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Abstract

Autism spectrum disorders (ASDs) are increasingly being diagnosed. Hypotheses link ASD to genetic, epigenetic, or environ-
mental factors. The role of oxidative stress and the imbalance between excitatory and inhibitory neurotransmission in the
pathogenesis of ASD has been suggested. Rats in which ASD symptoms are induced by valproate (VPA) or thalidomide
(THAL) application in utero are useful models in ASD studies. Our study investigated whether rats in ASD models show
changes in metabolite levels in the brain consistent with the hypothetical pathomechanisms of ASD. Female rats were fed one
dose of 800 mg/kg VPA or 500 mg/kg THAL orally on the 11th day of gestation, and 1-month offspring were used for the
experiments. Metabolic profiles from proton nuclear magnetic resonance spectroscopy of hydrophilic and hydrophobic extracts
of rat hippocampi were subjected to OPLS-DA statistical analysis. Large differences between both models in the content of
several metabolites in the rat hippocampus were noticed. The following metabolic pathways were identified as being disturbed in
both ASD models: steroid hormone biosynthesis; fatty acid biosynthesis; the synthesis and degradation of ketone bodies;
glycerophospholipid metabolism; cholesterol metabolism; purine metabolism; arginine and proline metabolism; valine, leucine,
and isoleucine biosynthesis and degradation. These results indicate disorders of energy metabolism, altered structure of cell
membranes, changes in neurotransmission, and the induction of oxidative stress in the hippocampus. Our data, consistent with
hypotheses of ASD pathomechanisms, may be useful in future ASD studies, especially for the interpretation of the results of
metabolomics analysis of body fluids in rat ASD models.
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Introduction their toxicity, could affect not only young subjects but also fetuses

through toxic influences on pregnant mothers [7-9]. Drugs [1], as

Autism spectrum disorder (ASD) is an increasingly emerging dis-
ease that appears worldwide, and the prevalence of ASD ranges
from 25 to 110 cases per 10,000 children, depending on the coun-
try [1]. It seems that ASD occurs 2-3 times more often in boys
than that in girls [2]. The etiology of autism disease is complex and
not yet fully explained. There are hypotheses linking symptoms of
ASD with genetic [3-5], epigenetic, or environmental factors [1].
Epigenetic factors could modify the expression of mRNA or
miRNA, which could affect the conformation and content of pro-
teins involved in body functions [6]. Environmental factors, due to
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well as disturbances in the levels of metal ions (i.e., zinc) [10, 11],
in hormonal systems [12] and in brain amino acid—mediated neu-
rotransmission [ 13] could also be implicated in ASD etiology and/
or pathogenesis. According to this interpretation, behavioral disor-
ders observed in ASD may result from changes at the level of gene
expression and in the level and activity of specific proteins, which
may consequently be reflected in changes in the level of certain
metabolites in the brain.

There are several analytical methods that allow us to study
the abovementioned factors. One of them is nuclear magnetic
resonance (NMR). Magnetic resonance spectroscopy (MRS)
can be applied in vivo to examine the content of various me-
tabolites in the brains of autistic children, while NMR can be
used ex vivo to study biofluids such as serum, urine, or saliva
[14, 15]. MRS is a low-resolution study and does not allow the
recognition of all amino acids and lipids. One of the most
complex methods for the study of small molecules is metabo-
lomics based on NMR spectroscopy. A critical advantage of
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NMR spectroscopy is its ability to detect many compounds
present in the examined sample in a single experiment.
Additionally, this study method makes it possible to perform
quantitative analysis with the use of a single reference com-
pound. NMR spectroscopy is most useful if no single bio-
marker could be identified for differential diagnosis. It could
also be applied to study concentrations of neuroactive amino
acids, such as glutamate, GABA, and glutamine, as well as
taurine, which, according to the glutamatergic hypothesis of
ASD, could be candidates for biomarkers [13, 16]. Previous
pioneering studies of autism and schizophrenia using NMR
spectroscopy—based metabolomics led to the disclosure of
disturbances in glutamate and taurine concentrations in the
urine of children with ASD [16—18]. However, detailed tissue
analysis, in particular of ex vivo brain extracts using NMR
spectroscopy in practice, is limited to studies using animal
models of various diseases.

There are numerous animal models of autism used in labora-
tory studies, including genetically modified animals [19] or those
based on the use of specific substances, e.g., teratogenic drugs
valproic acid (VPA) or thalidomide (THAL). Drugs in these
animal models of ASD are administered to mothers during the
critical period of gestation [20, 21]. Similar neurodevelopmental
effects in offspring can be achieved by causing thyroid hormone
[22] or zinc [23] deficiency in pregnant mothers, as well as by
inducing specific inflammation [24, 25]. In all these models,
offspring exhibit behavior similar to ASD, validated using ani-
mal behavioral tests [26-29]. The advantage of these models
compared with transgenic animals is the similarity of behavioral
disorders induced in this way to the idiopathic symptoms of
autism [20, 21]. It seems that these animal models of autism
could be useful for the study of the content of biochemical com-
pounds in the brain to test the compliance of observed changes
with hypotheses regarding the pathogenesis of ASD. Such stud-
ies are impossible to carry out on humans.

