior. Second, we
examined how this tuning relates to the participants’ behavior
and memory.

Results
Voxel-wise encoding modeling of virtual navigation behavior.
During fMRI scanning, participants freely navigated in a circular
virtual reality (VR) arena via key presses while memorizing and
reporting object locations within it (Fig. 1a). Across different
trials, participants indicated the locations of these hidden objects
by navigating to them. After each trial, they received feedback
about the true object location before the next trial started. We
then tracked the improvement in memory performance over
trials by assessing the memory error, i.e., the Euclidean distance

between true and remembered location in each trial (Fig. 1b;
Supplementary Fig. 2A, B).

Our encoding model analysis comprises multiple individual
steps. We modeled world-centered virtual head direction (vHD)
using basis sets of circular–Gaussian vHD kernels (Fig. 2a). Next,
we estimated voxel-wise weights for each kernel with ridge
regression using a training data set (Fig. 2b; Supplementary
Fig. 3A). We then used these weights to predict the time course of
each voxel in an independent test set (Fig. 2c). We define
directional tuning strength as the model performance, i.e., how
well the model predicted the time course of a voxel or region.
Critically, a positive tuning strength suggests that a voxel
selectively represents some vHDs over others in a temporally
stable manner. Finally, by iterating through multiple basis sets
differing in the number and the full-width-at-half-maximum
(FWHM) of the directional kernels (Supplementary Fig. 3B), we
also estimated the corresponding tuning width of each voxel.
Tuning width was defined as the FWHM of the kernels, leading to
the best model performance. Finally, we examined the relation-
ship between the tuning strength and width estimated for
different regions, the participants’ navigation behavior itself, as
well as their performance in the spatial memory task.

Our results are presented in three sections. First, we establish
how the vHD-encoding model works by mapping directional
tuning strength and width across the cortex. Second, we
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Fig. 1 Spatial memory task in virtual reality (VR). a First-person and
bird’s-eye view of the VR environment in which participants navigated
freely via key presses. The circular arena was surrounded by 12 landmarks
matched in visual features (colored triangles). Across trials, participants
memorized and reported object locations by navigating to them and
pressing a “drop” button followed by feedback. b Object-location memory.
Participants’ memory performance improved as indicated by a decrease in
memory error (Euclidean distance between drop and true location). The
blue line and shaded area represent the mean and SEM of the memory
error across participants. Data were smoothed with a moving average
kernel of five trials. The inset on the bottom left depicts the median
memory error across trials for single participants and as whisker–boxplot
(center, median; box, 25th to 75th percentiles; whiskers, 1.5× interquartile
range, n= 20 participants). Source data are provided as a Source Data file.
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demonstrate that the strength, width, and topology of this tuning
depend on the participants’ spatial memory performance. On a
behavioral level, we show evidence that this likely relates to how
well the environment has been encoded. Finally, we show that the
tuning in both sensory and high-level mnemonic regions reflected
the behavioral state of our participants, i.e., whether they were
moving or not. Notably, our results cannot be explained by biases
in sampling (Supplementary Fig. 1), model regularization, or data
quality (Supplementary Fig. 3). Using simulated data, we further
ensured that our analysis uncovers the true underlying tuning
properties robustly across various noise levels and tuning profiles
(unimodal, bimodal, and random) (Supplementary Fig. 4).

Mapping directional tuning during spatial navigation. Parti-
cipants navigated in a VR environment, memorizing and
reporting object locations within it. We used an iterative kernel-
based voxel-wise encoding model of vHD to map directional
tuning strength and width across the cortex (Fig. 2). The model
performance is the Pearson correlation between the voxel time
course predicted by the model and the one observed in the test
set. The model prediction builds on weights estimated for each
kernel using an independent model training procedure.

Our model successfully predicted activity in multiple regions in
the ventral occipital, and medial parietal cortex as well as in the
MTL (Fig. 3a). These regions overlap with known scene-processing
and navigation regions, such as the retrosplenial cortex5 and the
parahippocampal cortex, as well as with the posterior hippocampal
formation3,4. Along the parahippocampal long-axis, the tuning
width followed a narrow-to-broad topology: narrow kernels
best predicted activity in more posterior parts, wider kernels in
anterior parts of the left-hemispheric parahippocampus (Fig. 3b).
Visualizing the model weights showed that different voxels
preferred different directions and that there were no distinct tuning
profiles (uni-, bi-, and trimodal weight distributions) observable on
the ROI level (Supplementary Fig. 5).

Directional tuning reflects spatial memory performance. After
establishing that our vHD-encoding model did indeed predict
activity in the visual-navigation network, we next asked whether
the tuning was related to successful encoding of the environment
and the object locations in it. We hypothesized that the tuning
should be stronger in the ventral visual stream and MTL regions
in participants that performed well in the spatial memory task.
This hypothesis built on the idea that stronger tuning should
indicate enhanced retrieval of directional information from high-
level mnemonic systems.

To test this, we repeated the group-level analysis depicted in
Fig. 3a, this time splitting the participants into two groups based
on their across-trial median memory error (median split, Fig. 1b).
We found that our model predicted activity in strikingly different
networks in these two participant groups (Fig. 4a); the direction
of these effects, however, was opposite of what we had predicted.
In participants with low-memory error, i.e., good memory
performance, the model predicted activity in the medial and
ventral occipital lobe. Strikingly, in participants with high-
memory error, the model predicted activity in the parahippo-
campal gyrus and in the MTL. A group-level permutation-based
rank correlation between memory error and model performance
further indicated that these differences build on a systematic
relationship between directional tuning and spatial memory
(Supplementary Fig. 6A–H). In both groups, we observed bilateral
clusters in the medial parietal lobe. These clusters however barely
overlapped between groups (Fig. 4b). In the low-memory-error
group, the model predicted activity in a more anterior part, in the
high-memory-error group in a more posterior part of the medial
parietal lobe, akin to previous reports of an anterior–posterior
functional distinction in this region30.

To further characterize directional tuning explicitly in regions
that derive world-centered representations of the visual environ-
ment, we next conducted a region-of-interest (ROI) analysis
focusing on the early visual cortex (EVC), the retrosplenial
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Fig. 2 Analysis logic. a Virtual head direction (vHD) encoding model. We modeled vHD using multiple basis sets of circular–Gaussian kernels covering the
full 360°. Given the observed vHD, we generated predicted time courses (regressors) for all kernels in each basis set. The basis sets differed in the (full-
width-at-half-maximum) kernel width and number. Spacing and width were always matched to avoid overrepresenting certain directions, i.e., the broader
each individual kernel, the fewer kernels were used. The resulting regressors were convolved with the hemodynamic response function (SPM12) to link the
kernel activity over time to the fMRI signal. b Model training. We estimated voxel-wise weights for each regressor in a training data set (80% of all data of
a participant or four runs, 10min each) using ridge regression. To estimate the L2-regularization parameter (λ), we again split the training set into partial
training (60% data, three runs) and validation sets (20% data, one run). Weights were estimated in the partial training set, and then used to predict the
time course of the validation set via Pearson correlation. This was repeated for ten values of λ (log-spaced between 1 and 10.000.000) and cross-validated
such that each training partition served as validation set once. We then used the λ that resulted in the highest average Pearson’s R to fit the final model
weights using the full training set. c Model test: we used the final model weights to predict each voxel’s time course in an independent test set (held-out
20% data, always the run halfway through the experiment) via Pearson correlation. These Pearson correlations were used to test model performance on a
voxel-by-voxel level (Figs. 3 and 4). For a region-of-interest analysis (Figs. 5 and 6), we additionally converted model performance into Z scores via
bootstrapping, ensuring that the results reflected the effects of kernel width and not of number. The null distribution of each voxel was obtained by weight
shuffling (k= 500). Both model training and test were repeated for all basis sets.
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cortex (RSC), parahippocampal gyrus (PHG), the posteromedial
entorhinal cortex (pmEC), and the hippocampus (HPC) (Fig. 5a).
We tested the pmEC subdivision of the entorhinal cortex because
its rodent homolog region31,32 is known to encode direction33–35.
We obtained the vHD-model performance for every voxel in our

