Skip to main content
. 2020 Apr 13;36(12):3637–3644. doi: 10.1093/bioinformatics/btaa242

Table 2.

Tests on verified cancer drivers from non-coding regions show that CScape-somatic predicts all variants correctly, while the original CScape correctly predicts all but one SDHD variant

Mutation CSS CS FSa CADD
TERT
 5:g1295228G>A + (0.56) + (0.52) + (1.33) + (0.34)
 5:g1295229G>A + (0.51) + (0.62) + (1.69) + (0.66)
 5:g1295250G>A + (0.51) + (0.58) + (0.56) + (0.31)
SDHD
 11:g111957523C>T + (0.52) + (0.81) + (1.00) + (1.64)
 11:g111957541C>T + (0.68) + (0.67) + (1.62) + (0.82)
 11:g111957544C>T + (0.87) − (0.40) + (1.00) + (0.64)
PLEKHS1
 10:g115511590G>A + (0.71) + (0.65) − (0.17) − (-0.10)
 10:g115511593C>T + (0.57) + (0.71) − (0.17) − (-0.06)

Note: FunSeq2 and CADD predict the TERT and SDHD examples correctly, but both misclassify the PLEKHS1 examples. For each method, we present the predicted label (+ = driver, – = passenger) with the associated score in parentheses. (Classifiers: CSS = CScape-somatic, CS = CScape, FS = FunSeq2.)

a

For FunSeq2, we use a threshold of 0.56 (Rogers et al., 2017a).