In our previous study [30], in which NMR spectroscopy
was used in addition to HPLC, we showed changes in gluta-
mate, glutamine, and GABA levels in the rat hippocampus in
VPA- and THAL-induced models of autism. However, the
results obtained differed depending on the analytical method
used, the experimental group, and the animal sex. This made it
difficult to draw useful conclusions for the determination of
the role of changes in excitatory and inhibitory neurotransmis-
sion in the pathogenesis of autistic-like behaviors in the ani-
mals studied. Therefore, based on this previous experience,
we decided to focus our further study on only NMR spectros-
copy and to try to identify metabolites other than amino acid
neurotransmitters, both hydrophilic and hydrophobic, that can
be determined using this method, the content of which in the
hippocampus is changed in rat ASD models.

The aim of the current study was to better characterize
metabolic changes in the rat brain in chemically induced
ASD models, which would be useful for the validation of
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these models for further studies on the pathogenesis of ASD.
We intended to check if by using these models we could detect
changes in substance concentrations that could indicate the
contribution of postulated mechanisms associated with the
pathogenesis of autism, such as oxidative stress or an imbal-
ance between excitatory and inhibitory neurotransmission.
Another goal was to attempt to identify metabolites whose
levels undergo similar changes in two selected experimental
models. In the future, this may help in the identification of
potential ASD biomarkers. In this study, we used two
established rat ASD models prenatally induced by the appli-
cation of VPA and THAL. NMR spectrometry was used to
determine the ex vivo content of a number of detectable hy-
drophilic and hydrophobic metabolites in hippocampal ex-
tracts of juvenile 1-month-old rats.

Methods
Animal Models of Autism

Experiments were performed using Wistar rats of both sexes.
The animals were bred in the Animal Colony of the
Mossakowski Medical Research Centre, Polish Academy of
Sciences, in Warsaw. The animals were provided water and
fed ad libitum and kept on a 12-h dark/light cycle at room
temperature with a constant humidity of approximately 60%.
All procedures involving animals were in accordance with the
EC Directive for the use of experimental animals 2010/63/EU
from 2010, with further modifications, and the national law.

They were approved by the Fourth Local Ethical Committee
in Warsaw (resolution no. 43/2015 of May 22, 2015).

In this project, two chemical teratogenic models of autism
were used. The procedure was performed exactly as previous-
ly described [30]. Female rats on the 11th day of gestation
were fed one dose of 800 mg/kg b.w. VPA or 500 mg/kg
b.w. THAL. VPA was mixed with 1 ml of saline, THAL
was mixed with vegetable oil, and both were administered
orally via an intragastric tube. Control animals were fed 1 ml
of a mixture of oil and saline, 1:1 v/v [20, 21]. The 31 (+2)-
day-old Wistar rats of both sexes (F: female and M: male)
were used for NMR experiments. The use and distribution in
groups of all animals are shown in Table 1. The rats of each
group came from two litters. Each group had a different num-
ber of female and male rats. There were also animals used in
other studies not described in this manuscript. The total num-
ber of pups in the two litter of each group was as follows: in
the control group, 27 (16F:11M); in the VPA group, 22
(11F:11M); and in THAL group, 19 (7F:12M). Finally, in
these studies, there were 11 (6F + 5M) control animals,
11 (5F + 6M) VPA-treated animals, and 13 (4F+9M)
THAL-treated animals.
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Table 1 The use and distribution in groups of all animals from the two
litters used in this study

Control VPA THAL
Y M F Y M F Y M F
Ilitter  Total animals 13 4 9 13 6 7 12 6 6
This study 4 3 1 7 3 4 6 3 3
Other study 9 1 8 6 3 3 6 33
II litter ~ Total animals 14 7 7 9 5 4 7 6 1
This study 7 5 2 4 3 1 7 6 1
Other study 7 2 5 5 2 3 0 0 O

VPA valproate treated group, THAL thalidomide treated group, M male, F
female animals

Sample Preparation

After decapitation, one hippocampus was removed and homog-
enized for 2 min by hand in 500 pl of ice-cold saline using a
plastic/Teflon homogenizer. Then, 400-p aliquots of fresh hip-
pocampal homogenates were extracted for NMR studies using
the Bligh and Dyer method [31], with slight modification, exactly
according to the procedure described previously [30]. Briefly, the
homogenates were vortexed for 1 min with 1875 pl of a mixture
0f 99% methanol, 98% chloroform, and 36% HCI, 40:20:1 (v/v).
As the next step, 625 ul chloroform was added, and the mixture
was again vortexed for 1 min. After that, 625 pl of water was
added and vortexed for 1 min. Then, the mixture was centrifuged
at 2000xg for 15 min using a swing-out rotor to obtain three
phases: upper, water/methanol containing substances diluted in
water; lower, containing lipids; and middle, containing proteins.
Upper and lower phases were extracted for the NMR examina-
tion. Middle phases were collected to assess total protein content
in samples (using the Lowry test) to normalize the concentration
of compounds obtained in the hippocampus. The water/methanol
phase of the sample was dried using nitrogen. Dry residues were
then diluted in 700 pl of D,O and immediately tested.
Additionally, the lipid phase was dried using nitrogen, dissolved
in 700 pul of CDCl;, and immediately tested.

