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Abstract
Understanding the mechanisms behind neurodifferentiation in adults will be an important milestone in our quest to identify 
treatment strategies for cognitive disorders observed during our natural ageing or disease. It is now clear that the maturation 
of neural stem cells to neurones, fully integrated into neuronal circuits requires a complete remodelling of cellular metabo-
lism, including switching the cellular energy source. Mitochondria are central for this transition and are increasingly seen 
as the regulatory hub in defining neural stem cell fate and neurodevelopment. This review explores our current knowledge 
of metabolism during adult neurodifferentiation.
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Introduction

The potential for pluripotent cells to undergo both replica-
tion and differentiation into highly specialised tissues is the 
central defining feature of multicellular organisms. It also 
serves as a mean to maintain and repair themselves, and 
loss of this cellular renewal capacity has long been seen as 
a hallmark of the natural ageing process [1]. Quiescent stem 
cells have been identified in a wide range of adult tissues, 
capable of renewing and replenishing various organs, but 

the brain has long been exempt from this observation, with 
neural neogenesis believed to be exclusive to the develop-
ing embryo, ceasing shortly after birth [2–4] (for a compre-
hensive historical review [5]). Early indications of mitotic 
cells in rat brains were reported already at the turn of the 
last century [6, 7], and by the late 1960s Joseph Altman 
provided more evidence of cells undergoing active pro-
liferation in the dentate gyrus, the olfactory bulb, and the 
neocortex of adult rats, cats, and guinea pigs [8–12]. Addi-
tional reports suggested neurogenesis in a range of animals, 
including songbirds [13–15], macaque [16], and humans [17, 
18]. Major neurodifferentiation is now accepted to occur 
in specific niches of the subventricular zone (SVZ) of the 
lateral ventricles and the subgranular zone (SGZ) of the hip-
pocampal dentate gyrus [19–23], and no or little post-natal 
neurogenesis in cortical neurons [24–26], although there is 
still a debate around adult neurogenesis [27–29]. However, 
the presence of quiescent neural stem cells (NSCs) questions 
their purpose, what regulates their activation and differentia-
tion, and whether there is a connection between NSCs and 
the natural cognitive decline observed during human ageing. 
This review attempts to summarise our current understand-
ing of what metabolic factors define and regulate neurodif-
ferentiation in the adult brain.

The brain is a highly complex organ with mostly spe-
cialised cells, where neurons form a large interconnected 
network with synaptic activity, which is embedded in a 
complex set of glial cells. Astrocytes, a type of glial cells 
[30], are considered to play a supportive and protective 
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role that provides the structural basis for our brain, as 
well as modulating synaptic transmissions [31, 32], pro-
vide energy for neurons [33], secretion and absorption of 
neurotransmitters, and can drive circadian behaviour [34]. 
Our ability to learn and adapt means also that this network 
is not static, but that interactions need to be maintained 
and new ones formed or replaced. This neuronal plasticity 
means cells will require different metabolic profiles during 
a variety of stages and understanding these requirements 
might allow us to improve their cellular function.

The developing brain follows a well-organised proto-
col during embryogenesis [35–38], and is considered to 
be predominantly metabolically glycolytic [39]. During 
adolescence the developing brain of both rats and humans 
has been shown to induce a metabolic shift from fatty acid 
oxidation to glucose-based metabolism [39–41], and by 
the time we are adults, our brains consume around 25% 
of our glucose intake, despite accounting for only ~ 2% of 
our body weight. At the same time, ~ 20% of our inhaled 
oxygen is used in the brain [39, 42–44], demonstrating a 
huge bioenergetic requirement, which is mostly satisfied 
by oxidative phosphorylation (OXPHOS) [45].