ROIs and every directional basis set as described before. For the
ROI analysis, we added a bootstrapping procedure to ensure that
our results reflected an effect of kernel width, and not of kernel
number. For every basis set, we converted the Pearson
correlations into Z scores via weight shuffling (Fig. 2c) and then
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Fig. 3 Mapping directional tuning across the human cortex (n= 20). a Tuning map: directionally tuned voxels were determined by testing model
performance against zero on group level using a permutation-based one-sample t test with k= 10,000 shuffles. We plot pseudo-T map thresholded at P <
0.05, FDR-corrected for all basis sets at T1 resolution overlaid on the group-average T1 scan. Approximate MNI coordinates were added. Inserts zoom in on
the parahippocampal cortex and the medial parietal cortex. Multiple regions in the occipital lobe, the medial parietal and temporal lobes, and the
parahippocampal gyrus were directionally tuned. b Tuning width: for each directionally tuned voxel, we color-coded the median tuning width (full-width-at-
half-maximum of the directional kernels in the optimal basis set) that led to the highest pseudo-T value (depicted in a). The tuning width follows a narrow-
to-broad topology along the parahippocampal long-axis. Shaded regions fell outside the scanning field of view in at least one participant. Source data are
provided as a Source Data file.
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Fig. 4 Directional tuning topology reflects spatial memory performance. Participants were split into two groups depending on their across-trial median
memory error (2 × n= 10). a Tuning map: directionally tuned voxels were determined by testing model performance against zero on group level using a
permutation-based t test with 1024 unique random possible shuffles. This procedure results in a minimal possible P value of 0.00098, precluding FDR
correction. We therefore plot pseudo-T maps thresholded at P < 0.001 uncorrected for all basis sets at T1 resolution overlaid on the group-average T1 scan. Hot
colors depict results for the low-memory-error group, cool colors for the high-memory-error group. Approximate MNI coordinates added. b Zoomed-in
depiction of the medial parietal lobe/retrosplenial cortex (RSC). There is an anterior–posterior distinction in directional tuning in RSC as a function of spatial
memory performance. Shaded regions fell outside the scanning field of view in at least one participant. Source data are provided as a Source Data file.
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averaged across the 25% most reliable training voxels in each ROI
to reduce noise (see “Methods” for shuffling and voxel selection
details). The resulting Z scores expressed how well the model
predicted the activity relative to the voxel’s null distribution. For
each participant group and ROI, we selected the basis set that led
to the best model performance on average (Fig. 5b). If a given
region was not directionally tuned, the corresponding Z scores
should be zero. We tested this on group level (one-tailed) as well
as a difference between groups (two-tailed) using permutation-
based t tests (Fig. 5c, see “Methods” for details). We observed
that EVC and RSC encoded direction in both participant
groups (EVC: low-memory error: t(9)= 2.85, P= 0.014,
pFDR= 0.048, d= 0.90, CI= [0.67, 1.13]; high-memory error:
t(9)= 4.00, P= 0.004, pFDR= 0.027, d= 1.26, CI= [0.99, 1.53];
RSC, low: t(9)= 3.04, P= 0.006, pFDR= 0.041, d= 0.96, CI=
[0.69, 1.23]; high: t(9)= 2.62, P= 0.015, pFDR=0.040, d= 0.83,
CI= [0.57, 1.08]). Importantly, in PHG and pmEC, such tuning
was observed only in participants that had a high-memory error
(PHG, low: t(9)= 0.62, P= 0.320, d= 0.20, CI= [−0.02, 0.41];
high: t(9)= 2.16, P= 0.028, pFDR=0.040, d= 0.68, CI= [0.43,
0.93]; pmEC, low: t(9)=−0.42, P= 0.661, d=−0.13, CI=
[−0.40, 0.13]; high: t(9)= 2.59, P= 0.020, pFDR= 0.040, d=
0.82, CI= [0.54, 1.10]), in line with the voxel-wise group results
(Fig. 4). In pmEC, the tuning strength additionally differed
between groups (t(18)= 2.32, P= 0.036, d= 1.04, CI= [0.93,
1.15]). To again test whether this group difference reflected a

systematic relationship between tuning strength and memory
error, we conducted a post hoc permutation-based rank
correlation between memory error and pmEC model perfor-
mance on the ROI level, which indeed seconded these results
(rho= 0.48, P= 0.035, k= 10,000, Supplementary Fig. 6G). We
did not observe such correlation in the EVC (rho= 0.11, P=
0.636, k= 10,000, Supplementary Fig. 6H). Notably, while the
rodent homolog of pmEC is known to encode world-centered
direction33–35, another entorhinal subregion, the anterolateral
entorhinal cortex (alEC), is not. Consistently, we observed
directional tuning only in pmEC, not in alEC (Supplementary
Fig. 7A–E).

In addition to the tuning strength, our approach also allowed
to estimate the tuning width for each ROI. For each individual
participant and ROI, we selected the tuning width that led to the
optimal model performance (Supplementary Fig. 8) and com-
pared it between groups. Strikingly, while the above-mentioned
model performance in RSC was matched, the tuning width
differed between groups (t(18)= 2.04, P= 0.044, d= 0.91, CI=
[0.80, 1.02]). This suggests that participants with high-memory
error might show a sharper tuning in RSC than participants with
low-memory error (Fig. 5d).