Spectra Acquisition

The pH of the samples was adjusted to 7.5 +0.2 using HCI. 3-
Trimethylsilyl propionic acid (TSP) at a final concentration of
1 mM was used as an internal reference for the normalization of
all spectra and quantitative statistical analysis. All NMR spectra
of hydrophilic compounds were acquired at 25 °C using an
Avance III HD 500 MHz (Bruker, Germany) spectrometer.
Excitation sculpting [32] was used to suppress the water signal
while minimizing phase distortion of the spectrum and utilized a
2-ms square inversion pulse in a double pulse field gradient spin
echo. Line broadening of 0.5 and baseline and phase corrections

were applied to each spectrum using software implemented in
the spectrometer. Hydrophobic compounds were measured using
a single pulse sequence at 20 °C and 128 transients with a 5-s
repetition time.

All spectra were first both baseline and phase corrected and
analyzed. There were 98 signals of hydrophilic and 45 hydro-
phobic functional groups of compounds. Signal assignments
were performed using our own database of spectra of refer-
ence compounds and literature data, considering correction for
the modified extraction method [33]. For the confirmation of
signal assignment, other NMR experiments were performed
as follows: 1H-1H COSY, 31P, 1H-31P HSQC. For further
statistical analyses, we selected the 55 hydrophilic and 24
hydrophobic most isolated NMR signals that represent all
assigned and unassigned compounds, and their magnitudes
were measured and normalized to the TSP or CDCl; rest sig-
nal prior to statistical analyses.

Statistical Analysis

Univariate statistical analyses, one-way ANOVA, and two-
way ANOVA tests followed by Dunn’s corrections were per-
formed using the SigmaPlot 12.5 software package (Systat
Software, Inc.). Two-way ANOVA was carried out for group
and sex factors. A p value lower than 0.05 was considered
significant. Statistical multivariate analyses (MV As) of prin-
cipal component analysis (PCA) and orthogonal partial least
squares discriminant analysis (OPLS-DA) were described in
detail in our previous publication [30]. In the analysis, the X-
matrix (independent variables) represents all data obtained
from NMR spectral analysis, and the Y-matrix (dependent
variable) represents all groups [34]. Models were validated
using an analysis of variance of cross-validation estimation
(CV-ANOVA). The variable importance in the projection
(VIP) value of each variable in the model was calculated.
MVA was performed using the SIMCA software package,
ver. 15, Sartorius Stedim Data Analytics AB, Sweden [35].

Results

The content of metabolites in the samples was expressed as
the magnitude of their NMR signals, which is known to cor-
respond to the concentration of the compound, normalized to
the protein concentration in the sample. Fifty-five hydrophilic
NMR signals representing various compounds were statisti-
cally analyzed, of which ten signals were not assigned to the
compounds. In turn, 24 hydrophobic NMR signals
representing various compounds or compound complexes
were statistically analyzed, of which three signals were not
assigned to the compounds. PCA was used to identify outliers.
Two outliers were identified: one sample in the VPA group
and one sample in the THAL group, and their data were
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removed from further analyses. Finally, in statistical analyses,
the number of samples in each group was as follows: control,
11; VPA, 10; and THAL, 12. Because it is difficult to identify
a single biomarker that, with high sensitivity and specificity,
distinguishes a patient from the healthy population, the entire
dataset of compounds was subjected to multivariate OPLS-
DA analysis. When added to the analysis of the group param-
eter (Y-matrix), we did not observe any influence of the sex
parameter on the metabolic profile MVA. The result of the
MVA was the same, regardless of whether we considered sex
and the group or just the group.

Hydrophilic Compounds

Considering hydrophilic substances, statistically significant
differences between the VPA-treated and control groups
(Table 2) were observed for hypoxanthine, 3-OH-butyrate,
and glutathione. The concentrations of 3-OH-butyrate and
glutathione decreased in the VPA group, while the concentra-
tion of hypoxanthine increased. Statistically significant differ-
ences in the concentrations of hydrophilic compounds be-
tween the control and THAL groups (Table 1) were observed
for 8-hydroxyadenine, hypoxanthine, GMP, guanine, and
xanthine complex signals; thymine, allantoin, myo-inositol,
taurine, taurine, and phosphoethanolamine complex signals;
glycerophosphorylcholine, phosphorylcholine, choline, creat-
inine, L-cysteic acid, creatine, aspartate, L-glutamine, L-glu-
tamate, acetate, NAA, GABA, L-alanine, lactate, L-threonine,
and L-valine; overlapping signals from leucine and isoleucine;
and overlapping signals from 3-OH-valerate and
methylmalonate, and unassigned signals Nos. 2 and 4. All
signal magnitudes except guanine, xanthine, and overlapping
signals from 3-OH-valerate and methylmalonate were higher
in the THAL group than those in the control group.

