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Abstract

Summary: We report Spark-based INFERence of the molecular mechanisms of NOn-coding genetic variants
(SparkINFERNO), a scalable bioinformatics pipeline characterizing non-coding genome-wide association study
(GWAS) association findings. SparkINFERNO prioritizes causal variants underlying GWAS association signals and
reports relevant regulatory elements, tissue contexts and plausible target genes they affect. To achieve this, the
SparkINFERNO algorithm integrates GWAS summary statistics with large-scale collection of functional genomics
datasets spanning enhancer activity, transcription factor binding, expression quantitative trait loci and other func-
tional datasets across more than 400 tissues and cell types. Scalability is achieved by an underlying API imple-
mented using Apache Spark and Giggle-based genomic indexing. We evaluated SparkINFERNO on large GWASs
and show that SparkINFERNO is more than 60 times efficient and scales with data size and amount of computational
resources.

Availability and implementation: SparkINFERNO runs on clusters or a single server with Apache Spark environ-
ment, and is available at https://bitbucket.org/wanglab-upenn/SparkINFERNO or https://hub.docker.com/r/wanglab/
spark-inferno.

Contact: lswang@pennmedicine.upenn.edu

Supplementary information: Supplementary data are available at Bioinformatics online

1 Introduction

Genome-wide association studies (GWASs) have successfully identi-
fied over 70 000 genetic variants associated with more than 3000
human diseases and phenotypes (Buniello et al., 2019).
Interpretation of these associations remain difficult (Amlie-Wolf
et al., 2018; Watanabe et al., 2017) as most GWAS hits are in the
non-coding genome. Resolution of GWAS is limited as neighboring
variants have similar associations due to linkage disequilibrium
(LD) (Amlie-Wolf et al., 2018). Our recently developed INFERNO
method (Amlie-Wolf et al., 2018) focuses on identifying potentially
causal variants underlying observed GWAS associations by

integrating with hundreds of functional genomics datasets. The cur-
rent INFERNO implementation is not optimized for big data, and a
scalable framework for annotating genetic variants and genomic
regions generated by various human genetic studies in a high-
throughput manner is in need for systematic large-scale genomic and
genetic analyses.

The scale and heterogeneity of functional genomics datasets and
annotations necessitate systematic, integrative analysis and inter-
pretation of GWAS association findings. For example, while
INFERNO uses relatively small set of functional genomics datasets,
projects, such as GTEx (Aguet et al., 2017), FANTOM5 (Andersson
et al., 2014), ENCODE (Bernstein et al., 2012) and Roadmap
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Epigenomics (Kundaje et al., 2015), produce >60 000 experimental
datasets across >1100 tissues, cell types, biological conditions, each
with millions to billions of records across the genome. In order to
pair these functional annotations with modern population-level
studies, such as UK Biobank (500 000 individuals with >2500 phe-
notypes), we need a scalable, high-throughput, robust and easy to
use software that can systematically interpret hundreds of millions
of genotypes across millions of participants.

We implemented Spark-based INFERence of the molecular
mechanisms of NOn-coding genetic variants (SparkINFERNO) as a
scalable, high-throughput automated workflow that integrates a
large-scale functional genomics data repository and processes
GWAS results by performing LD analysis, functional evidence evalu-
ation and aggregation, Bayesian colocalization analysis of GWAS
and expression quantitative trait loci (eQTL) signals, characterize
the downstream regulatory effects including the tissue contexts,
regulatory elements and target genes that they affect. We applied
SparkINFERNO on inflammatory bowel disease (IBD) (Liu et al.,
2015) and the International Genomics of Alzheimer’s disease (AD)
GWAS datasets (Lambert et al., 2013) and show that this scalable
framework is at least 60 times more efficient and able to identify the
molecular mechanisms underlying non-coding GWAS signals.

2 Materials and methods

We chose Apache Spark (Zaharia et al., 2016) and Python for a scal-
able implementation of INFERNO (Amlie-Wolf et al., 2018) (see
Supplementary Table S1 and ‘Comparison with original INFERNO
implementation’ section in Supplementary Methods). The new
SparkINFERNO is highly scalable, modular and coupled with an
integrated functional genomics data repository (Fig. 1 and
Supplementary Fig. S1 and Tables S1 and S2). Analysis modules per-
form various types of genomic data integration to produce function-
al evidence including tissue-specific regulatory elements (enhancers),
transcription factor (TF) activity, chromatin states and genetic regu-
lation (eQTL) information. SparkINFERNO implements scalable
genomic querying (Supplementary Figs S2 and S3) using Spark par-
allel transformations and Giggle-based genomic indexing (Layer
et al., 2018). SparkINFERNO can be extended with additional an-
notation data and/or customized evaluation modules. Results are
reported by individual evaluation modules and as combined summa-
ries (Supplementary Methods).