In sum, while EVC, RSC, PHG, and pmEC were directionally
tuned in at least one of the participant groups, tuning strength in
pmEC as well as tuning width in RSC strikingly reflected how well
participants performed in the spatial memory task. This is in line
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Fig. 5 Region-of-interest (ROI) analysis. a Human scene-processing and navigation regions tested in this study: early visual cortex (EVC), retrosplenial
cortex (RSC), parahippocampal gyrus (PHG), posteromedial entorhinal cortex (pmEC), and the hippocampus (HPC). b Model selection: we plot the model
performance (Z score) on ROI level for all basis sets. The black line and the shaded area represent the mean and SEM across participants. Each dot
represents the group-average model performance for one basis set, with darker colors representing narrow kernels and lighter colors representing wider
kernels. The following kernel widths were tested: 10°, 15°, 20°, 24°, 30°, 36°, 45°, and 60°. The black triangles mark the basis set that leads to the optimal
model performance. c Optimal model performance for the two (high- and low-memory-error) participant groups. We plot single-participant data and
group-level whisker–boxplots (center, median; box, 25th to 75th percentiles; whiskers, 1.5× interquartile range, n= 2 × 10 participants). We observed
directional tuning in EVC and RSC in both groups. In PHG and pmEC, this tuning depended on spatial memory performance. d Optimal tuning width. Similar
to b, c we plot the tuning width that led to the optimal model performance selected on individual participant level. Participants with low-memory error had
wider tuning than the ones with high-memory error. Hence, unlike tuning strength, the tuning width in RSC reflected spatial memory performance. One-
sided (within-group) and two-sided (across-group) permutation-based t-test results were added: **P < 0.05, FDR-corrected, *P < 0.05, uncorrected. Source
data are provided as a Source Data file.
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with our hypothesis that the tuning should indicate whether the
environment has been successfully encoded or not. However, we
had hypothesized that stronger directional tuning in higher-level
visual and MTL regions should be associated with better spatial
memory performance. Our empirical test suggested the opposite.
Why would mnemonic regions be more directionally tuned in
participants that performed poorly in the spatial memory task?
Contrary to our initial hypothesis, the differences between groups
could reflect general differences in the cognitive strategy used or
the participants’ ongoing effort in encoding rather than retrieving
a map of the environment. To investigate these effects post hoc in
more detail, we examined how directional tuning strength
developed in the course of the experiment. We performed
leave-one-run-out cross-validation of our full modeling pipeline
to obtain the directional tuning strength for each ROI not only
for our original test run but for all runs. We found three main
patterns of results (Supplementary Fig. 8C): EVC and RSC tuning
strength did again not reflect memory performance, also not
when cross-validated over runs. In contrast, PHG tuning strength
did reflect memory performance robustly over runs. Strikingly,
HPC and EC tuning also reflected memory performance, but the
relationship between the two variables developed over time. Over
scanning runs, tuning strength tended to increase in high-error
participants and tended to decrease in low-error participants.
Interestingly, on a behavioral level, we found that both groups
approached the same level of memory performance in the course
of the experiment (Supplementary Fig. 2A, B), but that the low-
memory-error group had approached this performance level
earlier in the experiment than the high-memory-error group
(Supplementary Fig. 2B, C).

Directional tuning reflects the behavioral state. To investigate
the relationship between directional tuning and the participants’
behavior further, we repeated the above-described ROI analysis twice,
once only modeling periods in which the participants moved, and
once in which they stood still. In both cases, the participants rotated
(Supplementary Fig. 1A, B). We compared these two scenarios by
contrasting the respective model performances (Fig. 6a), revealing a
positive effect of locomotion on tuning strength in EVC and RSC
(EVC: locomotion: t(19)= 4.04, P= 0.0004, pFDR= 0.003, d= 0.90,
CI= [0.79, 1.01]; stationary: t(19)= 1.38, p= 0.091, d= 0.31, CI=
[0.20, 0.42]; contrast: t(19)= 2.06, P= 0.049, d= 0.46, CI= [0.35,
0.57]; RSC: locomotion: t(19)= 3.68, P= 0.001, pFDR= 0.004,
d= 0.82, CI= [0.71, 0.93]; stationary: t(19)=−0.82, P= 0.79, d=
−0.18, CI= [−0.29, −0.07]; contrast: t(19)= 2.20, P= 0.043, d=
0.49, CI= [0.38, 0.60]). Conversely, the activity in PHG and HPC
could be better predicted while participants stood still (PHG: loco-
motion: t(19)=−0.91, P= 0.799, d=−0.20, CI= [−0.31, −0.10];
stationary: t(19)= 2.37, P= 0.015, d= 0.53, CI= [0.42, 0.64];
contrast: t(19)=−2.35, P= 0.024, d=−0.52, CI= [−0.63, −0.42];
HPC: locomotion: t(19)=−3.48, P= 0.999, d=−0.78,
CI= [−0.89, −0.67]; stationary: t(19)= 1.77, P= 0.046, d= 0.40,
CI= [0.29, 0.50]; contrast: t(19)=−3.18, P= 0.004, pFDR= 0.028,
d=−0.71, CI= [−0.82, −0.60], Fig. 5c). Our results suggest that the
directional tuning in human scene-processing and navigation regions
reflects not only spatial memory performance, but also the behavioral
state of the participants (i.e., whether they move or not). Notably,
the fact that the differences in tuning strength and width were region-
specific (Fig. 6a) suggests that our results cannot be explained
by general differences in statistical power between the two behavioral
states.

Discussion
The present study investigated fMRI proxies of neural population
activity reflecting directional coding during active spatial

behavior. We put a focus on human scene-processing and navi-
gation regions due to their proposed involvement in cognitive
mapping: they derive world-centered mnemonic representations
of the environment from sensory experiences. We used 7T-fMRI
to monitor brain activity of participants navigating in a virtual
environment and performing a spatial memory task. We devel-
oped an iterative kernel-based encoding model of the navigation
behavior to map directional tuning across the human cortex. In
addition, we examine its relationship to behavior and memory
in detail. Visual, retrosplenial, parahippocampal, entorhinal,
and hippocampal regions showed distinct response profiles,
with a narrow-to-broad tuning width topology along the
left-hemispheric parahippocampal long-axis. Furthermore, we
examined the relationship between the tuning in each region,
the participants’ navigation behavior, and the performance in the
spatial memory task. We found that the tuning in the RSC and
pmEC, and likely in the parahippocampal gyrus, reflected how
accurately participants reported the location of objects in the
environment. Strikingly, while it was the tuning strength in
pmEC and PHG, it was the tuning width and topology in RSC
that depended on memory, notably however, with a large varia-
bility across participants. The strength, width, and topology of
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Fig. 6 Behavioral-state analysis. The analysis described in Fig. 2 was
repeated, this time separating periods when participants navigated and
when they stood still. a Model selection. We plot the difference in model
performance (Z score) between locomotion and stationary periods across
tuning widths (grayscale dots represent tuning width: narrow:dark, wide:
light, also see Fig. 5). Positive values indicate that voxel time courses in an
ROI could be better predicted when participants locomoted. Negative
values indicate the opposite, with better model performance during
stationary periods. Triangles mark the kernel width, leading to the strongest
difference between models. b Model comparison. We plot the difference in
model performance indicated in (a) as single-participant data and group-
level whisker–boxplots (center, median; box, 25th to 75th percentiles;
whiskers, 1.5× interquartile range, n= 20 participants). EVC and RSC
tended to be better predicted during locomotion; PHG and HPC could be
better predicted during stationary periods. These results suggest that the
tuning in visual and mnemonic regions depends on the locomotory state.
Two-sided permutation-based t-test results were added: **P < 0.05, FDR-
corrected, *P < 0.05, uncorrected. Source data are provided as a Source
Data file.
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directional tuning were therefore associated with the spatial
memory performance of the participants, which demonstrates a
direct link between neural population coding and cognition. The
direction of this effect and how it developed over time in MTL
regions speaks to the idea that the two participant groups might
follow different cognitive strategies, and that the tuning reflects
how well the environment has been encoded. Finally, the tuning
in visual, retrosplenial, and parahippocampal regions, but espe-
cially in the hippocampus, additionally signaled the behavioral
state of the participants.