MVA of the hydrophilic compounds detected in the hippo-
campal homogenates collected from the VPA-treated group
allowed us to build a valid model (p =0.036) (Fig. 1a). The
model consisted of two components: one predictive and one
orthogonal to the data. R? for this model was 0.733, and Q2
was 0.455. The model fits the data well and was good for
prediction. Samples were classified correctly in 95.2% of their
groups (p < 0.001): 90.91% in the control group (10 out of 11)
and 100% in the VPA group. MVA indicated significant
group differentiation (VIP > 1) of the following compounds:
3-hydroxybutyrate, 2-oxoisovalerate, lactate, glutathione, cre-
atinine, glycine, glycolic acid, GMP, hypoxanthine, IMP, 8-
hydroxyadenine, and unassigned compound signals Nos. 1, 3,
9, and 10 (Table 2).

MVA of the hydrophilic compounds for the THAL group
also allowed us to build a valid model (p = 0.007). The model
consisted of two components: one predictive and one orthog-
onal to the data (Fig. 1b). R? for this model was 0.721, and Q2
was 0.527. Samples were classified correctly to their groups in
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87% (p <0.001): 72.7% (8 out of 11) in the control group and
100% in the THAL group. The following substances were
found: L-valine, leucine/isoleucine, GABA, NAA, acetate,
lactate, 3-hydroxyisovalerate and methylmalonate, NAAG,
aspartate, choline, creatine, L-cysteic acid, creatinine, taurine,
myo-inositol, allantoin, hypoxanthine, taurine/
phosphoethanolamine, scyllo-inositol, phosphocholine/
glycerophosphocholine, 8-hydroxyadenine,
phosphorylcholine, guanine and xanthine overlapped signal,
and unassigned compound signals Nos. 1 and 9 (Table 2).

Hydrophobic Compounds

The analysis of the content of hydrophobic substances showed
statistically significant differences between the VPA group
and the control group (Table 3) in the common signal of the
saturated/monounsaturated/polyunsaturated fatty acids (FAs/
MUFAs/PUFAs) complex, estriol, and 24-
hydroxycholesterol. The concentrations of all these sub-
stances decreased in the VPA group compared with those in
the control group.

Statistically significant differences between the control and
the THAL group (Table 3) were observed for estriol, the ole-
finic group in MUFAs, the FAs/MUFAs/PUFAs complex sig-
nal, cholestenol, free cholesterol and 25-hydroxycholesterol,
free cholesterol and cholesterol esters, and the glyceryl group
in 1-MG and 1,2-DG. All compound concentrations increased
in the THAL group compared with those in the control group
except for the FAs/MUFAs/PUFAs complex signal and estri-
ol, whose concentrations decreased.

MVA of the lipid data for the VPA group allowed us to
build a valid model (p =0.04). The model consisted of two
components: one predictive and one orthogonal to the data
(Fig. 2a). R? for this model was 0.833, and Q* was 0.546.
The model fits the data well and was good for prediction.
Samples were classified correctly (p < 0.001) in 100% of their
groups. MVA indicated significant group differentiation
(VIP > 1) of the following substances: estriol, testosterone,
progesterone, saturated FAs/MUFAs/PUFAs complex signal,
palmitic acid in LPtdC and FAs, 24-hydroxycholesterol, and
unassigned compound signals Nos. 1-3. Among substances
with altered concentrations in the VPA-treated group, only
testosterone concentration was higher, while concentrations
of all other compounds were lower compared with those in
the control group (Table 3).

MVA of the lipid data for the THAL group also allowed us
to build a valid model (p = 0.04). The model consisted of three
components: one predictive and two orthogonal to the data
(Fig. 2b). R? for this model was 0.778, and Q* was 0.518.
Samples were classified correctly (p <0.001) in 100% of their
groups. MVA analysis indicated significant group differentia-
tion (VIP > 1) signals from estriol, testosterone, progesterone,
MUFAs, 1-MG, palmitic acid in LPtdC and FAs/MUFAs/
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Fig. 1 The score plot of the two-component OPLS-DA model for hydro-
philic compounds of NMR data for VPA vs control (a) and THAL vs
control group (b); to[1] represents within-class variation in the first or-
thogonal component, whereas t[1] represents between-class variation in
the first predictive component. Ellipse represents Hotelling’s T2 with
95% confidence in score plots

PUFAs complex signal, free cholesterol/cholesterol ester com-
plex signal, free cholesterol/25-hydroxycholesterol complex
signal, and unassigned signal No. 2 (Table 2). Among sub-
stances with changed concentrations in the THAL-treated
group, only testosterone, estriol, and olefinic acid in MUFAs
and FAs/MUFAs/PUFAs concentrations were decreased,
while concentrations of all other compounds were increased
compared with those in the control group (Table 3).

