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Abstract

Motivation: Epistasis reflects the distortion on a particular trait or phenotype resulting from the combinatorial effect
of two or more genes or genetic variants. Epistasis is an important genetic foundation underlying quantitative traits
in many organisms as well as in complex human diseases. However, there are two major barriers in identifying epis-
tasis using large genomic datasets. One is that epistasis analysis will induce over-fitting of an over-saturated model
with the high-dimensionality of a genomic dataset. Therefore, the problem of identifying epistasis demands efficient
statistical methods. The second barrier comes from the intensive computing time for epistasis analysis, even when
the appropriate model and data are specified.

Results: In this study, we combine statistical techniques and computational techniques to scale up epistasis analysis
using Empirical Bayesian Elastic Net (EBEN) models. Specifically, we first apply a matrix manipulation strategy for
pre-computing the correlation matrix and pre-filter to narrow down the search space for epistasis analysis. We then
develop a parallelized approach to further accelerate the modeling process. Our experiments on synthetic and em-
pirical genomic data demonstrate that our parallelized methods offer tens of fold speed up in comparison with the
classical EBEN method which runs in a sequential manner. We applied our parallelized approach to a yeast dataset,
and we were able to identify both main and epistatic effects of genetic variants associated with traits such as fitness.

Availability and implementation: The software is available at github.com/shilab/parEBEN.

Contact: mindyshi@temple.edu

1 Introduction

Recent advances in sequencing technology and data sharing have
allowed the rapid accumulation a large amount of genomic data.
Modern datasets are often genome-wide and highly dimensional be-
cause the feature size is significantly larger than sample size. This
complexity has brought genomics researchers to the field of data sci-
ence. Hence, it is urgent to develop new methods that allow for scal-
able, robust and efficient analysis of large genomic datasets.

One problem that we address in this study is termed as epistasis.
Epistasis is an important yet challenging problem in genetics and
genomics. Epistasis is considered as a critical genetic factor that con-
tributes to complex traits, including many quantitative traits.
Epistasis can be reflected when the effect of two or more genetic var-
iants or genes combined have an effect, larger or smaller, than the
sum of their individual effects (Forsberg et al., 2017). Epistasis
among genetic variants or genes can account for an appreciable pro-
portion of the hidden heritability of complex traits (Carlborg and

Haley, 2004; Gibson, 2010; Zuk et al., 2012). Epistasis also plays
an important role in gene expression and regulation (Carter et al.,
2007; Gertz et al., 2010; Gibson, 1996). Previous studies have
shown that accounting for epistasis led to better predictions of indi-
vidual phenotypes (Forsberg et al., 2017) and higher detection
power than single-locus analysis (Evans et al., 2006; Marchini et al.,
2005; Verhoeven et al., 2010).

Users of high-throughput sequencing technology typically profile
genome-wide genetic variants on a relatively low number of bio-
logical samples. This practice leads to a challenge in identifying epis-
tasis in large-scale and typically high-dimensional genomic data.
Since a high-dimensional dataset usually induces an over-saturated
model, this in turn demands efficient and scalable statistical methods
to solve the model on a vast search space (Van Steen and Moore,
2019).

A variety computational methods have been developed for epis-
tasis analysis of genomic datasets, which can be classified into
model-based and model-free methods. Model-based methods
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include regression-based methods which perform an exhaustive
search for pairwise genetic variants, such as PLINK, BiForce, SNP–
SNP interaction and FastEpistasis (Evans et al., 2006; Gyenesei
et al., 2012a,b; Purcell et al., 2007; Schüpbach et al., 2010). Some
sparse learning methods are also regression-based methods, such as
the least absolute shrinkage and the selection operator (Lasso),
Fused Lasso and multitask-Lasso (Chen et al., 2012; Lee et al.,
2010; Quitadamo et al., 2015; Tian et al., 2014; Tibshirani, 1996;
Tibshirani et al., 2005; Wang et al., 2014). These sparse learning/
regression-based methods formalize the association problem as an
optimization problem with regularization terms. Some aim to find
the sets of genetic variants that associated with one or multiple traits
for expression quantitative trait loci (eQTL) analysis. Bayesian-
based methods, such as the Bayesian Epistasis Association Mapping
method, Bayesian inference methods, Bayesian partition methods
and BhGLM (Tang et al., 2009; Yi et al., 2011; Zhang and Liu,
2007; Zhang et al., 2010, 2011), usually impute the posterior prob-
ability through prior distribution for epistatic effects.