Nevertheless, the regions identified as containing NSCs 
have been shown to remain glycolytic [46], suggesting 
that although the purpose of embryonic and adult NSCs 
is very different, the mechanisms of differentiation might 
be similar. Structurally, the SVZ in the adult brain lines 
the lateral ventricles, separated by a layer of ependymal 
cells [46]. In rodents the neural precursors in the SVZ 
have been shown to form interneurones and astrocytes that 
will migrate to the olfactory bulb [47, 48]. Migration in 
humans is still debated, and relocation to the striatum or 
cortex have also been reported [49, 50]. The SGZ forms 
a narrow layer between the granule cell layer and hilus of 
the dentate gyrus in the hippocampus and is accepted to be 
one of the stem-cell-containing niches of the adult brain 
[51]. What exactly triggers neurogenesis is not fully estab-
lished, but proliferation of NSCs in the SVZ and SGZ has, 
for instance, been observed as a consequence of ischemic 
stroke, leading to cell migration towards the lesion to con-
tribute to repair [52, 53]. Thus, the SVZ and SGZ microen-
vironments are thought to provide the appropriate condi-
tions for NSCs to proliferate, while also allowing for the 
differentiation into the relevant neurons via several rounds 
of asynchronous proliferation. This transformation has to 
undergo several distinct stages, where (a) the NSC has to 
exit its quiescent state, (b) proliferate, (c) migrate to its 
appropriate location, (d) terminally differentiate, and (e) 
integrate into the existing neuronal circuits [54, 55]. Each 
step is highly regulated and involves hormones, growth 
factors, neurotransmitters, and environmental factors. 
Additionally, diseases states or the genetic composition 
can influence greatly neurogenesis. Together these factors 

will inevitably affect the intracellular metabolic state, driv-
ing the different stages of neurogenesis.

Energy metabolism in the brain

Glucose metabolism begins with glucose entering the cell 
and being converted into pyruvate during glycolysis. Dur-
ing aerobic respiration, pyruvate enters mitochondria and 
is decarboxylated to acetyl-CoA by the pyruvate dehydro-
genase complex (PDH), followed by condensation with 
oxaloacetate to citrate in the tricarboxylic acid (TCA) cycle 
(Fig. 1). In a series of reactions, citrate is then decarboxy-
lated back to oxaloacetate, releasing carbon dioxide and 
reducing nicotinamide (NAD) and flavin (FAD) adenine 
dinucleotides to NADH and FADH2, respectively. The oxi-
dation of these redox co-factors in the mitochondrial electron 
transport chain (ETC) leads to the formation of an electro-
chemical gradient across the inner mitochondrial membrane, 
which is used to drive an ATP synthase to form ATP from 
ADP and molecular phosphate (Pi) (Fig. 1) [56]. This oxida-
tive phosphorylation (ETC + ATP synthase = OXPHOS) is 
dependent on oxygen, with approximately 80% of inhaled 
oxygen reduced to water at the final step of the ETC [42].

In the absence of oxygen pyruvate does not enter mito-
chondria but is converted to lactic acid by lactate dehydro-
genase (LDH) (Fig. 1) [57]. This glycolytic metabolism 
of glucose is much less energy efficient, but some cells 
nevertheless rely predominantly on glycolysis to maintain 
their ATP pool, even in the presence of oxygen. This phe-
nomenon is termed aerobic glycolysis and is important to 
provide precursors of essential biosynthesis pathways, such 
as purine and pyrimidines, amino acids, and triglycerides, 
which derive from intermediates of glycolysis and the pen-
tose phosphate pathways [58–60]. In these cells the pyru-
vate kinase PKM2 regulates the last step within glycolysis, 
dephosphorylating phosphoenolpyruvate to pyruvate. By 
inactivating PKM2 intermediates of glycolysis accumulate 
and are preferentially channelled into other pathways [61]. 
This aerobic glycolysis is an important feature in cancer 
biology, where dividing cells rapidly need to increase their 
biomass [62]. Additionally, cataplerosis of the TCA cycle 
also diverts a number of intermediates to other pathways, 
reducing the contribution to energy production [63].

Besides glucose and lactate, ketone bodies represent 
an alternative fuel for neurons during fasting or extended 
exercise periods, reaching even 60–70% of the total energy 
supply for the brain [64]. Under low blood glucose levels 
adipocytes perform ketogenesis, releasing ketone bodies 
in the form of acetoacetate and b-hydroxybutyrate (BHB) 
into the bloodstream, which can cross the blood–brain bar-
rier and be imported via MCT2 into neurons [65]. Addi-
tionally, unlike neurons, astrocytes are capable to perform 
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ketogenesis providing with ketone bodies to neighbouring 
neurons [66]. Hence, neurons can shift from the oxidation of 
carbohydrates or lactate to ketone bodies in a transition pro-
cess known as ‘G-to-K switch’ [67]. Evidence stems from 
mice either placed on intermittent fasting or high-ketone 
body containing diet, demonstrating the use of ketone bod-
ies in the brain [67]. The effect of ketone bodies on neuro-
genesis is less clear, but has been correlated with improved 
synaptic plasticity, spatial learning, memory and cognition 
[68, 69]. Additionally, BHB has been shown to increase the 
expression of the brain-derived neurotrophic factor BDNF, 
and thereby promoting cellular resistance [70]. In contrast, 
prolonged hypothalamic exposure to ketone bodies stimu-
lates hypothalamic neuropeptides and dysregulation of glu-
cose homeostasis [71].