Discussion

In our studies, instead of genetic models, only pharmacolog-
ical models of ASD on rats were used. This is due to our
priority interest in the role of environmental factors, especially
neurotoxic ones, in the etiopathogenesis of autism. Both VPA
and THAL are used in therapy, so it is important to better
understand their adverse effects on the fetus in the early stages
of pregnancy, which may result in ASD in the offspring. In
addition, we expected that a comparison of metabolomic
changes in both pharmacological models could help clarify
whether both models can be used alternatively, e.g., for testing
new therapies. In this work, research focused on the hippo-
campus, one of the brain regions whose developmental

@ Springer

disorders are particularly strongly associated with the patho-
genesis of behavioral disorders in ASD [36]. This is a contin-
uation and extension of the scope of our previous studies [30],
in which only changes in the concentration of neuroactive
amino acids in the hippocampus in rat ASD models were
analyzed.

Our discussion of the results obtained in this study mainly
focuses on the role of the substances identified in the NMR
spectra whose content in rat hippocampus homogenates from
experimental groups proved to be significantly (VIP > 1) dif-
ferent from that in the control group in the MVA and whose
changes can be related to hypothetical mechanisms implicated
in the pathogenesis of ASD. When necessary, we also discuss
the results for some other substances.

Hydrophobic and Hydrophilic Compounds in Rat ASD
Models and Their Potential Role in
Excitation/Inhibition Imbalance in the Hippocampus

In both experimental groups, MVA showed a statistically sig-
nificant decrease in the levels of FAss'MUFAs/PUFAs. Fatty
acids (FAs), carboxylic acids with aliphatic chains, are the
main components of lipids that form the cell membrane and
thus play an important role in the structure and function of the
nervous system. FA composition affects the activity of ion
channels and receptors. High levels of n-6 PUFAs are gener-
ally pro-inflammatory, while those of n-3 PUFAs are benefi-
cial for neuronal functions. High levels of n-6 PUFAs are
generally pro-inflammatory, while those of n-3 PUFAs are
beneficial for neuronal functions [37, 38]. Deficiencies of n-
3 PUFAs and an increased n-6/n-3 PUFA ratio in erythrocytes
have been reported in humans with mental disorders including
ASD [39-41]. The reduction in unsaturated fatty acid content
that we observed in this work in both rat ASD models can
therefore be an element of the pathomechanisms of behavioral
changes and a candidate ASD biomarker.

In the present study, we noticed that in the THAL group,
estriol and testosterone levels were decreased by 30% and
47%, respectively, whereas progesterone levels were in-
creased. A slightly different pattern of changes was found in
the VPA group, where estriol levels were reduced by 22%,
while testosterone levels were increased by 65%. Estriol is
produced from estradiol by the cytochrome P450 family 1
subfamily A polypeptide (data from KEGG - Kyoto
Encyclopedia of Genes and Genomes). Estriol is the only form
of estrogen we could identify as an isolated NMR signal, and
therefore, it serves as an indicator of the content of estrogen in
the brain. Estrogen is one of the main regulators of brain
energy metabolism [42] and coordinates functional interac-
tions among organs, cells, and genes [43]. Estrogen is synthe-
sized in the ovaries and adrenal glands and in the brain, where
it can also be synthesized from cholesterol [44, 45].
Regardless of gender, estrogen receptors are present in many
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parts of the brain, mostly in the hippocampus and cerebral
cortex, both in neurons and in glial cells [46].

We hypothesize that in the THAL group, there are disor-
ders of enzyme activity involved in converting progesterone
to testosterone and estradiol, while the changes observed in
the VPA group could be explained by the dysfunction of aro-
matase, an enzyme converting testosterone into estradiol.
There have been reports of impaired functioning of this en-
zyme in patients with ASD [47]. Male and female sex hor-
mones differentially regulate the expression of a novel autism
candidate gene, retinoic acid-related orphan receptor-alpha
(RORA), which transcriptionally regulates aromatase [48].
Hypothetically, sex steroids modulate the E/I balance, and
changes in their concentration may sensitize the male brain
to ASD-inducing factors [5]. Estrogens modulate GABA sig-
naling by regulating the expression of glutamic acid decarbox-
ylase [49] or the potassium-chloride cotransporter KCC2 [50],
while androgens lead to GABA 4-mediated excitotoxicity in
the developing hippocampus of male rats [51].