Model-free methods include machine learning methods which
developed for epistatic analysis with a theme of data dimensionality
reduction and feature selection, such as combinatorial partitioning
method (Nelson, 2001), Multifactor Dimensionality Reduction
(MDR) (Moore, 2004; Moore et al., 2017), Spatially Uniform
ReliefF (Greene et al., 2009) and Epistasis Detector based on the
Clustering of relatively Frequent items (Xie et al., 2012) and the
Multi-SNP Combination Set Detector based on a combinatorial op-
timization model (Ding et al., 2015). MDR is a classical nonpara-
meter machine learning method which was designed for the
identification of multi-order epistasis in case–control studies. As an
extension to MDR, Quantitative Multifactor Dimensionality
Reduction (QMDR) (Gui et al., 2013) was developed to identify
multi-order epistasis for quantitative traits. QMDR uses t-statistics
to construct a score to rank the effects, which means that the higher
the t-statistic score, the higher the confidence level of each effect.
QMDR is computationally efficient and performs well for epistasis
identification. We hence chose QMDR to compare against
parEBEN (parallelized EBEN) since QMDR is a classical machine
learning method with which parEBEN can be fairly compared and
QMDR can quickly identify epistasis for quantitative traits which
are the focus of this study.

Another strategy for the identification of epistasis aims to reduce
the genomic data dimensionality before applying either model-based
or model-free method aforementioned. These strategies include
data-driven filtering (Brown et al., 2014; Huang et al., 2013;
Lewinger et al., 2013; Shen et al., 2012; Sun et al., 2014), which is
based on performing statistical tests to keep the most informative
variants (Litvin et al., 2009; Pendergrass et al., 2015; Rönnegård
and Valdar, 2012; Sun et al., 2014) and biological filtering, which is
based on prior knowledge such as pathway information, protein–
protein interactions, gene modules and/or mutation knowledge
(New and Lehner, 2019). However, most of these methods cannot
handle large genomic datasets and are not scalable. Thus, it is of
interest to develop new statistical methods to solve and scale up
analyses of epistasis on large-scale genomic data. The Empirical
Bayesian Elastic Net (EBEN) method is recently developed for iden-
tifying quantitative trait loci (QTL) and epistasis, which has shown
to be efficient and highly accurate (Huang et al., 2015; Wen et al.,
2017). We choose the EBEN algorithm as it scales well on high-
dimensional data and suits our needs for genome-wide epistatic ana-
lysis. EBEN moderately enables epistasis analysis by using statistical
feature filtering to remove unimportant features, and a coordinate
ascent method to estimate the unknown parameters in an over-
saturated statistical model (Huang et al., 2015).

In some degree, the EBEN algorithm needs intensive hyperpara-
meter tuning to produce the optimal values of two hyperparameters
to obtain the best performance usually through cross-validation.
However, the cross-validation in the EBEN algorithm is time-
consuming as this exercise sweeps 400 combinations of 2 hyperpara-
meters step-by-step in a serial manner for each subset in n-fold
cross-validation (Fig. 2). This procedure significantly affects the
scalability of EBEN.

In this report, we use parallelization to solve the scaling issues
around the cross-validation and hyperparameter tuning of EBEN
and create parEBEN. Originally, the sequential algorithm was pub-
lished as an R package, simply named EBEN (Huang, 2015; Huang
and Liu, 2016). The original EBEN R package is only implemented
in a sequential manner, meaning that the computations of the cross-
validation and hyperparameter tuning only run one at a time on a
single core of a CPU. We have developed a parEBEN package to
allow efficient learning for analysis of epistasis with highly dimen-
sional genomic datasets. We further scale up the parEBEN algo-
rithm by filtering using a matrix multiplication step to narrow down
the search space of features in analysis of epistasis. The parEBEN
method can speed up the epistasis identification by distributing to
multiple processors.

In the following sections, we first describe the pre-computation
of the matrix multiplication step, the EBEN algorithm and introduce
the parEBEN R package (Ford, 2018). We use simulated and empir-
ical yeast data as examples to demonstrate the performance of our
newly developed parallelization method, parEBEN.

2 Materials and methods

In our analysis of epistasis, we aim to build a multi-locus model that
includes all main and epistatic terms in the model. Our multi-locus
model is different from the single-locus model for epistasis, which
has to face the problem of testing for multi-correction. Our methods
can handle the high co-linearity problem with the application of the
Bayesian prior distribution, shrinkage operator and variable selec-
tion strategy. Due to the large number of features, we first apply a
matrix multiplication strategy to generate the correlation matrix
and pre-filter unrelated features. Once we have narrowed the search
space, we use a parEBEN algorithm to accelerate the search for sol-
utions of the model with reduced features.

Our multi-locus model includes all main and epistatic effects but
we include a step to first remove unrelated features and prioritize
related features. To achieve this, we first apply the matrix multipli-
cation to calculate the correlation matrix for pre-filtering the unre-
lated features, and then use a parEBEN algorithm that serves as the
core algorithm for the estimation of the main and epistatic effects.