Astrocytes have a high glycolytic activity and are the main 
consumers of glucose in the brain, while only consuming 
around 20% of oxygen absorbed by the brain [39, 42–44]. 
In contrast, neurons are the main oxygen consumers, with 
high metabolic rate. This is achieved by instead of feeding 
the TCA cycle and utilising OXPHOS in mitochondria, astro-
cytes convert pyruvate to lactic acid via LDH and export it 

into the extra-cellular matrix via the monocarboxylate trans-
porter, MCT4, where it is taken up by neurons via MCT2. 
There, lactate is converted back to pyruvate and used as fuel 
in mitochondria [72–75] or as signalling molecule [33, 76]. 
Astrocytes thus act as a buffer, safeguarding neurons from fluc-
tuating blood glucose levels by continuously fuelling lactate 
to neurons. And indeed, neurons have been shown to have 
low glycolytic activity [77] and preferentially use lactate [75, 
78], although both glucose and lactate have been shown to be 
able to stimulate oxidative metabolism in mature neurons [75, 
79]. The energetic buffer capacity of astrocytes is further sup-
ported by the observation that unlike neurons, astrocytes have 
the capacity to store glycogen, which is broken down back 
to glucose by glycogenolysis upon synaptic activity [74, 80].

Metabolism in neural stem and progenitor 
cells

Hence, stem cells are generally considered to be glycolytic 
[81–83], and in agreement NSCs in the SGZ and SVZ are 
considered to have predominately glycolytic activity. This 

Fig. 1   Schematic diagram of metabolic pathways important in neuro-
genesis. In astrocytes glucose is metabolised to pyruvate via glyco-
lysis, metabolised by lactate dehydrogenase (LDH), and exported as 
lactate. Neurons take up astrocyte-derived lactate to convert it back 
to pyruvate. Pyruvate is imported into mitochondria and converted 
by the pyruvate dehydrogenase complex (PDH) to acetyl-CoA, which 
enters the citric acid (TCA) cycle. Acetyl-CoA is also generated by 
breakdown of fatty acids (acyl-CoA) during β-oxidation. The TCA 

cycle condenses oxaloacetate with acetyl-CoA to form citrate, which 
either acts as precursor for cytosolic acetyl-CoA or is metabolised 
in the TCA cycle to α-ketoglutarate (αKG). Mitochondrial NADH 
is oxidised by NADH-ubiquinone oxidoreductase (complex I) of the 
oxidative phosphorylation system (OXPHOS), while β-oxidation- or 
TCA cycle-derived FADH2 reduces ubiquinone via the electron trans-
fer flavoprotein-ubiquinone oxidoreductase (ETF-QO) or succinate-
ubiquinone oxidoreductase (complex II), respectively
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glycolytic nature of stem cells had for long been attributed 
to a combination of their cellular demands and a hypoxic 
microenvironment, but it has become clear that stem cells 
are indeed capable of using OXPHOS, but require glycolysis 
to maintain stemness rather than being an adaptation to its 
environment [84–88]. On the other hand, the oxidation of 
fatty acids has also been suggested to function as fuel source 
in NSCs, especially during NSC activation [89–94], and this 
activation of NSCs is dependent on a functional ETC and 
OXPHOS [95, 96]. Furthermore, the ability to adapt their 
metabolic state seems to be essential in NSCs for prolifera-
tion and differentiation [97–99]. Growing evidence suggests 
that mitochondria play a central and driving role in this tran-
sition, not only by providing ATP but also by regulating indi-
vidual steps during neuronal differentiation, such as manag-
ing the cellular redox state, intracellular signalling pathways, 
or the epigenetic state of the cell [100–103]. Accordingly, 
to accommodate the changing metabolic demands of activa-
tion and differentiation to a neuronal lineage, NSCs need to 
switch their metabolism from a predominantly glycolytic to 
one that utilises mitochondrial OXPHOS.