Our study also showed elevated cholesterol levels and var-
ious changes in the content of its derivatives in both ASD
models. Cholesterol is a precursor to steroid hormones, sug-
gesting a hypothetical explanation that altered cholesterol me-
tabolism can cause disturbances in sex hormone levels. The
role of cholesterol metabolism disorders and the participation
of their metabolites, such as testosterone, estrogen, cortisol,
and vitamin D, in the pathogenesis of ASD have been sug-
gested [52]. Cholesterol participates in numerous functions of
the cell membrane, regulating, among others, permeability
and fluidity [53]. The cellular level of free cholesterol is strict-
ly regulated by a network of transcriptional and post-
translational mechanisms sensitive to levels of free cholesterol
and oxysterols (oxidized cholesterol derivatives), which can
lower cholesterol through a negative feedback mechanism and
prevent its toxic effects [54, 55]. 25-Hydroxycholesterol (25-
HC), which was detected in our study, reduces free cholesterol
by increasing cholesterol esterification by acyl-CoA-
cholesterol acyltransferase in the endoplasmic reticulum
[56]. We also detected 24(S)-hydroxycholesterol (24(S)-
HC), which is the major brain cholesterol metabolite produced
by cholesterol 24-hydroxylase. This pathway is crucial for
brain cholesterol metabolism [57]. Unlike free cholesterol,
24(S)-HC is membrane permeable and thus could be metabo-
lized in the periphery [58]. These dependencies were reflected
in the decrease in the level of 24 (S) -HC in both experimental
groups with an increase in the level of free cholesterol, which
indicates a decrease in cholesterol metabolism via 24-
hydroxylase cholesterol. Moreover, when considering the
mechanisms of a hypothetical excitation/inhibition (E/I) im-
balance in autism, modulation of NMDAR activity by
oxysterols should be taken into account. 24(S)-HC is a selec-
tive and strong positive allosteric modulator of NMDARs,
while 25-HC antagonizes this effect [59], providing

VIP value
1.00
1.2

0.805
2228
5.099
0.240
2.759

0.379

F(1,23)
0.150

F(1,23)
0.034%
0.111

0.629

ANOVA
F(1,23)
F(1,23)
F(1,23)

p
p
P
p
P

% of control

THAL
107

83
121
113
115

VIP value
34

1.03

1.

0.0971
0.233
0.950

7.788

0.329
0.005%
0.759

F(1,21)
0.635
0341

F(1,21)

F(1,21)=1.000

ANOVA
p

H(1)

p:
F(1,.21)
)4

p
)4

VPA

% of control
93
70

103
87

108

Compound/functional group

(—CH3;) in acyl groups of FA and sterols
(=C(18)H3;) 24-Hydroxycholesterol

(—C(18)H3) Free cholesterol and cholesterol esters
(—C(18)H3) Progesterone

(—C(18)H3) Lathosterol

0.72
0.69
0.62
0.53

Only VIP values > 1 obtained in MVA analysis are presented

Table 3 (continued)
Chemical shift (ppm)
0.88
Statistically significant
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Fig. 2 The score plot of the two-component OPLS-DA model for hydro-
phobic compounds of NMR data for VPA vs control (a) and THAL vs
control group (b); to[1] represents within-class variation in the first or-
thogonal component, whereas t[1] represents between-class variation in
the first predictive component. Ellipse represents Hotelling’s T2 with
95% confidence in score plots

neuroprotection also an NMDAR-independent mechanism [60].
A reduced level of 24(S)-HC, which we noticed in both experi-
mental groups, is not consistent with the hypothesis being tested.

Many of the changes in the content of hydrophilic sub-
stances in the hippocampus shown in this work can also be
referred to the hypothesis about the role of E/I imbalance in the
pathogenesis of ASD, which suggests that, in autism, brain
stimulatory glutaminergic neurotransmission prevails over in-
hibitory GABAergic neurotransmission [61-63]. This has
been partly supported by the results of our previous studies
using the same rat models of autism [30]. Abnormalities in
the gene encoding the glycine receptor 2 subunit have been
observed in a boy with autism [64]. In the current study, an
increase in the content of glycine, taurine, and alanine in the
hippocampus in the THAL model was noticed, while in the
VPA model, it was slightly reduced, but the level of GABA
increased (Table 2). GABA, as well as glycine, taurine, and
alanine, are tonic agonists of GABA, and glycine receptors,
respectively, which are coupled to chloride channels and in the
adult brain play the role of major inhibitory neurotransmitters
[65, 66]. However, this is a more complex issue because, in the
early stages of development, GABA and glycine depolarize
neurons due to the relatively high intracellular concentration
of Cl- ions, but during development, GABA and glycine

function shifts from excitatory to inhibitory neurotransmitters
[67—-69]. It has been suggested that a delay in this shift may
result in neurodevelopmental disorders, including ASD [70].
This may also apply to animal, pharmacological ASD models.