The epistasis model is constructed as below, which is summar-
ized by Equation (1) with main and pairwise interaction terms:

y ¼ lþ
X

Xpbp þ
X
i 6¼j

XiXjbe þ e: (1)

Here, y represents a single trait under study, which is an N � 1
matrix. l is the mean of the trait. Xp denotes the pth genotype ma-
trix of genetic variants which is N�P with N samples and P genetic
variants, and bp denotes the main effect of genetic variants. Xi and
Xj denote the genotype vectors of two different genetic variants in N
samples. be denotes the epistasis effect between these two genetic
variants Xi and Xj. e denotes the residual effect that follows the nor-
mal distribution N � ð0; r2

0Þ. To illustrate our strategy, we rewrite
Model (1) as a simplified format which is used in the workflow
(Fig. 1).

y ¼ lþ
X

Xbþ e; (2)

where X ¼ cðxp;xixjÞ and b ¼ cðbp; beÞ.
This workflow includes two strategies in our method scheme to

solve this Model 1. Our strategies combine the matrix multiplication
pre-computation step and the parEBEN algorithm, which is proven
to greatly improve the genome-wide epistasis analysis using com-
parative large genomic datasets. Figure 1 illustrates our workflow
including the following four steps.

Step 1: we construct the statistical model including main and epi-
static effects.

Step 2: a matrix multiplication strategy is applied to quickly pre-
compute the correlation matrix between all features and dependent
variable and filter features using a pre-specified value.
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Step 3: we use the features output from Step 2 to construct the
reduced statistical model, and use parEBEN to solve the reduced
model.

Step 4: we output the significant main and epistatic features for
the final result.

Note that the steps above in our workflow can be run iteratively.
In other words, this workflow is flexible to include not only pairwise
epistasis analysis (i.e. the nonlinear relationship between two genetic
variants regarding their contribution to a trait) but also multi-loci
epistasis analysis (i.e. the nonlinear contribution to a trait from
more than two genetic variants). With the newly parallelized
method as we describe later, our workflow is well posed to conduct
multi-locus epistasis analysis in addition to main analysis on large
genomic datasets.

3 Algorithm

3.1 EBEN algorithm
We use the EBEN algorithm to identify the main and epistatic effect
of the comparative highly dimensional genomic data (Huang et al.,
2015). Here, we introduce five main steps of the EBEN algorithm.
More details regarding EBEN models can be found in Huang et al.
(2015). The first step is the initialization step. We initialize three
model parameters, l ¼

PN
i¼1 ŷi=N; r2

0 ¼ 0:1� ~yT ~y=N, and
~y ¼ ŷ � l. l denotes the mean trait of population; ~y denotes the ini-
tial dependent variable; r2

0 represents the variance of the model and
can be initialized as a very small number (Huang et al., 2015).

Second, EBEN starts with the feature with the highest correlation
with the dependent variable, so we initialize the features sets as
k ¼ argimaxfjxT

i ~yj;8ig. Here, N is the number of samples and xi

denotes the vector of ith feature in genotype matrix.
In the third step, we calculate the posterior probabilities of un-

known model parameters using the posterior distributions of un-
known parameters in Equation (3) and the log posterior distribution
of ~ap in Equation (4), according to their prior distributions

(Huang et al., 2015). ~ap is the element of ~a which can be calculated
through r2

p (Huang et al., 2015). In the log posterior probability,
Equation (4), sp and qp can be calculated from C, which is the co-
variance matrix of y calculated by the given ~a in Equation (4):

pðhjŷÞ / pðŷjl;b; r2
0ÞpðlÞpðr2

0Þpðbj~r2Þpð~r2jk1; k2Þ; (3)

Lð~apÞ ¼
1

2
log

~ap

~ap þ k1 þ sp
þ

~qp
2

~ap þ k1 þ sp

" #
� k2

~ap
: (4)

In the fourth step, we derive the optimal estimate of ~ap as in
Equation (5) through maximizing Lð~apÞ (Huang et al., 2015):

~a�p ¼
r; if q2

p � sp > k1 þ 2k2

1;otherwise
:

�
(5)

Here, r can be calculated according to the sp, qp, k1 and k2. From
Equation (5), bp will be reduced to zero if the ~a�p is infinite. During
the iterations, the algorithm will find a new âp according to
Equation (6) (Cai et al., 2011):

j ¼ argpmaxfDLð~a�pÞ ¼ Lð~a�pÞ � Lð~aðnÞp Þg: (6)