The metabolic switch in neurogenesis

A number of reports have demonstrated that the transition 
from NSC to a neuronal lineage is accompanied by increased 
mitochondrial biogenesis, as well as the downregulation of 
glycolysis and fatty acid oxidation pathways (Fig. 2) [90, 
91, 93, 95, 97, 99, 104, 105]. For instance, the progression 
from pluripotent progenitor cell to neuron is characterised 

by a strong reduction in glycolysis-related proteins, such as 
hexokinase 2 (HK2) and isoform A of lactate dehydrogenase 
(LDHA), which metabolises the reduction of pyruvate to lac-
tate. Additionally, a switch from PKM2 to its constitutively 
active isoform PKM1 and an upregulation of OXPHOS-
related genes has been observed [97, 99].

Several factors have been shown to be important during 
this transition. For instance, the TP53-inducible glycolysis 
and apoptosis regulator TIGAR was shown to increase dur-
ing brain development and neuronal development [106]. 
TIGAR inhibits glycolysis, directing the pathway into the 
pentose phosphate shunt, and is also proposed to regulate 
HK2 activity. Silencing in NSCs resulted in reduced neu-
ronal differentiation and decreased expression of neuronal 
markers, such as β-III tubulin, microtubule-associated 
protein 2 (MAP2), glial fibrillary acidic protein (GFAP), 
Ngn1, and NeuroD1. Moreover, TIGAR expression was 
accompanied by decreased lactate production and increased 
expression of the neuron-specific lactate dehydrogenase B 
(LDHB), thus, shifting towards pyruvate production and 
mitochondrial metabolism [106]. Downregulation of HK2 
and LDHA is required for neurodifferentiation, and overex-
pression of either HK2 or LDHA in NPCs blocks neurodif-
ferentiation and promotes astrocyte formation, thus guiding 
differentiation away from a neuronal towards a glial profile 
[97].

Directionality of LDH seems to be predominantly regu-
lated by substrate/product concentrations, although LDHA 
is proposed to prefer the conversion of pyruvate to lactate, 
while LDHB catalyses the reverse reaction [107]. LDHA 
is regulated by the transcription factors c-MYC and the 

Fig. 2   Schematic diagram of 
neuronal differentiation. During 
neurogenesis, neural stem cells 
(NSC) need to proliferate to 
neural progenitor cells (NPC) 
and differentiate into mature 
neurons. This progression is 
accompanied by several shifts, 
including the activation and 
proliferation of mitochondria, 
a transition from a glycolytic 
to aerobic metabolism, relying 
on oxidative phosphorylation 
(OXPHOS) for ATP synthe-
sis. Additionally, fatty acid 
metabolism shifts from energy 
metabolism to de novo lipogen-
esis. The increased metabolic 
activity of the cells is accompa-
nied by reactive oxygen species 
(ROS), which is countered by 
the activation of oxidative stress 
response genes to reduce overall 
ROS levels
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hypoxia inducible factor HIF1α, but a recent study, using 
a neuroepithelial stem cell (NES) model of the autophagy 
adaptor Sequestosome 1 (SQSTM1/p62), suggested that 
upregulation of LDHA was independent of both c-Myc 
and HIF1α, arguing for additional pathways [99]. P62 is a 
cytosolic, multi-domain protein, considered to be involved 
in, among others, selective autophagy [108]. Patients with 
bi-allelic null mutations in p62 present with childhood- or 
adolescence-onset neurodegenerative disorder, characterised 
by progressive gait abnormalities, ataxia, dysarthria, dysto-
nia, vertical gaze palsy, and cognitive decline [109, 110]. 
Loss of p62 in NES cells resulted in a dramatic increase of 
LDHA expression, which correlated with deficient neurodif-
ferentiation [99]. This increase was absent in patient-derived 
fibroblasts, suggesting that the upregulation of LDHA might 
be stem cell-specific [99]. NES cells are a proliferative neu-
ral stem cell line that displays a high differentiation potential 
to various neuronal subtypes and glial cells [111]. Although 
patient-derived NES cells arrested proliferation upon neu-
ronal induction, they failed to fully differentiate into neu-
rons, as indicated by lower levels of the neuronal markers 
β-III tubulin and HuC/D. However, this did not seem to be 
due to the absence of mitochondrial-specific autophagy, but 
rather due to the cells’ failure to fully commit to a more 
aerobic metabolic profile as indicated by an inability to 
upregulate genes important for increased mitochondrial 
function, such as OXPHOS-specific genes. This could be 
partially rescued using the antioxidant N-acetylcysteine 
(NAC), suggesting an important role for p62 in oxygen 
sensing or reactive oxygen species (ROS) management 
[99]. Roles for p62 in oxidative stress management [112], 
hypoxia [113], and more recently, redox state management 
[114], have previously been suggested, with p62 shown to 
regulate the nuclear transcription factor erythroid 2-related 
factor 2 (NRF2). Under oxidative stress conditions p62 stabi-
lises NRF2 by preventing its KEAP1-mediated degradation, 
which then translocates to the nucleus to bind to and activate 
upstream promoter regions of genes involved in inflamma-
tory or antioxidant responses [115–119]. Two oxygen-sen-
sitive cysteine residues in p62 have recently been suggested 
to activate autophagy in response to oxidative stress [114]. 
P62 is therefore potentially central to coordinating redox 
state and protein homeostasis in neurogenesis [99].