In this study, we observed a decrease in guanine content and
an increase in GMP/IMP concentration in the hippocampus in
the THAL model. These results may be related to the pathogen-
esis of autism because urine metabolomics studies of autistic
children indicated impaired purine transformation [71], and
may indirectly point to neurotransmission disorders and E/I im-
balance in this ASD model. The guanine-based purinergic sys-
tem (GBP) has many functions in nerve cells, including the mod-
ulation of NMDA receptor activity important in protecting
against excitotoxicity. Moreover, GMP reduces glutamate bind-
ing to receptors (for review, see [72]), guanosine, a guanine
substrate in the purine metabolic cycle (KEGG), prevents gluta-
mate release in hippocampal slices [73], and GBP interacts with
the activity of the glutamate transporter [74]. Chronic adminis-
tration of GMP reduces the expression of NMDA and AMPA
receptor subunits and the glutamate transporters EAACI1 and
GLT-1 in the rat cerebral cortex [75].

The abovementioned disturbances in brain amino acid con-
centrations in both rat ASD models also concern the neuro-
peptide N-acetylaspartylglutamate (NAAG), an endogenous
agonist of presynaptic metabotropic glutamate receptor 3
(mGluR3) which inhibits glutamate release. In the VPA mod-
el, the NAAG level and the levels of aspartate and NAA,
which are NAAG precursors, were lower than those in the
control group. In the THAL model, however, the NAA level
was increased, while NAAG was decreased. These results
could indicate a deficiency in the activity of N-
acetylaspartylglutamate/N-acetylaspartylglutamylglutamate
synthase or the hyperactivity of glutamate carboxypeptidase 11
(KEGG). Although there is no data in the literature linking
disturbances in NAA/NAAG levels with ASD, they were ob-
served in schizophrenia [76, 77].

Hypotheses of Impaired Energy Metabolism and
Oxidative Stress in the Brain in ASD

In our studies using proton and phosphorus NMR spectrosco-
py, we did not observe changes in the spectra of the ATP,
ADP, and AMP signals due to the low concentrations of these
substances, below the detection limit of the method. Also, the
acetyl-CoA molecule is not detectable. However, increased
lactate levels observed in the VPA group may be a conse-
quence and an indicator of energy deficit. Lactate is an impor-
tant intermediary in numerous metabolic processes [78, 79]
and a preferred neuronal fuel [80, 81]. In the VPA model,
reduced levels of methylmalonate and acetate and a deficiency
in pyruvate, 2-oxo-3-hydroxyisovalerate, 2-oxoisovalerate, L-
leucine, and L-valine were also noted, which can be hypothet-
ically explained by acetyl-CoA deficiency (KEGG). Another
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Table 4 Functions and metabolic pathways of metabolites (VIP > 1) in two models of autism; directions of changes found in each of the models

compared with the control are presented

Metabolites Metabolic pathway Probably pathomechanism VPA THAL
model  model
Progesterone Steroid hormone biosynthesis Energy and neurotransmission disturbances ! 1
Testosterone 1 l
Estriol ! l
FA, MUFA, PUFA FA biosynthesis Energy production disturbances, cell membrane ! l
functional disturbances

Lysophosphatidylcholine ~ Glycerophospholipid metabolism Cell membrane functional disturbances ! 1
Cholesterol Cholesterol metabolism Neurotransmission disturbances i
Cholesterol ester 1
25-Hydroxycholesterol 1
24-Hydroxycholesterol |
8-Hydroxyadenine Purine metabolism Oxidative stress l i
Hypoxanthine 1 i
GMP/IMP 1 1
Allantoine | i
Guanine, xanthine l
Glycine Glycine, serine metabolism !
Threonine Threonine metabolism Neurotransmission disturbances 1
Glutathione Glutathione/cysteine and methionine Oxidative stress !

metabolism
Phosphorylcholine Glycerophospholipid metabolism Neurotransmission disturbances

1

Phosphoethanolamine 1
Glycerophosphorylcholine i
Choline 1
Creatine Arginine and proline metabolism Neurotransmission disturbances Oxidative stress i
Creatinine il il
GABA 1
Taurine Taurine, alanine and glutamate, pyruvate Neurotransmission disturbances Oxidative stress il

metabolism
Aspartate 1
Cysteic acid 1
Lactate i
NAA 1
NAAG l l
Glycolic acid Glyoxylate and dicarboxylate metabolism Oxidative stress !
Acetate Synthesis and degradation of ketone bodies ~ Energy production disturbances 1
3-Hydroxybutyrate !
Myo-inositol Inositol metabolism Energy production disturbances i
Scyllo-inositol l
3-Hydroxyisovalerate Valine, leucine, isoleucine biosynthesis Neurotransmission disturbances Oxidative stress l

Pyrimidine metabolism
Thymine 1
Methylmalonate l
2-Oxoisovalerate Valine, leucine, isoleucine degradation Neurotransmission disturbances Oxidative stress i
Valine, leucine, isoleucine i
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circumstantial evidence indicating a possible energy deficit is
the elevated levels of ketone bodies in the THAL model.
Typically, ketone bodies are converted in the brain to acetyl-
CoA, which can then enter the citric acid cycle to produce
ATP (KEGG). The ketone body {3-hydroxybutyrate has been
shown to depolarize the plasma membrane and interfere with
the synaptic vesicle cycle [82], which shows the possible
functional consequences of this phenomenon.