If ~a�p is finite, feature p will be kept in the model; otherwise fea-
ture p is deleted from the model. Three convergence criteria, (i) not
new finite ~ap is outputted; (ii) the difference of ~ap between consecu-
tive iterations is less than a pre-specified value and (iii) the difference
of Euclidean norm between consecutive iterations is less than a pre-
specified value. In addition, we will use cross-validations to deter-
mine the optimal value of hyperparameters k1 and k2 (Equations 7
and 8) to get the best performance (Huang et al., 2015). According
to (Huang et al., 2015), the original algorithm of EBEN proposed
that the model can be optimized by performing a grid-based search
of the two parameters. Specifically, the model is optimized by seek-
ing a solution by decreasing the initial value of k to 0.001 evenly in
20 steps and decreasing the initial value of v from 1 to 0 by step of
0.05 (Cai et al., 2011; Huang et al., 2015).

k1 ¼ ð1� vÞk; (7)

k2 ¼ ðvÞk; (8)

where,

k ¼ argjmaxjxT
j ðy� lÞj and v�½0; 1�ðstep size : 0:05Þ: (9)

In the last step, the algorithm performs a hypothesis test, t-test,
using the non-zero coefficients b and covariance matrix C to denote
the final significant b corresponding to significant features selected.

3.2 Feature filtering strategy
Due to the comparably large-scale genomic data, we first use a ma-
trix strategy that pre-computes the correlation matrix using fast ma-
trix multiplication to conduct a pre-filtering procedure, which can
first narrow down the search space of genomic data. The matrix
multiplication accelerates the filtering of the main term and especial-
ly the pairwise epistasis term, which is similar to a strategy used in
Matrix eQTL (Shabalin, 2012). In Model 1, we calculate the correl-
ation matrix between each feature and the phenotype, which is cal-
culated using Equation (10),

r ¼ corðXi;YÞ ¼
P
ðXi � �XÞðYi � �Y ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðXi � �XÞ2

P
ðYi � �Y Þ2

q : (10)

We can have Equation (11) if both the feature X and phenotype
Y are standardized,X

Xi ¼ 0
X

X2
i ¼ 1

X
Yi ¼ 0

X
Y2

i ¼ 1: (11)

So, the correlation between features and phenotype can be
defined as the inner product (Equation 12).

Fig. 1. The figure shows the full workflow of our method that combines two strat-

egies for epistasis analysis

Fig. 2. The time bottleneck due to the serial nature of the original EBEN algorithm
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r ¼< X;Y > : (12)

The inner product will quickly generate the correlation matrix
through matrix multiplication XT

ðn;pÞYðn;1Þ, which can be used to pre-
filter unrelated features according to the significance level of hypoth-
esis test, and the features will be kept if the corresponding absolute
jrj value passes the hypothesis test. From Equations (10) and (12),
we can infer that the pre-computing and pre-filtering step as the
inner product of matrix manipulation would not affect the correl-
ation between features and phenotype. Through this step, we can
also remove the effect of irrelevant features on epistasis identifica-
tion algorithm. This procedure can accelerate the analysis by nar-
rowing down the number of features and will not affect the epistasis
analysis result given that only unrelated features are removed, but
related features remain in the epistasis model. For simulation data,
we use the P-value¼ 0.05 as the threshold value for both main effect
and epistatic effect. In yeast real data analysis, we implemented the
empirically tune threshold value of 0.08 as the threshold value.

3.3 parEBEN method
The EBEN algorithm was developed for handling multicollinearity
in generalized linear regression models. It can be used in QTL and
epistasis analysis, which is implemented in the EBEN R package.
This package includes functions to generate the elastic net for both
binomial and Gaussian priors. These functions are efficient and do
not require large amounts of computational time. However, the
package also includes functions for the cross-validation. While es-
sential, this step is a considerably more complex task. The cross-
validation functions perform a sweep to determine hyperparameters
and minimize prediction error. More specifically, an n-fold cross-
validation sweep is performed to minimize error by trying combina-
tions of two hyperparameters (k1 and k2) in a stepped manner
(Fig. 2). Experimentally, it has been shown that this can take an
extended amount of time, especially on larger datasets (as seen in
genomics-based problems). To combat this complexity issue, the
parallelization of the cross-validation functions is performed by
employing parallel packages in R to accelerate the EBEN algorithm.

We parallelized the EBEN method, and packaged this function-
ality as an independent package for R named parEBEN. The origin-
al EBEN package’s EBelasticNet.GaussianCV function contains
logic to halt the sweep of further tests of k1 for a given k2 if the cur-
rent iteration’s MSE is greater than the MSE of the previous iter-
ation plus the standard error of the previous iteration. This means
that the original EBEN package may not actually perform the
hyperparameter sweep of all 400 iterations (as the algorithm dic-
tates), but only a subset of the combinations of k1 and k2. This
results in an output of ‘optimal’ parameters that may only be locally
optimal rather than globally optimal. It is presumed that this logic
was included to speed up the processing time of the Gaussian cross-
validation. The binomial cross-validation function of the EBEN
package always performs the full search over all 400 iterations of k1

and k2.
In our parEBEN package, however, the functionality to perform

a local search (as is done in the Gaussian prior version of the EBEN
cross-validation function) or a global search is included. If the global
search is selected in the parEBEN package, all 400 iterations are
tested, regardless of the presence of a locally minimum error.