Support comes from rodent models deficient of p62, 
which present with several neurological phenotypes, rang-
ing from memory loss to behavioural abnormalities to the 
accumulation of Tau tangles [120–123]. Specifically, p62 
was shown to be important for neuronal cell survival and 
development in rats [121], while the deletion of p62 rescued 
the NSC pool in the SVZ and dental gyrus of autophagy-
deficient FIP 200-KO mice, demonstrating an important role 
for p62 in the regulation of neuronal development, probably 
by regulating intracellular superoxide levels [124].

Redox state and ROS

Oxygen levels are crucial in determining cell fate [125], not 
only by regulating specific gene expression profiles through 
transcription factors such as HIF1α, but also by directly 
influencing enzymatic reactions [126]. In this respect, 
mitochondria are the largest consumers of oxygen, reduc-
ing it to water in the ETC in a coordinated fashion. Reac-
tive oxygen species (ROS) are reduced forms of molecular 
oxygen that are predominantly formed during the transition 
of electrons in the ETC in mitochondria, or in peroxisomes. 
During OXPHOS a small percentage of molecular oxygen 
is reduced to superoxide (·O−

2) due to electron leakage at 
complexes I or III of the mitochondrial respiratory chain 
(Fig. 3) [127]. Further dismutation or reduction can lead 
to a number of different radical oxygen species, including 
hydrogen peroxide (H2O2), which can leak out of mito-
chondria and act as a signalling molecule [128, 129]. Thus 
theoretically, ROS levels act as a function of mitochondrial 
respiration. However, multiple factors influence ROS lev-
els, including oxygen availability, redox states of the redox 
co-factors NADH, FADH2, or ubiquinone, activities of 
antioxidant factors, such as glutathiones or superoxide dis-
mutases, mitochondrial morphology, as well as mutations 
in OXPHOS subunits [130], and ROS levels are therefore 
much more complicated. Nevertheless, ROS can spontane-
ously react with a range of biological materials, including 
lipids, proteins, or nucleic acids, altering their function, and 
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Fig. 3   Schematic diagram of the reduction of ubiquinone. The com-
plete oxidation of pyruvate generates 4 NADH molecules and 1 
FADH2, which are oxidised on complex I (I; NADH: ubiquinone 
oxidoreductase) and complex II (II; succinate: ubiquinone oxidore-
ductase) of the mitochondrial electron transport chain, respectively, 
while reducing ubiquinone (Q) to ubiquinol (QH2). In contrast, one 
round of β-oxidation also forms 4 NADH, but 2 FADH2. The second 
FADH2 is oxidised by the electron transfer flavoprotein: ubiquinone 
oxidoreductase (ETF), which also contributes to the QH2 pool. Addi-
tionally, the two mitochondrial dehydrogenases glycerol 3-phosphate 
dehydrogenase and dihydroorotate dehydrogenase (both not shown) 
can contribute to the QH2 pool as part of glycerol metabolism and 
the de novo pyrimidine biosynthesis pathway, respectively. QH2 is 
oxidised at complex III (coenzyme Q: cytochrome c oxidoreductase). 
Oxygen is reduced to water at complex IV (IV; cytochrome c oxi-
dase). An ATPase synthase (V) synthesises ATP from ADP at Pi)
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under stress situations ROS levels can lead to severe cel-
lular damage, induce apoptosis and cell death, and has been 
suggested to be a part of various pathologies and the natural 
ageing process [131, 132].