Our observations emphasize the central role of scene-
processing and navigation regions in spatial cognition1–7,36, and
are consistent with previous work on directional representations
in the human brain15–22,24,25. They are also consistent with lesion
studies showing that damage to regions like the RSC can impair
the ability to orient oneself relative to landmarks37. Importantly,
this study goes beyond previous reports in several aspects. Most
studies used dedicated and constrained directional judgment- and
imagery tasks to reveal directional representations in the brain.
Here, we examined directional tuning during active naturalistic
navigation (in VR) and additionally demonstrate that it depends
on multiple behavioral factors. Many of these studies also
examined self-centered directional coding, whereas our approach
examines vHD explicitly in a world-centered frame of reference.
Furthermore, using an iterative encoding model, we were also
able to extract additional parameters such as the tuning width
from fMRI responses. Similar approaches have been used for
example to map the retinotopic38 and semantic organization of
the cortex39,40, the 3D-depth tuning of scene-processing regions9,
to identify perceived stimuli from brain activity41,42, and to
reconstruct the online content of working memory43,44. Unlike
previous work, the encoding model developed here (Fig. 2) does
not build on information about a stimulus, but importantly is
informed by the behavior of our participants directly.

An open question is whether the tuning observed here reflects
processing of visual information or head direction (HD). Neurons
representing world-centered HD, or HD cells, are abundant in the
brain and have been studied most intensively not only in
rodents45, but also in monkeys46. HD cells reference facing
direction relative to known landmarks47 and are often compared
with an internal compass mediating our sense of direction45,48.
This HD-cell compass plays a central role in cognitive mapping
and is thought to mediate homing, reorientation, and path-
integration behavior45,48–53. We observed that multiple brain
areas encoded direction, many of which overlap with regions
known to contain HD cells in rodents and monkeys. These
regions include the RSC54–56, the postsubiculum (part of the
hippocampal formation)57, and the entorhinal cortex (EC)33–35.
The latter consists of at least two subdivisions in rodents, the
medial (MEC) and the lateral entorhinal cortex (LEC), likely
corresponding to the pmEC and alEC in humans31,32. HD cells
have been observed only in the MEC, not the LEC, paralleling our
observations of world-centered directional tuning in the human
pmEC, not in the alEC (Supplementary Fig. 7).

We also observed directional tuning in the early visual cortex
for which no HD cells have been reported to date. This raises the
question whether the effects reported here are due to HD, lower-
level sensory, or landmark processing. We believe that these
options are not exclusive, and the underlying processes might
strongly interact in our naturalistic task. The only source of
information to infer direction here were the landmarks, whose
visibility at every moment depended on the position and the
direction within the arena. Importantly, even if some landmarks
were seen more often than others while walking in a certain
direction, because they were all matched in low-level visual fea-
tures, the only difference between directions was landmark

identity. Such landmark processing and the integration of
landmarks across viewpoints has been suggested to be funda-
mental to anchor our sense of direction in space58. In addition,
locomotion59,60 and world-centered location61,62 have been
shown to modulate EVC activity in rodents. Here, we observed
that locomotion had a positive effect on model performance in
EVC and RSC, suggesting stronger directional tuning in these
regions during running (Fig. 6). Also, in monkeys63 and
humans64, the EVC can represent the velocity of motion in a
world-centered frame of reference, likely due to feedback from
higher-level areas. Critically, high-level mnemonic regions, such
as the entorhinal cortex, are not known to be visually responsive,
yet we still observed a directional code there. Consistent with this
are reports of HD cells in MEC33–35 as well as its well-connected
position within the HD circuit65. Also, locomotion had a positive
effect on model performance in EVC and a negative effect in the
hippocampus, again contrasting higher-level MTL function
against early visual processing. Areas such as the PHG code
direction even in the absence of visual experience19. In addition,
shared information and activity covariations between the EVC
and the hippocampal formation suggest that early perceptual
processing could well be modulated by higher-level cognitive
processes6,61,62,66–68.

Interestingly, the fact that the directional tuning we observed
depends on behavior is at odds with the activity profile of
“classical” HD cells. First, these cells provide a directional
representation that is continuous (i.e., they always maintain
similar activity on population level following attractor dynamics)
45,53. Second, impairments or even lesions of the HD-cell system
only have very moderate effects on behavior53. However, growing
evidence suggests that there are at least two types of HD cells in
the brain: “classical” continuous HD cells, as well as non-
continuous sensory HD cells. The latter have been shown to
switch between active and inactive states, providing a directional
representation that is controlled by visual landmarks instead of
attractor dynamics34. Our present results are in line with the
function and the location of these sensory HD cells found in the
entorhinal and parahippocampal cortex34, as well as potentially in
the RSC55. Some of these cells also alternate between several
preferred directions depending on context, potentially explaining
the variation in RSC tuning width we observed (Fig. 5d). On a
population level, directional activity referenced to multiple
landmarks would likely be interpreted as having broader tuning
curves than the stable unidirectional counterparts. While classical
HD cells integrate vestibular inputs45, which were not available in
our VR task, visual information alone is sufficient to drive HD-
cell-like coding in VR69 and to determine its alignment to the
environment70. Behavioral evidence further suggests that the
visual environment, specifically its geometry, influences our sense
of direction71,72. In our task, the VR arena was circular, and all
landmarks were carefully matched with respect to their visual
appearance (Fig. 1). In one half of the arena, the triangle-shaped
landmarks faced upward, in the other half downward (Fig. 1b).
The hypothetical axis in-between did not contain any landmarks
and did not bias vHD sampling (Supplementary Fig. 1).

Taken together, low-level sensory information alone can
explain neither the tuning we observed, nor its relationship to
behavioral performance. Instead, our results are well in line with
previous work on higher-level spatial representations and with
landmark processing in the visual system. We did not disentangle
visual from nonvisual factors here, but the tuning in the EVC and
its progression over time clearly differed from the one in MTL
regions. The relationship between directional tuning and spatial
memory hence arose on a higher level of the cortical hierarchy,
not the visual input stage. However, our results support the
notion that these higher-level cognitive processes are closely
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intertwined with visual processing up to its earliest stages in
the brain.

Could viewing behavior have influenced the results? One
limitation of the current study is that we cannot differentiate
between vHD and the direction of gaze. Other studies using eye
tracking indeed suggested that the landmarks capture most of the
viewing73. Neurons that encode the allocentric location of gaze
could hence in theory lead to a directionality on population level
if location and gaze are correlated. Such cells exist in the primate
hippocampus and encode allocentric view independent from head
direction74 or together with HD and self-location in a conjunctive
code75. Computational models proposed that it is the conjunction
between location and direction that mediates the environmental
anchoring of HD in the RSC76. Gaze direction typically varies
more broadly over time than vHD, potentially explaining the
relatively broad tuning in EVC (Fig. 5), as well as the influence of
locomotion on it (Fig. 6). If correct, this predicted that early visual
cortex should show a sharper tuning when analyzed as a function
of gaze direction compared with vHD. Future studies using eye
tracking could address these questions directly. Acknowledging
this ambiguity, we here refer to directional tuning more generally.