The level of parallelism for the parEBEN package depends on
type of hyperparameter search being performed: local search versus
global search. If a global search is performed, each hyperparameter
combination of k1 and k2 as well as each of the n-folds of the cross-
validation is fully distributed to separate compute contexts (proces-
sor cores or machines). Specifically, all 400 combinations of k1 and
k2 are evaluated for each of the n-folds of data.

If a local search is performed, the package will only evaluate a
subset of hyperparameter combinations and thus only the n-folds of
the data of the cross-validation are parallelized. This is due to the
behavior of comparing one iteration against another and stopping
the search early if the error is getting worse. Specifically, after a
combination of k1 and k2 is evaluated, the next combination (using
the same k1 with a different k2) will be compared to the previous

combination. If the current hyperparameter set has a higher error
than the previous iteration, the search will cease for that value of k1

and a new iteration will begin using the next value for k1. Due to the
need to compare a current iteration’s error metric with the previous
iteration in the local search, the hyperparameter tuning in this mode
cannot be parallelized. Thus, the gain in speed due to parallelism is
limited to the number of folds in the cross-validation. In other
words, performing an n-fold cross-validation on an n core processor
will have a similar overall performance on a processor > n cores.
The consideration of performing a local versus global search greatly
depends on the complexity of the data being analyzed. For example,
a local search may be sufficient on smaller datasets, especially when
the algorithm opts to only test a smaller subset of hyperparameter
combinations. When a larger computing environment is available,
the global search may be a better option, since this search can scale
to a higher degree of parallelism and may produce a smaller error
than the local search.

4 Experiments

We first conduct two sets of simulations using the real yeast genomic
data to compare the performance of parEBEN against the original
serial EBEN package. The simulation results show that parEBEN
outperforms EBEN with no negative impact on the detection power
and estimates of effects. Next, we analyze the same full yeast gen-
ome data using our workflow. Our results are consistent with previ-
ous studies. We also compare the computing time of different
dimensions of data including various sample sizes and feature num-
bers between serial EBEN and parEBEN, as shown in Figure 4.

4.1 Simulation experiments
Using the full real yeast data (see Section 4.2) in the first set of simu-
lation experiments (Sim I), we verified our workflow of combining
the matrix multiplication step with parEBEN to determine if we can
quickly identify the main and epistatic effects with relative power
but with no negative effect (as compared to the traditional EBEN).
Then, we conducted the second simulation set (Sim II) for compar-
ing the performance between EBEN and parEBEN on various
sample sizes, number of features and number of folds in cross-
validation. Sim I compares the performance of serial EBEN and
parEBEN, looking at the accuracy and efficiency of the whole work-
flow for identifying epistasis. QMDR (Gui et al., 2013), a represen-
tative of classical machine learning methods for fast epistasis
analysis on quantitative traits, was chosen to compare and evaluate
the efficiency and accuracy of parEBEN. Sim II gives a comprehen-
sive overview of the computing time comparison between EBEN
and parEBEN.

Sim I serves to demonstrate the detection power of main and
epistasis effects using our workflow, including the first pre-filtering
step and parEBEN package. We randomly sample 150 individuals
and 283 features from the full real dataset. Four main and four epis-
tasis effects with different heritabilities (5%, 8%, 10% and 15%)
are set up along the whole genome. This simulation experiment is
replicated 100 times for measuring the statistical power of detection
for each effects as well as the computing time for each run of serial
EBEN, parEBEN and QMDR.

In Sim II, we randomly select different sample sizes (n¼200,
400, 600, 800 and 1000) and features (P¼300, 600, 900 and 1200)
from the full real yeast dataset to conduct different levels of cross-
validation folds (n-folds ¼ 5, 7 and 10) to assess the performance of
parEBEN. Thus, a total of 60 simulation experiments were run in
Sim II.