An increase in the level of hypoxanthine in the hippocam-
pus in both rat ASD models can lead to disorders in adenosine
transport and imbalances in the activity of adenosine, dopa-
mine, and serotonin receptors, as well as to abnormalities in
the development of neurons, resulting from altered expression
of some genes responsible for early neuronal differentiation
[83, 84]. Moreover, this effect is indirectly indicative of ener-
gy deficit. Hypoxanthine has been shown to induce energy
disorders in the brain [85]; its intrastriatal administration al-
tered neuroenergetic parameters and caused mitochondrial
dysfunction and apoptotic cell death [86]. These disorders
and a decrease in ATP levels appear to be associated with
oxidative stress because they may be prevented by pretreat-
ment with free radical scavengers [87].

The results of several studies indicate a possible contribu-
tion of oxidative stress to the pathomechanisms of ASD
[88-90]. A number of our results, such as the increase in
hypoxanthine level in the THAL model discussed above, are
consistent with this hypothesis. It is known that increased
levels of hypoxanthine may lead to an increase in the produc-
tion of reactive oxygen species and an exacerbation of the
oxidative stress response [91, 92], leading to impairment of
brain energy metabolism [93]. Oxidative stress is indicated by
a decrease in the concentration of glutathione (GSH), which is
a natural free radical scavenger in the cell, in the VPA model,
and a similar trend in the THAL model. Moreover, in the
THAL model, we found an increase in the level of 8-
hydroxyadenine, which is a marker of DNA damage that
may be a consequence of GSH deficiency [94, 95].

In our studies, hypoxanthine and allantoin which are
markers of free radical production [96] were elevated in the
THAL model.

Other Hydrophilic Compounds and Their Possible Role
in ASD Pathomechanisms

In both animal models, we observed changes in the levels of
many other hydrophilic compounds that can affect neuronal
function and contribute to the development of autism. In the
THAL model, we noticed increased levels of choline (Cho)
and creatine (Cr) and the Cho/Cr ratio, while in the VPA
model, they were lowered. The results of clinical studies also
differ; both a significant increase in the Cho/Cr ratio [97] and a
decreased Cho/Cr levels in the brains of ASD children [98]
were reported.

In the brains of rats from the THAL group, an increased
level of myo-inositol and a reduced level of scyllo-inositol
were found, which indicate disturbances in the metabolism
of inositol, an important carbocyclic sugar that is involved in
cellular signal transduction and osmoregulation. Preclinical
studies showed positive effects of scyllo-inositol supplemen-
tation in in vivo and in vitro models of Alzheimer’s disease
(AD) [99], while inositol supplementation in individuals with
ASD yielded negative results [100]. We also noticed increased
valine, leucine, and isoleucine levels in both ASD models,
which may be due to the dysfunction of the enzyme amino
acid transferase (KEGG). A reduction in the levels of 3-
hydroxyisovalerate and methyl malonate confirms this inter-
pretation. Similar disturbances in the levels of these amino
acids in the urine of autistic children have been reported
[101]. Reduced blood valine levels have been observed in
children with propionic acidosis and autistic features [102].

Conclusions

Although it is known that very similar behavioral symptoms that
correspond to symptoms in autistic patients are observed in the
two ASD rat models used in these studies, our NMR spectro-
scopic analysis showed large differences between these models
in the content of several metabolites in the hippocampi. Table 4
provides a summary of the abovementioned compounds whose
levels have been changed, directions of change, and metabolic
pathways in which they are involved. We believe that these
differences between VPA and THAL models could be a reflec-
tion of the spectrum of phenotypes observed in patients with
ASD. Despite these differences, the following metabolic path-
ways were identified that were disrupted in both ASD models:
steroid hormone biosynthesis; FAs biosynthesis; the synthesis
and degradation of ketone bodies; glycerophospholipid metabo-
lism; cholesterol metabolism; purine metabolism; arginine and
proline metabolism; and valine, leucine, and isoleucine biosyn-
thesis and degradation. These results may indicate disturbances
in energy production, altered cell membrane structure, distur-
bances in excitatory and/or inhibitory neurotransmission, and
the induction of oxidative stress in the hippocampus. The causal
relationship between these disorders, the primary triggering
mechanism(s), or their role in behavioral disorders similar to
autism remains unclear. However, the obtained results may be
useful in the future in the choice of the optimal animal model for
ASD studies. In addition, these results may be advantageous for
interpreting the results of our ongoing metabolomics studies
using body fluids collected from rats from both ASD models.
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