Why does directional tuning reflect spatial memory perfor-
mance? We hypothesized that participants with stronger direc-
tional tuning in higher-level visual and mnemonic regions should
perform better in the spatial memory task. We based this pre-
diction on the idea that stronger tuning indicated enhanced
retrieval of directional information from memory. Our empirical
test showed the opposite: participants with stronger tuning
in higher-level mnemonic regions performed worse in the
spatial memory task. Neither data quality or model parameters
(Supplementary Fig. 3), nor directional sampling (Supplementary
Fig. 1) could explain these results. While the underlying
mechanism remains unclear, we can speculate about its nature.
For that, we feel it is important to revisit what tuning means in
this context. The tuning strength describes how well the time
course of a voxel could be predicted. This does not necessarily
constitute a net increase or decrease in activity, but instead how
well we could predict the fluctuations over time. A voxel that
weakly but consistently follows a directional modulation could
hence show stronger tuning than the one that strongly codes
direction at very few time points.

Hypothetically, because fMRI likely measures synaptic pro-
cessing rather than output spiking77, the tuning could reflect how
much inputs a region receives. For example, the MTL of high-
error participants might receive stronger inputs from perceptual
regions, because these participants were still in the process of
forming a cognitive map, which heavily relies on visual infor-
mation. Accordingly, low-error participants might have formed a
cognitive map already. Consistent with this idea, we found that
both participant groups approached the same level of memory
performance, but that participants with stronger tuning in higher-
level regions showed steeper learning curves than those with
weaker tuning (Supplementary Fig. 2C). This is also consistent
with earlier reports showing that hippocampal activity tracks the
amount of knowledge obtained at a given time rather than the
accumulated absolute knowledge78, and with decreases in hip-
pocampal activity in the course of spatial learning79. Analyzing
how the tuning developed over time revealed that such con-
tinuous learning-related disengagement could however explain
only the results observed for the low-, not of the high-memory-
error group. The latter even showed slight increases in directional
tuning over time in the entorhinal cortex (Supplementary
Fig. 8C). One account that would reconcile these findings is that
the memory-dependent effects could reflect a difference in cog-
nitive strategy used, which might develop and get refined in the
course of spatial learning.

Our observations are also in line with previous work on the
emergence of spatial representations in scene-processing and
navigation regions. For example, the RSC and PHG were shown
to rapidly encode a novel environment by integrating information
across different viewpoints and landmarks. Spatial representa-
tions emerging in the RSC were associated with a participant’s
ability to identify multiple scenes as belonging to the same or
different location80, as well as with wayfinding ability by regis-
tering landmark permanence81. Consistent with the present
results, the RSC activity could hence signal whether an environ-
ment has been successfully encoded or not. We observed a
broader tuning in RSC in well-compared to poorly performing
participants, potentially indicating that the RSC processed
information with a broader field of view. This could aid the
integration of different landmarks and viewpoints80,81. Impor-
tantly, the medial parietal lobe, which comprises the RSC,
is known for both its perceptual and mnemonic capacities82,
which might be topologically distributed. Previous work revealed
an anterior–posterior distinction for scene construction and
perception3,30. Our results (Fig. 4b) are consistent with this
observation in two aspects. First, we also observed an
anterior–posterior split on group level in bilateral medial parietal
lobe as a function of memory performance (Fig. 4b). Second, the
participant group with more anterior tuning also performed
better in the spatial memory task. Given the above-mentioned
reports, we speculate that this topology could indicate enhanced
scene construction in participants with good memory perfor-
mance. Again, this would also be consistent with the idea that
these participants have already successfully encoded the envir-
onment and the object locations in it.

Notably, not only the RSC (Fig. 5c), but also the pmEC tuning
(Fig. 5b) depended on the participants behavior, suggesting a
different but related effect in pmEC. In line with this, rodent
reorientation behavior depends on the stability of entorhinal HD-
cell firing relative to the environment52. This alignment is also
tightly coupled with the one of other spatial codes, such as the
hippocampal place field map83, which in turn predicts goal-
oriented navigation behavior84. Since the entorhinal cortex is the
key mediator of hippocampal–cortical communication65, the
present effects could therefore also reflect a related mechanism
orchestrated by the hippocampus, with activity decreasing as
environments become more familiar85. Finally, the effects could
also reflect individual preferences for egocentric versus allocentric
navigation strategies86.

Looking forward, we see a wide range of future applications
and exciting avenues to be explored. Future studies
employing more dynamic model tests, such as inverted
encoding modeling (proof of principle in Supplementary
Fig. 9A–C), could reconstruct the modeled behavioral features
more dynamically28,29,87,88. This could especially be helpful
when combined with high temporal resolution measures, such
as magnetoencephalography (MEG) or intracranial recordings,
in combination with VR tasks89 to monitor trial-by-trial
changes in tuning as a function of behavioral performance. In
addition, the influence of different sensory and behavioral
variables on the present results could be further examined by
removing the landmarks and testing which areas maintain their
tuning, or by comparing the results to the ones of other visual
encoding models.

Using virtual reality, a novel behavioral encoding model, and
7T-fMRI, we examined world-centered directional tuning during
active spatial behavior in humans. We demonstrated such tuning
in visual, retrosplenial, parahippocampal, and entorhinal cortices
as well as the hippocampus. By mapping the tuning width across
the cortex, we revealed a narrow-to-broad organization along the
parahippocampal long-axis. Entorhinal and parahippocampal
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tuning strength as well as retrosplenial tuning width and topology
reflected how well participants performed in a spatial memory
task. We provide evidence that these effects likely depend on the
encoding of the environment and the object locations within it.
Finally, we show that the tuning in visual, retrosplenial, and
parahippocampal cortices as well as the hippocampus reflects the
locomotory state. These results show the efficacy of encoding
models for studying neural population dynamics during natur-
alistic navigation in human fMRI. They demonstrate a direct link
between neural population coding and cognition, and show that
high-level cognitive processes modulate directional tuning in the
service of behavior.

Methods
Participants. We recruited 26 participants for this study (11 females, 19–36 years
old). Four participants were excluded because of excessive head motion, i.e., the
number of instantaneous movements larger than 0.5 mm exceeded the across-
participant average for more than one standard deviation. Another 2 participants
were excluded because they finished fewer than four scanning runs. A total of 20
participants entered the analysis. The study was approved by the local research
ethics committees (ethics committee University Duisburg-Essen, Germany and
CMO region Arnhem–Nijmegen, NL) and participants gave written consent prior
to scanning.

Virtual reality task. Participants performed a self-paced object-location memory
task in virtual reality (Fig. 1a) adapted from Doeller and colleagues22. The circular
virtual arena was created using the UnrealEngine2 Runtime software and was
surrounded by 12 distinct landmarks positioned in steps of 30° and matched in
visual similarity (triangles either tilted up- or downward, with red-, green-, and
blue- colored corners). Participants could freely navigate in this arena via key
presses. The smallest instantaneous rotational movement possible was 10° and
translational movement speed was constant after a 500-ms ramp. In the beginning
of the experiment, six everyday objects had to be collected, which were scattered
across the arena. The location of these objects differed across participants, and the
six objects were randomly drawn from a set of overall twelve objects, leading to
unique location–object associations for each participant. Across different trials and
without the objects being present, participants were prompted to navigate to the
location of a previously cued object. After indicating the remembered location via
key press (drop), the respective object appeared at the correct location to give
feedback, and the participant collected the object again before the next trial began.
After an average of 3 trials (range 2–4), a fixation cross was presented on a gray
background for 4 s. An average of 179 trials were performed (range: 94–253 trials
due to the self-paced nature of the task, Supplementary Fig. 2d) and object loca-
tions were randomized across participants. In order to explain the task and to
familiarize participants with it, they performed a similar task on a desktop com-
puter setup with different objects in a different virtual environment prior to
scanning. We tracked the improvement in memory performance over trials by
assessing the memory error, i.e., the Euclidean distance between true and
remembered location in each trial measured in virtual vertices (arbitrary units).