Sim I was completed on a macOS machine with 16 GB of RAM
and an Intel Core i5 CPU. The CPU contains 4 cores at 2.7 GHz
with 1 thread per core (for a total of 4 parallelized threads). A
5-fold cross-validation is used for testing both serial EBEN and
parEBEN. For QMDR, we set the option for epistasis analysis to be
2 to identify pairwise epistasis between any two genetic features as a
focus of this study. The simulation results from Sim I show our strat-
egy of combing the matrix multiplication processing and the
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application of parEBEN can obtain reasonable detection power of
main and epistasis effects even with small heritabilities (Fig. 3) using
parEBEN. QMDR can only identify the main and epistatic effects
where heritabilities were >10%, even though the computing time of
QMDR was significantly lower than serial EBEN and parEBEN
(only �1.9 s for each run). Moreover, the computing time, an aver-
age of 73.8 s for each run, is reduced by about 50% with the appli-
cation of parEBEN, while it needs an average of 132.36 s of serial
EBEN for each run. The timing tests for Sim II are performed on a
macOS machine with 32 GB of RAM and an Intel Core i7 CPU. The
CPU contains 4 cores at 3.5 GHz with 2 threads per core (for a total
of 8 parallelized threads). Both EBEN and parEBEN were installed
on R version 3.3.3 using the Intel Math Kernel Library for parallel
mathematical computing. The simulation results from Sim II show
that a drastic time reduction can be seen in most cases by paralleliz-
ing the iterations of the cross-validation over multiple CPU cores or
multiple machines of a computing cluster (Fig. 4). For some cases,
the elapsed time of parEBEN is almost the same or a little more
than serial EBEN, and this might be due to the fold numbers and
the cores we use for parallelization procedure. We do not see a sig-
nificant speed gain if the number of cores we use is larger than or

equal to the number of folds when performing a ‘local’ hyperpara-
meter sweep. However, Figure 4 shows the larger deduction for the
computing time if we use the larger fold numbers for cross-
validation on higher dimensional genomic data. This is also the case
when performing a ‘global’ search as there is more opportunity to
scale up the processing with parallelization. Note that for some
increases sample size, the processing time may decrease, this is due
to the trade-off between parallelization and the computational over-
head to manage the parallelism. Specifically, if the overhead is equal
between two different size datasets, the larger dataset may take
slightly less time to process as this is more effective use of the paral-
lel processes. In other words, certain larger datasets may require the
same amount of management overhead to parallelize as a smaller
dataset, thus offsetting the extra computational work from the
larger amount of data. Also, the computing time heavily depends on
the structure of data including the ratio between sample size and fea-
tures, correlation of features, the dropped unrelated features, etc.,
which can affect the algorithm iterations embedded in the package.

4.2 Real yeast data
We use a real yeast dataset (Bloom et al., 2015) as an example to
demonstrate the real scenario for using our method and parEBEN
package. This yeast dataset includes 28 220 SNP genotypes and
4390 segregants and are phenotyped with 20 quantitative traits with
two replicates from Bloom et al. (2015). We analyze one phenotype
being related to yeast growth trait measured as Zeocin level in this
study. In total, 3844 samples are left after removing missing data.
After the matrix multiplication filtering step, we have 11 597 fea-
tures remaining, made of 11 396 main and 201 epistatic effects. For
the empirical reduced yeast data, it only takes around 14 h to gener-
ate the epistasis estimates with parEBEN, while it takes �42 days to
obtain the final main and epistasis estimates using EBEN as seen in
Figure 5. The computing time shown in Figure 5 is only for the
parEBEN portion of the analysis, not including the matrix multipli-
cation step. For the matrix multiplication calculation step, we can
use the serial manner script for estimating main effects. We parallel-
ize the script for the matrix multiplication step which is similar to
the ‘grid’ search, which means the computing time of the matrix
multiplication step depends on the size of the ‘grid’.

On the real yeast data, our parEBEN workflow successfully
identified 31 main effects and 3 epistatic effects associated with
Zeocin levels in yeast (Table 1). Specifically, 19 of these main effects
and 1 epistasis were previously reported by Bloom et al. (2015) and
Forsberg et al. (2017). For example, SNP chrVIII:114 934 with
main effect identified in our result has been previously shown to be
associated with Zeocin level variation (Forsberg et al., 2017). SNP
chrVIII:114 934, which maps to the gene GPA1, was reported to be
a hub QTL in a Zeocin involved network. The mapped gene GPA1
was reported to affect the yeast response to mating pheromones,

Fig. 3. The detection power of main and epistasis with application of matrix multi-

plication and parEBEN, serial EBEN or QMDR. Blue bars show the detection

power for QTL with different heritabilities of parEBEN; Magenta bars show the de-

tection power of QTL with different heritabilities of serial EBEN; Yellow bars

show the detection power of QTL with different heritabilities; mar-5 means the

main effects with heritability of 5% and epi-5 means the epistatic effect with herit-

ability of 5%. (Color version of this figure is available at Bioinformatics online.)

Fig. 4. The elapsed times (in seconds) between serial EBEN and parEBEN in Monte

Carlo simulation experiments. Three fold numbers 5, 7 and 10 are corresponding to

each row, and four sample sizes 300, 600, 900 and 1200 are corresponding to each

column. Gray lines denote the elapsed time from serial EBEN; Blue lines denote the

elapsed time from parEBEN. (Color version of this figure is available at

Bioinformatics online.)

Fig. 5. Computing time comparisons of serial EBEN and parEBEN on the real yeast

data

Fig. 6. An example of epistasis effects between two SNPs and their mapped genes.