ROS levels are known to be able to influence and activate 
various gene expression profiles [133] and have been sug-
gested to be important for stem cell fate [134]. For instance, 
culturing NPCs in the presence of antioxidants improves 
neurodifferentiation [135, 136], and regulation of ROS 
levels has been suggested to be important for proliferation 
of hippocampal NPCs in mouse embryos [137]. Addition-
ally, an age-dependent reduction in NRF2 expression has 
been linked to a reduced capacity of NPCs to regenerate 
in the SVZ of rats [138], but not in the SGZ of the dentate 
gyrus [139]. Nevertheless, NRF2 activity was important 
in both niches for linage commitment of NPCs to either a 
neuronal or glial fate. Further, studies in mice suggest that 
NRF2 levels can affect mitochondrial membrane potential 
and OXPHOS function, with loss of NRF2 associated with 
increased glycolytic activity and reduced substrate avail-
ability for mitochondrial respiration [140]. Thus, reduced 
NRF2 levels correlate with the age-associated reduction in 
NSCs in murine brains [138], and recent data suggest that 
this is caused by an inflammatory response in the ageing 
brain, linked to increased quiescence to protect the NSC 
pool [141]. The authors were also able to reactivate these 
old NSCs, suggesting a potential treatment target for age-
associated neurodegeneration [141].

In general, quiescent NSCs are thought to have higher 
ROS levels, which gradually decrease during the progenitor 
stage, with low levels of ROS reported in mature neurons 
[128]. A recent study in mice suggested that NSCs require 
a spike in ROS levels before committing to proliferation 
and that this induction is prior to the redirection of cellu-
lar lipid metabolism to lipogenesis or induction of mito-
chondrial biogenesis [142]. Interestingly, the authors also 
suggested that NSCs can shift between different levels of 
proliferation induction, depending on ROS levels, without 
fully committing to enter neurogenesis [142]. It is therefore 
likely that multiple signals have to come together to initiate 
neurogenesis.

Oxygen levels vary across the brain, allowing for differen-
tial responses across neuronal niches. HIF1α is a main sen-
sor of cellular oxygen, and upon low oxygen concentrations 
is stabilised, leading to the activation of a hypoxia response 
gene expression program [143–146]. Under hypoxic condi-
tions the hydroxylation of HIF by α-ketoglutarate-dependent 
dioxygenases is suppressed, leading to the stabilisation of 
HIF1α, translocation to the nucleus and activation of gene 
expression. α-ketoglutarate (αKG, also known as 2-oxog-
lutarate) is a TCA cycle intermediate that can be converted 
to the neurotransmitter glutamate [146], thus firmly link-
ing energy metabolism and oxygen sensing to neuronal 

function and potentially neurogenesis [147]. Recently, 
chronic mild hypoxia has been linked to adult neurogenesis 
in the hippocampus [148], while the deletion of HIF1α in 
mouse neural cells led to hydrocephaly, reduced number of 
NSCs and impaired spatial memory [149]. Along this line, 
work on stroke patients suggests that ischemia leads to the 
proliferation of NSCs in the SVZ and SGZ of the dentate 
gyrus, migration towards the lesion, and integration into the 
damaged area [52, 53]. Thus, oxygen sensing is clearly an 
important feature during neurogenesis, and its regulation is 
not only required for NSCs to exit their quiescent state but 
also to commit to their final cell linage. In agreement, oxy-
gen regulates stemness via Wnt/β-catenin signalling [150], 
although this has been suggested to be independent HIF1α 
[151].