Behavioral analysis. To ensure that there were no prominent or distinct direc-
tional cues that biased navigation behavior, we ruled out differences in the time
spent facing in different directions. Supplementary Fig. 1 depicts the results of these
analyses for all participants and time points, split into locomotion and stationary
periods, as well as into high- and low-memory-error participant groups. We
accounted for individual differences in absolute time spent in the experiment by
expressing time spent as percent of the total experimental duration. We binned
vHD in steps of 10° and performed a repeated-measure (rm) ANOVA across
directions, which did not reveal any biases in directional sampling (F(35, 665)=
0.77, P= 0.834), also not when testing the high-memory-error group (F(35, 315)=
0.55, P= 0.984) or the low-memory-error group (F(35, 315)= 0.87, P= 0.675)
individually. In addition, we did not observe biases in directional sampling across
the experiment when splitting the data into locomotion
(F(35, 665)= 0.79, P= 0.806) and stationary (F(35, 665)= 0.87, P= 0.681) periods
(Supplementary Fig. 1A).

In addition to the directional sampling in the course of the experiment, we
analyzed the distribution of vHD within each TR. We again binned vHD into 10°
steps and converted it into percent of total viewing time. We then circular-shifted
each of the resulting histograms such that the most sampled direction lined up
across TRs (Φ), revealing that participants spent 52% of the time within each TR
facing into a single direction (Fig. 1b; Supplementary Fig. 1A). The distribution of
vHD within each TR was therefore nonuniform and centered on one predominant
direction. We used a two-tailed permutation-based unpaired t test to compare the
time spent facing toward this predominant direction within each TR across across
groups, which did not reveal a difference (t(18)=−1.26, P= 0.224, d=−0.56, CI
= [−0.68, −0.45], k= 10,000, Supplementary Fig. 1C). Using a paired version of
this test, we did observe a difference between stationary and locomotion periods

(t(19)= 6.12, P= 0.0001, d= 2.74, CI= [2.63, 2.84], k= 10,000). Importantly, this
had a differential effect for different regions of interests (Fig. 6), suggesting that
there was no general positive or negative effect on model performance. During this
task, participants spent around 54% of their time navigating, with shorter time
spent rotating during locomotion compared with stationary periods (two-tailed
permutation-based paired t test: t(19)= 7.95, P= 0.0001, d= 3.55, CI= [3.44,
3.66], k= 10,000). There were no differences in the time spent translating (t(18)=
0.41, P= 0.690, d= 0.18, CI= [0.07, 0.30], k= 10,000) or rotating between
participant groups (during locomotion: t(18)= 0.55, P= 0.625, d= 0.25, CI=
[0.14, 0.35], k= 10,000 and during stationary periods: t(18)= 1.00, P= 0.338, d=
0.45, CI= [0.33, 0.56], k= 10,000).

MRI acquisition. During the object-location memory task in VR, we acquired T2*-
weighted functional images on a 7T Siemens MAGNETOM scanner using a 3D-
EPI pulse sequence, a 32-channel head coil, and the following parameters: TR=
2756 ms, TE= 20 ms, flip angle= 14°, voxel size= 0.9 mm × 0.9 mm, slice thick-
ness= 0.92 mm, slice oversampling= 8.3%, 96 slices with a 210-mm × 210-mm
field of view, phase-encoding acceleration factor= 4, and 3D acceleration factor= 2.
The first five volumes of each run were discarded. Functional images were acquired
across 5 scanning runs of 210 TRs or approximately 10 min each. In addition, we
acquired T1-weighted structural images (MP2RAGE, voxel size: 0.63-mm iso-
tropic) and a B0-field map (gradient echo, voxel size: 1.8 × 1.8 × 2.2 mm) for each
participant.

Preprocessing. The data used here were used in two previous reports32,73. Data
were preprocessed using the automatic analysis library (https://github.com/
automaticanalysis/automaticanalysis), utilizing functions of several analysis
packages. For each participant, functional images were realigned and unwarped
using SPM8, followed by independent component analysis (ICA) denoising using
FIX artifact removal implemented in FSL 5.0.4. To improve the signal-to-noise
ratio, and with it the ICA detection of noise components, data were smoothed with
a Gaussian full-width-at-half-maximum kernel of 2.5 mm. Images were then
nonlinearly normalized to a group-average EPI template using the Advanced
Neuroimaging Toolbox (http://stnava.github.io/ANTs) and high-pass filtered with
a 128-s cutoff using FSL. Voxel-wise variance explained by the six realignment
parameters (x,y,z, pitch, roll, yaw) as well as by spikes (sudden deviations in signal
intensity of more than two temporal standard deviations) was removed via nui-
sance regression. Out-of-brain voxels were excluded.

Regions of interests (ROIs). In an ROI analysis, we tested human scene-
processing and navigation regions (Fig. 5a) that were previously proposed to
support cognitive mapping1. The hippocampal (HPC), anterolateral entorhinal
(alEC), and posteromedial entorhinal (pmEC) ROIs were defined manually using
ItK-SNAP (www.itksnap.org) based on the high-resolution group-average EPI
template. The entorhinal masks were based on previous reports32, in which the
entorhinal mask was divided into anterolateral (alEC) and posteromedial entorh-
inal cortex (pmEC). The ROIs for the parahippocampal gyrus (PHG) as well as the
retrosplenial cortex (RSC) were based on the reverse-inference meta-analysis for
“Retrosplenial cortex” and “Parahippocampal cortex” using Neurosynth (https://
neurosynth.org). We took the top 5% highest-probability voxels from each
respective Neurosynth map and removed isolated voxels from the resulting binary
masks. This procedure resulted in coherent bilateral clusters in the medial parietal
cortex and parahippocampal gyrus, respectively. The early visual cortex (EVC) ROI
was created by thresholding the corresponding probability map “Visual_hOc1” of
the SPM anatomy toolbox at 50% and co-registering it nonlinearly to our group-
average template space. To do so, we used SPM to first segment the group template
and then to normalize the ROI into our template space using the resulting tissue
maps and nearest-neighbor interpolation. The resulting ROI masks were located at
the following average MNI coordinates [X, Y, Z] and were of the following size.
EVC (gray matter only): left hemisphere [−4, −88, 0], right hemisphere [14, −86,
0], n voxels: 2893 (median across participants), RSC: [−14, −56, 12] and [18, −54,
14], n voxels: 1926, PHG: [−26, −38, −12] and [26, −34, −16], n voxels: 2392,
HPC: [−24, −24, −14] and [28, −22, −14], n voxels: 9781, alEC: [−20, 0, −34]
and [22, 0, −34], n voxels: 1693, pmEC: [−20, −10, −28] and [20, −8, −28], and n
voxels: 1692.