Purple triangles denote the SNPs, and red circles denote the genes. The black bold

solid line denotes the epistasis identified by our workflow; the blue solid line denotes

the interaction verified by other studies; the black dashed line denotes the high LD

relationship between two SNPs and the black solid lines denote the genes to which

the SNPs map. (Color version of this figure is available at Bioinformatics online.)
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which corresponds to the yeast pheromone response pathway and
further affects fitness as measured by Zeocin production in yeast
(Bloom et al., 2015; Forsberg et al., 2017; Lang et al., 2009).
Another SNP, chrXIII:751 466, associated with Zeocin level was
reported to overlap with the refined QTL in an earlier study
(Forsberg et al., 2017). In addition, we found an epistatic effect be-
tween two SNPs, chrIV:998 484 and chrVIII:100 079 (Fig. 6). It has
been reported that (Bloom et al., 2015) SNP chrIV:998 484 had epi-
static effects with both chrVIII:118 187 and chrVIII:114 934. We
found the SNP chrVIII:100 079 has a high linkage disequilibrium
(LD) with both SNPs chrVIII:118 187 and chrVIII:114 934, which
R2 values were 0.876 and 0.917, respectively. Moreover, gene
TRM8, mapped to SNP chrVIII:100 079, was also reported to be
related to the Zeocin level of yeast. Another two genes, GPA1 and
STP2, which were mapped to SNPs chrVIII:114 934 and

chrVIII:118 187, were reported to affect the Zeocin levels of yeast
(Bloom et al., 2015; Forsberg et al., 2017; Lang et al., 2009). These
findings help to demonstrate that our identified main and epistatic
effects results reflect real biological signals. In addition, these newly
identified SNPs with main or epistasis effects on the Zeocin levels of
yeast may provide a new candidate pool of potential genetic factors
that may impact Zeocin levels in yeast awaiting for further experi-
mental evaluation and validation. In summary, the empirical yeast
data demonstrate the reality of identification of epistasis by parallel-
izing the iterations of the cross-validation over multiple CPU cores
or multiple machines of a computing cluster.

In summary, parEBEN performed better in identifying small ef-
fect SNPs associated with a quantitative trait comparing with
QMDR, which are essential genetic components for the analysis of
genetic architecture of complex traits and human diseases. In our
Sim I, QMDR can achieve enough power in identifying main and
epistatic effects where the heritability in the trait under study is
>10%. This observation was supported by an earlier study (Gui
et al., 2013), which showed the success rate (power) of QMDR was
�80% when the heritability was 40% with sample sizes ranging
from 400 to 1600. Our parEBEN pipeline can achieve relative
power (>20%) even when the heritabilities of main and epistatic
effects were 5%. Moreover, numerous studies report that human
diseases and complex traits are polygenic traits, which are controlled

Table 1. Summary of the main and epistatic effects results

chr1 position1 chr2 position2 b̂ t-Value P-value Literature

II 503 196 �0.0249 2.0147 0.0440

III 128 224 0.0463 2.9652 0.0030 Bloom et al. (2015)

IV 1 471 524 0.0386 3.6806 0.0002 Bloom et al. (2015)

V 212 373 �0.0361 1.9957 0.0460

VII 842 206 �0.0387 2.3022 0.0214 Bloom et al. (2015)

VIII 114 934 0.0827 2.8283 0.0047 Bloom et al. (2015) and

Forsberg et al. (2017)

X 92 630 �0.0308 2.0381 0.0416

X 123 590 �0.0411 2.0417 0.0412

X 383 417 0.0250 2.1278 0.0334

X 549 542 �0.0487 2.3339 0.0197 Bloom et al. (2015)

XI 466 269 �0.0262 2.7424 0.0061

XI 532 119 �0.0461 2.0182 0.0436 Bloom et al. (2015)

XI 579 622 0.0273 2.3398 0.0193

XII 141 390 0.0342 2.1336 0.0329 Bloom et al. (2015)

XII 569 539 0.0503 2.1966 0.0281 Bloom et al. (2015)

XIII 23 620 0.0686 2.2181 0.0266 Bloom et al. (2015)

XIII 24 565 0.0956 2.7379 0.0062 Bloom et al. (2015)

XIII 25 025 0.0633 2.0706 0.0385 Bloom et al. (2015)

XIII 25 638 0.0923 2.6961 0.0070

XIII 49 898 �0.0633 2.4692 0.0136 Bloom et al. (2015)

XIII 285 831 �0.0400 4.1116 0.0000 Bloom et al. (2015)

XIII 398 491 �0.0400 2.6333 0.0085 Bloom et al. (2015)

XIII 618 430 �0.0404 2.6718 0.0076

XIII 697 993 �0.0479 1.9661 0.0493

XIII 701 244 �0.0528 2.0161 0.0439 Bloom et al. (2015)