SparkINFERNO accepts complete GWAS summary statistics or
top GWAS association variants as the input and generates a list of
potentially causal variants, affected tissue-specific enhancers and
target gene(s) as the output. The entire workflow consists of four
phases (Fig. 1): (i) Pre-processing and QC of GWAS input; (ii)
Generating candidate set of potentially causal variants; (iii)
Evaluating functional genomic evidence across genomic datasets in
a tissue-specific manner including regulatory elements (enhancers),
eQTL colocalization, transcriptional factor binding sites (TFBSs)
and others for each GWAS locus/signal; and (iv) Aggregating evi-
dence to infer prioritization of causal variants, including informa-
tion on affected tissues/cell types, regulatory elements, TFs and
target genes. See Supplementary Methods for technical details.

The pre-processing phase takes raw GWAS summary statistics in
a tab-separated values format as input, resolves reference and alter-
native alleles, checks allele frequencies in the reference population
(e.g. 1000 Genomes Project) and produces quality control flags.
Quality control steps mark GWAS variants with inconsistent alleles
that could not be matched with reference genotype data
(Supplementary Methods and Fig. S4).

The candidate set construction phase expands genome-wide sig-
nificant associations into a putative causal variant set by pruning
significant variants into a smaller set of independent variants using
publicly available LD data (e.g. 1000 Genome), and then expanding
these signals into putative causal sets consisting of nearby variants
in LD. The user can specify the reference population in LD pruning/
expansion to match the population underlying the input GWAS
study. Supplementary Methods and Figure S4 provide details of the
workflow for generating putative variant sets.

The evaluation phase executes Spark-based annotation jobs in

parallel (Fig. 1). SparkINFERNO uses an integrated repository of
annotations for genomic elements (promoters, exons, introns, etc.),
non-coding RNAs, regulatory elements, such as enhancers, TFBSs

and others (integrated data and data repository implementation in
Supplementary Table S2 and Fig. S1). The current SparkINFERNO

implementation contains 3.5 billion genomic intervals from 2342
tracks for 32 tissue categories.

In the final aggregation phase, SparkINFERNO combines func-
tional evidence from individual genomic analyses and produces a list
of candidate variants, enhancer elements and their target genes as

supported by FANTOM5, Roadmap, GTEx, TF binding and other
functional evidence. SparkINFERNO performs colocalization ana-
lysis (Supplementary Fig. S5) of the GWAS and eQTL signals across

genome-wide significant loci using COLOC (Giambartolomei et al.,
2014).

To install SparkINFERNO, users can either install the package
(https://bitbucket.org/wanglab-upenn/SparkINFERNO) on their

own Spark cluster, or use a pre-created Docker image (wanglab/
spark-inferno). To run SparkINFERNO, the user first edits the con-
figuration file and provides input GWAS specifications. A complete

run of SparkINFERNO produces candidate potentially causal var-
iants, target genes, tissue contexts, regulatory elements and detailed

BED files documenting overlaps with functional genomics and anno-
tation datasets.

3 Results

We evaluated SparkINFERNO on our AWS Spark cluster using
IGAP AD and IBD GWAS datasets containing 8 080 502 and

11 555 676 variants, respectively. For the IGAP GWAS dataset,
SparkINFERNO took 993 s on a 16-core Linux server to complete
the analysis, whereas the original INFERNO took 60 973 s.

SparkINFERNO is 61 times faster (Supplementary Fig. S2).
SparkINFERNO scales well with the amount of computational
resources both in local and cluster modes (Supplementary Figs S3A

and S3B), including parallel Giggle-based genomic querying
(Supplementary Fig. S8). SparkINFERNO identified 1418 and

15 343 candidate causal variants and 97 and 317 colocalized target
gene–tissue combinations for IGAP and IBD, respectively
(Supplementary Table S3). As can be seen from distribution of iden-

tified overlaps across functional genomics datasets and tissue types
(Supplementary Figs S6 and S7) SparkINFERNO identifies genes

and tissues that are likely important for the disease etiology.
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Fig. 1. Overview of SparkINFERNO
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