Analysis overview. Our analysis estimated the directional tuning of a voxel in
several steps. First, we built a vHD-encoding model by incorporating the partici-
pant’s navigation behavior into basis sets of circular–Gaussian von-Mises dis-
tributions, which we call vHD kernels. Each individual direction was modeled with
a different vHD kernel, each representing a smooth directional tuning without
discretizing the data into bins. Second, we estimated voxel-wise weights for each of
these kernels, together representing a voxel’s tuning curve. We refer to this step as
model training. Third, we used these weights to predict activity in held-out data
that constituted the model test. This way, we obtained a measure of model per-
formance for the given vHD-basis set. Finally, by iteratively varying the full-width-
at-half-maximum of the vHD kernels in the basis set and repeating the above-
mentioned steps, we not only tested one vHD-basis set, but multiple ones. This
approach allowed us to also estimate the tuning width of each voxel (the kernel
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width that maximized prediction accuracy). All processing steps mentioned com-
prised several individual substeps, which are described in detail below.

Building the virtual head direction (vHD) encoding model. We modeled vHD
using a basis set of circular–Gaussian von-Mises distributions as implemented in
the Circular Statistics Toolbox for Matlab (https://github.com/circstat/circstat-
matlab). Each kernel in this basis set covered the full 360° with an angular reso-
lution of 1°. Across different iterations of our analysis, we varied the full-width-at-
half-maximum of these kernels, each time testing how well the resulting model
weights allowed to predict activity in held-out data. To balance directional sensi-
tivity across iterations, the spacing between kernels always matched the kernel
width (i.e., the broader each individual kernel, the fewer kernels were used). We
tested the following kernel widths, all representing divisibles of 360°: 10°, 15°, 20°,
24°, 30°, 36°, 45°, and 60°. Note that our region-of-interest analysis builds on
weight shuffling to rule out that the number of kernels influenced model accura-
cies. For each kernel and participant, we computed the predicted kernel activities
based on the vHD over time. To give an example, for a given vHD of 30°, a kernel
centered on 30° was assigned high activity, a kernel centered on 40° slightly lower
activity, and a kernel centered on 200° was assigned very low activity. By doing this
for all time points and kernels, we built regressors representing the predicted
activity, given a directional tuning and the specific vHD over time. Since vHD was
sampled at higher temporal resolution than the imaging data, we then computed
the within-TR activity of each kernel as the median activity across all time points
within the TR. Finally, the resulting regressors were scaled from 0 to 1 and con-
volved with the hemodynamic response function (HRF) as implemented in SPM12
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) using default settings (kernel
length: 32 s, time to peak: 6 s). Each regressor represented a predicted activity
profile over time as modeled by the respective kernel. To follow the example above,
the activity of a voxel encoding the direction 30° should be more similar to the
activity predicted by the kernel centered on 30°, than to the one predicted by the
kernel centered on 200°.

Model training. We estimated voxel-wise weights for all vHD kernels in the
corresponding basis set using l2-regularized (ridge) regression. To improve the
directionality of this model, we added a covariate modeling movement independent
of direction whose weight was discarded. Because vHD is not independent at two
successive time points, the resulting design was multicollinear. Ridge regression
avoids potential biases in the resulting weights by penalizing high coefficients,
which could otherwise affect model accuracies. Since the regularization parameter
(λ) cannot be known a priori, our model training builds on leave-one-out cross-
validation to find the optimal λ and with it the optimal model weights. As training
set, we used the first two and the last two scanning runs, leaving the third run as the
final and independent test set. A scan run typically took around 10 min. Since run 3
was acquired in the middle of the experiment, our results are invariant to the
duration of the scanning session. If a participant did not complete all five runs, we
always used the third valid run as a test set and all others as the training set. Within
the training set, we used all runs, except one to fit voxel-wise weights for ten
different regularization parameters log-spaced between 1 and 10,000,000, each time
testing how well these weights predicted the activity in the left-out validation run.
To assess prediction performance, we used Pearson correlation between the real
time course of a voxel in the validation set and the time course predicted by vHD
weighted by the estimated model weights. We cross-validated this prediction such
that each run within the training set served as validation set once. The regular-
ization parameter that led to the best prediction performance on average was then
determined for each voxel. If no clear best-performing λ could be determined (i.e.,
Pearson’s R negatively approximated zero with increasing regularization), the
respective voxel was excluded. Overall, this excluded ~15.5% of voxels (median
across participants and model iterations), however only from determining the final
λ, not from the full training-test procedure in which the final λ was applied to all
voxels. We then averaged λ across voxels within each participant and used it to
estimate the final model weights using the full training set. These model weights
serve as the basis for all further model tests described below.

Model test. All model tests were performed on the held-out and independent test
set (one scan run of around 10 min in the middle of the experiment). First, we
predicted voxel-wise activity (similar to the model training) in a univariate
forward-model approach. For each voxel, we generated a predicted time course by
weighting the design matrix of the test run after HRF convolution by the model
weights obtained for this voxel during model training. The resulting predicted time
course was then compared with the observed time course using Pearson correla-
tion. Note that all steps described below were repeated for multiple vHD-basis sets
differing in the number and width of the corresponding vHD kernels.

We mapped directional tuning across the cortex using the statistical
nonparametric mapping (SnPM) toolbox (http://warwick.ac.uk/snpm). We
performed a permutation-based one-sample t test of model performance (Pearson
correlations) against zero (k= 10,000 shuffles, input image, and variance
smoothing: 7.2 mm). To reduce computational costs, the preprocessed data were
downsampled from 0.9 mm to 1.8 mm isotropic for this step. This was repeated for
each vHD-basis set. We then used the SnPM toolbox to threshold the resulting

pseudo-T maps at a FDR-corrected P < 0.05. For each voxel, we then selected the
across-participant median tuning width of the vHD-basis set that maximized the
pseudo-T. Figure 3 depicts these results for all participants. For visualization, we
plot the results overlaid on the group-average T1 template at T1 resolution
obtained via nearest-neighbor interpolation. We repeated this analysis split into
high-memory-error and low-memory error participants (i.e., median split of
memory error, Fig. 4). Note that each participant group comprised n= 10
participants, resulting in 1024 possible shuffles and a minimal possible P=
0.000977. Because this precludes FDR correction, we use uncorrected P= 0.001 to
visualize these subgroup effects.

In addition to the voxel-wise group analysis, we also conducted a region-of-
interest analysis for areas involved in scene processing and navigation, such as the
early visual cortex, retrosplenial cortex, parahippocampal cortex, the posteromedial
entorhinal cortex, and the hippocampus (Fig. 5a). We again performed model
training and test, this time focusing specifically on voxels in our ROIs. This greatly
reduced the number of voxels and hence computational cost. To avoid potential
influences of the number of kernels on these ROI results, we instead performed
voxel-wise bootstrapping to convert the Pearson correlations into Z scores. The
necessary null distribution of each voxel was obtained by shuffling the training
weights 500 times, each time computing Pearson’s R between the predicted and the
observed time course of the test set. All shuffles were unique. Since not all voxels in
our (probabilistic) ROIs were expected to carry vHD information and to increase
robustness of our effects, we performed voxel selection within each ROI, limiting
the model test to voxels with high predictability in the model training (top 25%
highest prediction accuracy in the training). If a voxel was not directionally tuned
in the training, we did not expect it to be directionally tuned in the test. Finally, the
Z scores of the remaining voxels were averaged within each ROI. Again, we iterated
this analysis for all basis sets (Fig. 5b), yielding the tuning strength (model
performance) and the tuning width (the width of the vHD kernels in the basis set)
of each ROI in the test set. While other model selection procedures are possible,
ours enabled to estimate the tuning properties of a given region in a given run even
if the tuning underwent changes across runs. Statistical inference was performed
for each ROI and participant group (high- and low-memory-error participants)
using permutation-based one-sample t tests on group level (all possible
1024 shuffles, n= 2 × 10) as implemented in the mult_comp_perm_t1 function
distributed by Mathworks (https://se.mathworks.com/matlabcentral/fileexchange).