XIII 751 466 0.0723 4.0617 0.0000 Bloom et al. (2015) and

Forsberg et al. (2017)

XV 74 338 �0.0321 2.6910 0.0072

XV 309 869 0.0233 2.5929 0.0096 Bloom et al. (2015)

XV 758 119 0.0242 2.0074 0.0448

XV 828 529 0.0392 2.0774 0.0378 Bloom et al. (2015)

XVI 208 747 0.0729 4.5646 0.0000 Bloom et al. (2015)

XI 521 261 II 718 018 0.0299 3.2682 0.0011

VIII 100 079 IV 998 484 0.0619 5.5940 0.0000 Bloom et al. (2015)

VIII 517 419 VII 167 895 �0.0325 3.3301 0.0009

Note: The first four columns list the significant main and epistatic effects. The rows with one SNP denote main effects, while those with two SNPs represent epi-

static effects.

Table 2. QMDR simulation results

Type Locus1 Locus2 Heritability Power (%)

Main 138 0.30 100

Epistasis 95 177 0.45 95

Note: Power means that the detection power for main and epistasis effects.
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by minor signals spread across chromosomes (Boyle et al., 2017; Liu
et al., 2019). Thus, comparing with a faster method of QMDR, our
parEBEN strategy can better dissect the genetic architecture under-
lying complex traits and human diseases.

5 Discussion

In summary, our newly proposed method of combining the matrix
multiplication and parallelization strategies provides a solution to
speed up complex analysis like epistasis analyses in mining compara-
tive large biological data. We compared our combined methods
against a classical epistasis method named QMDR. Although very
fast, QMDR performs well in scenarios where the heritability is
relatively high. We ran an additional simulation with data that only
includes one main effect and one epistasis effect with large heritabil-
ity. Results showed that QMDR can reach a similar detection power
to parEBEN (Table 2) where the heritability is relatively high. In
summary, QMDR can achieve high detection power on effects with
large heritability, which is consistent with simulation results in Gui
et al. (2013). In real biological settings, effects with small heritability
are ubiquitous and are the origins of polygenic inheritance such as
height. Therefore, it is important to mine the effects with small herit-
ability in real genetics data where parEBEN shows superior
performance.

In our parEBEN workflow, we relieve some computational com-
plexity by first reducing the dimensionality of the genomic data
using our matrix multiplication strategy, which converts the simple
statistical test method (t-test) for each feature to a single matrix
multiplication step for all features, thus accelerating the pre-filtering
procedure. We use a pre-specified value as a threshold to filter the
features, which is considered to be the significant P-value as 0.01 or
0.05, depending on the sample size and the full distribution of cor-
relation between features and phenotype. This setting can be later
improved by changing this static threshold to a hyperparameter that
can be tuned in the optimization process of solving the model. We
then apply parEBEN as the parameter estimation method to solve
the reduced model. By distributing the computational workload of
each iteration of the n-fold cross-validation and hyperparameters
sweep to individual compute contexts (cores on a single CPU or mul-
tiple CPUs in machines in a cluster), a drastic time reduction can be
seen with no negative effect on the resulting EBEN model(s).

Our parEBEN package can run on multiple platforms, and all
foreach-related methods are supported, such as doParallel
(Revolution Analytics and Weston, 2015a), doMPI (Weston, 2017)
and doSNOW (Revolution Analytics and Weston, 2015b) over mul-
tiple CPU cores or multiple machines of a computing clusters
(Microsoft and Weston, 2017). Hence, the genome-wide association
analysis and genome-wide QTL mapping analysis of complex bio-
logical real datasets can be analysed with the application of this
kind of linear regression model using parEBEN due to the reduction
of computational time. This allows for larger biological datasets to
be analyzed as opposed to limiting the research due to time and
computing resource constraints. Thus, parallelizing the cross-
validation of the EBEN models will be greatly beneficial in future
research using the cross-validated EBEN method.

The parEBEN package and corresponding data for this study is
available at https://github.com/shilab/parEBEN.

In future work, we would like to incorporate the covariates such
as known and unknown confounders, population structure and the
pedigree information into our model to improve the accuracy of our
method. We can also extend the current epistasis analysis models to
incorporate prior biological resources, such as pathway, gene net-
work and protein–protein interaction, for modeling or predicting a
particular trait or phenotype. In addition to quantitative traits, we
will extend our model for solving categorical dependent variables
that can be applied to many broader biological problems such as the
tolerance analysis in plants and the pathological stage analysis in
cancer studies. Future enhancements to our parEBEN package will
also include additional parallelization capabilities. We will add in
further connectivity capabilities to other parallel platforms such as
Apache Spark (Zaharia et al., 2016) and will explore the utility of

graphics processing unit-based processing to further improve the
performance gain of our method.
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