Lipid metabolism and neurogenesis

Long chain saturated fatty acids contain almost double the 
energy compared to glucose, and the brain consists of the 
second highest lipid content in the body after adipocytes. 
Despite this, fatty acid oxidation is low in the brain [152]. 
This is in contrast to other tissues with high energy demand, 
such as the heart, which utilise fatty acids as energy source, 
and the brain presumably requires fatty acids for lipid bio-
synthesis, rather than as energy source. While glucose is 
readily absorbed by cells from the blood, fatty acid trans-
port is coupled to albumin, which does not cross the blood 
brain barrier, limiting lipid availability in the brain [153]. 
Nevertheless, the brain requires large amounts of lipids for 
membrane formation, which cannot be explained by de novo 
lipogenesis alone, and specific transporters for the uptake 
of essential fatty acids into the brain have since been iden-
tified [154–157]. There are several indications that astro-
cytes use β-oxidation as fuel source, allowing glucose to be 
predominantly used to support neurons [153, 158], but as 
β-oxidation releases acetyl-CoA there might be a metabolic 
compartmentalisation in neurons that does not favour lipids 
as energy source. For instance, acetyl-CoA, can either enter 
the TCA cycle, or be used for histone acetylation to regulate 
gene expression. It can form ketone bodies, which are used 
as energy source in neurons during starvation or enter the 
mevalonate pathway to generate farnesyl-pyrophosphate, 
which is important for the biosynthesis of the redox co-
factor ubiquinone, sterol, cholesterol, heme A, dolichols, or 
the prenylation of proteins (Fig. 1) (For review see [158]). 
There are several other factors arguing against the use of 
fatty acids as energy source in neurons. First of all, the brain 
often requires fast bursts of ATP, which cannot be achieved 
by β-oxidation; further, β-oxidation has a higher oxygen 
requirement, which constitutes an increased risk for neurons 
to become hypoxic; and thirdly, the breakdown of fatty acids 
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increases the FADH2/NADH ratio, due to FAD reduction at 
the electron transfer flavoprotein-ubiquinone oxidoreductase 
(ETF-QO), leading to increased competition for the ubiqui-
none pool in the inner mitochondrial membrane (Fig. 3). 
This, in turn, can depolarise mitochondria and increase the 
risk for ROS production at complex I of the ETC.

Nevertheless, as mentioned above, the glycolytic activ-
ity of NSCs is used to drive the synthesis of biomaterials 
for cell sustainability, with high expression of regulatable 
PKM2 [61], and NSCs in the SVZ of adult mouse brains 
have been shown to use β-oxidation for energy production 
[91, 92]. The increased bioenergetic demand during neu-
ronal differentiation is accompanied by a switch to a more 
glucose-based metabolism, with a down-regulation of fatty 
acid oxidation. Simultaneously, de novo lipogenesis is 
upregulated [94, 153]. NSCs express a number of different 
fatty acid binding proteins (FBPs), with FBP5 and 7 impor-
tant for NPC differentiation and migration [153, 159–161]. 
This correlates with an increase in lipid synthesis through 
fatty acid synthase during maturation to allow for increased 
membrane lipid synthesis [104]. This shift is regulated by 
the thyroid hormone responsive protein SPOT14, which is 
highly expressed in NSCs [90] and inhibits the fatty acid 
synthase FASN [104]. Additionally, metabolic analysis of 
embryonic NPCs demonstrated an increase in long chain 
fatty acids, citrate, cholesterol synthesis and decreased acyl-
carnitines, suggesting fatty acid synthesis and membrane 
remodelling [105]. Thus, de novo lipogenesis is an important 
requirement for NSCs to exit their quiescent state and initiate 
proliferation. Interestingly, lipid droplets secreted from glial 
niche cells in Drosophila melanogaster have been shown to 
protect NSCs from exogenous ROS and enter proliferation 
[162], suggesting a further function of glial cells in regulat-
ing neurogenesis.

Mitochondrial morphology 
during neurodifferentiation

The increase in mitochondrial abundance and function is 
accompanied by an increase in mitochondrial DNA lev-
els [163, 164], mitochondrial gene expression [165], and 
activity [166]. A reduced neuronal differentiation could be 
observed in culture by inhibiting mitochondrial translation 
with chloramphenicol [105, 165]. In addition, the expres-
sion of two master regulators of mitochondrial biogenesis, 
the peroxisome proliferator-activated receptor gamma co-
activator 1-alpha (PGC1α) and the oestrogen-related recep-
tor gamma (ERRγ), precedes increased mitochondrial abun-
dance [97, 164]. This activation of mitochondria is marked 
by a remodelling and replacing the mitochondrial network 
[167].