To test for differences across participant groups, we used permutation-based
unpaired two-sample two-tailed t tests (k= 10,000) as implemented in statcond
distributed via the EEGLab Matlab toolbox (https://github.com/openroc/eeglab/
blob/master/tags/EEGLAB7_0_0_0beta). For each permutation test, we report
Cohen’s d, including the bootstrapped confidence intervals as effect size. To
examine how directional tuning developed over time, we further performed leave-
one-run-out cross-validation across all scanning runs (Supplementary Fig. 8). We
performed the ROI-level encoding modeling analysis (Fig. 5) for all runs, each time
estimating the model weights on all runs but the one used for testing.

In addition to the forward-model test, we also inverted the encoding model to
reconstruct, or decode, vHD multivarietly from the population of voxels within
each ROI from our main test run 3 (Supplementary Fig. 9). We multiplied the
Moore–Penrose pseudoinverse of all voxel-wise weights in an ROI (m voxels × k
weights)−1 with the multivoxel pattern at each image acquisition (m voxels) to
obtain the estimated vHD-kernel activities at each for volume (k weights). By doing
this for all volumes, we reconstructed the vHD-kernel activities for the entire test
set of each participant. To assess reconstruction performance, we used 2D
correlation between the reconstructed kernel activities (k weights × n TRs) and the
design matrix of the test run (also k weights × n TRs). Since again the number of
kernels and hence reconstructed weights differed across iterations and basis sets, we
used weight shuffling to convert the resulting correlations into Z scores. As in the
forward model, we shuffled the model weights (500 random unique shuffles), each
time going through the full vHD-reconstruction procedure. As expected, the results
obtained by inverting the encoding model (Supplementary Fig. 9) resemble the
ones obtained by the voxel-wise forward-model procedure (Fig. 5).

Temporal signal-to-noise ratio (tSNR) and model regularization do not
explain the results. The estimated optimal regularization parameter λ (Supple-
mentary Fig. 3A) depended on the basis set (Supplementary Fig. 3B) (rmANOVA
results: F(7, 126)= 11.80, P= 1.7 × 10−11) as expected, but not on participant
group (F(1, 18)= 0.0037, P= 0.952) and there was no interaction between the two
(F(7,126)= 0.37, P= 0.920). There were differences in tSNR across ROIs (rmA-
NOVA results: F(5, 90)= 258.29, P= 9.1 × 10−52), but not across participant
groups (F(1, 18)= 0.082, P= 0.777) and there was no interaction between the two
(F(5, 90)= 1.34, P= 0.255) (Supplementary Fig. 3C). Neither model performance
(Spearman correlation: rho= 0.025, P= 0.788), nor tuning width (rho=−0.050,
P= 0.587) correlated with tSNR (Supplementary Fig. 3D).

The model uncovers directional tuning robustly in simulated time courses. To
test the robustness of our model and to explore its limitations, we repeated the full
model training and testing procedure for simulated voxel time courses with known
tuning properties. As described in detail below, these simulations demonstrated
that our model uncovers the correct kernel size robustly across various noise levels
and tuning profiles (unimodal, bimodal, and random directional tuning).
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First, we simulated voxel time courses with known tuning properties similar to
how we built the design matrix for the actual modeling pipeline. To do so, we built
the vHD kernels reflecting the desired tuning profile and then computed the
corresponding time course based on the actually observed vHD of a randomly
chosen sample participant. This has several key advantages over simulating
completely random time courses, because it captures the natural dependencies and
correlations between different directions and how these are sampled over time.
Note, however, that the choice of participant does not change these results
presented here. For each voxel, we simulated all five scanning runs.

We built simulated time courses (Supplementary Fig. 4A) for the assumed
encoding of one random direction (unimodal model), two random directions
(bimodal model), and randomly many random directions (random model) for each
of the eight tuning width levels tested. The random numbers were sampled from a
uniform distribution. Next, we added various degrees of Gaussian noise to these
time courses ranging between one and ten standard deviations of the signal time
course. For each of these noise levels and tuning widths, we simulated a total of
2500 voxels, approximating a typical ROI size in our data (see “Methods”). This
resulted in 2500 unimodally tuned voxels for each of the 10 noise levels and each of
the 8 different tuning widths for five simulated scanning runs; another 2500
bimodally tuned voxels and another 2500 randomly tuned voxels with equal noise,
width levels, and runs.

Next, we ran the full encoding model pipeline as described in the paper on these
simulated time courses and assessed model performance (i.e., the Pearson
correlation between the observed and predicted (simulated) time course). We
predicted to see that the kernel width that served as the basis for the simulated time
course would also lead to the best model performance when tested. To test this, we
averaged the model performance across voxels like in the actual fMRI analysis.

We observed that, unsurprisingly, increasing noise had a detrimental effect on
model performance (Supplementary Fig. 4B). However, because our framework
solely relies on the comparison between different kernel sizes within each noise
level, we normalized the effect of noise on model performance for visualization.
Interestingly, kernels smaller than the true kernel tended to lead to better model
performance than kernels larger than the true kernel (Supplementary Fig. 4C). This
likely arises from the fact that larger kernels can be approximated by smaller, but
not easily by even larger ones. With increasing noise, the benefit of the smaller
kernels vanished, possibly related to stronger overfitting to the noise. Note that in
our imaging data, there was also no correlation between tSNR and model
performance (Supplementary Fig. 3D).

Most importantly, and despite the partial benefits of smaller over larger kernels,
the true kernel won over both smaller and larger kernels in all cases, independent
of noise level or assumed tuning profile. As predicted, the true kernel width
therefore always resulted in the best model prediction, at least when averaged
across voxels (Supplementary Fig. 4C). In our main analyses, this averaging is done
across voxels of an ROI, or by smoothing for the whole-brain group analyses (not
the same as averaging but having a similar effect). In sum, the above-described
simulations demonstrate that our behavioral encoding model framework uncovers
the true underlying fMRI tuning robustly even in the presence of noise and
independent of the actual tuning profile (unimodal, bimodal, or random).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Fig. 1b, 3a, b, 4a, b, 6b and Supplementary Figs. 1a–c, 2a–d,
3a, c, d, 4a–c, 5a, b, 6a–h, 7c–e, 8a–c and 9c are provided as a Source Data file. The virtual
navigation data of a sample participant are provided together with analysis code (see
“Code availability”). Other data are available from the authors upon reasonable
request. Source data are provided with this paper.

Code availability
We make available online our model simulation code in MATLAB that includes creating,
fitting, and testing the encoding model on simulated time courses (https://osf.io/j5q9u/).
This code can be easily adapted for new analyses and makes use of the virtual navigation
data of a sample participant. Source data are provided with this paper.
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