Exercise is a well-known activator of mitochondrial bio-
genesis and has been suggested to trigger adult neurogenesis 
[168, 169]. However, overexpression of PGC1α in skeletal 
muscle had no effect on age-associated decline of NSCs 
[170], despite improved muscle performance and increased 
levels of the neuroplasticity promoting brain-derived neu-
rotrophic factor, BDNF [168]. Thus, the exact mechanism 
is not yet clear. Nevertheless, the activation of stem cells 
coincides with changes in mitochondrial morphology from 
rounded small mitochondria, with dense and compact cristae 
in quiescent NSCs, to a more open and structured network 
[167]. These changes are believed to be fundamental to neu-
rogenesis [91, 133, 171–173], and are possibly regulated 
by ROS signalling [133]. The importance of mitochondrial 
fusion and fission is well established, with numerous mod-
els, as well as mutations in patients with mitochondrial 
disease, demonstrating that disrupting either process can 
lead to severe consequences in the brain [174]. Addition-
ally, the selective removal of mitochondria via autophagy, 
also termed mitophagy, has been shown to be an important 
contributor to cellular metabolism [175–177]. For instance, 
reduced expression of pro-apoptotic factors in murine NSCs 
resulted in reduced neurogenesis [178–180], while levels 
of the neuronal development regulator, NOTCH, have been 
suggested to be regulated by autophagy [181].

Many of the factors described above are essential for cell 
survival and the described mechanisms often require models 
with cell-type specific disruption of the factor in question. 
Although these studies have provided important information 
regarding the mechanisms of neurogenesis, it is likely that 
many essential genes will have similar effects, and thus the 
importance of, for instance, mitochondrial function in driv-
ing neurogenesis remains to be established. An indication 
that this is indeed the case stems from a mouse model with 
deficient proof-reading ability of the mitochondrial DNA 
polymerase γ, POLG [182, 183]. These mice present with 
increased mtDNA mutations, an age-associated decline in 
mitochondrial function, and a progressive aging pheno-
type [182, 184]. Ahlqvist and colleagues demonstrated that 
increased mtDNA mutation loads correlated with a reduc-
tion in NSCs in the SZV of adult mice, reduced self-renewal 
capacity, and decreased mitochondrial respiration [185]. 
Interestingly, self-renewal could be partially restored by 
NAC treatment, suggesting that ROS or the cellular redox 
state is important for NSC self-renewal [185]. Indeed, an 
increase in mtDNA mutations, together with reduced mito-
chondrial function, has been observed in brains during the 
natural ageing process in humans [186], and the prospect 
that modulating mitochondrial function and/or redox state 
to improve NSC renewal is enticing. These findings are sup-
ported by the observation that supplementation of somatic 
stem cell cultures with NAD+ improves cell survival and 
mitochondrial function [187, 188].
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The requirement of NSCs to control their ROS and redox 
states suggests that oxygen might have negative effects in 
conjunction with mitochondrial disease [126]. In this regard, 
two mouse models with mitochondrial disease, could be 
rescued by reducing breathing oxygen levels [189, 190], 
although just increasing HIF1α had no effect [191]. Neural 
cells were not investigated in these models, but it will be 
interesting to determine whether hypoxia treatment has a 
positive effect on neurogenesis in combination with a mild 
mitochondrial dysfunction [192].

Conclusions

Several pathologies have been correlated with impaired neu-
ronal differentiation, and the age-associated decline in cog-
nitive function has been attributed to reduced neurogenesis 
with age [184]. For example, the autism spectrum disorder 
(ASD) has been linked to impaired neuronal development, 
since patient-derived reprogrammed cells showed impaired 
neuronal maturation [193], while a reduction of neurogen-
esis and impaired differentiation into neurons was reported 
in epileptic patients [194, 195]. Interestingly, reduced adult 
hippocampal neurogenesis has recently been observed in 
patients with Alzheimer’s disease [23], and mitochondrial 
dysfunction is a key feature in Alzheimer’s pathology [196], 
further pointing to an important connection between neuro-
genesis and mitochondria.

Over a century ago Santiago Ramon y Cajal wrote that in 
the brain "everything may die, nothing may be regenerated. 
It is for the science of the future to change, if possible, this 
harsh decree" [4]. The identification of adult neurogenesis 
has provided us with the possibility, but we are only at the 
beginning of understanding what factors are involved in 
the proliferation and differentiation of neuronal stem cells. 
Metabolism clearly plays an important part in this develop-
ment and it is also clear that an elaborate network of factors, 
ranging from metabolites, oxygen, and transcription factors 
is required to carefully regulate quiescence, proliferation, 
and differentiation. The prospect that combinations of redox 
state modifiers, oxygen levels, and diet [197] has already 
shown to have positive effects on activating NSCs, brings 
hope to that the future indeed will be able to change this 
"harsh decree".
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