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Abstract

Summary: Bulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be
expressed in a cell type-specific and allele-specific fashion. Single-cell gene expression assays have the potential to
further resolve these expression patterns, but currently available methods do not perform allele-specific quantifica-
tion at the molecule level. Here, we present scHLAcount, a post-processing workflow for single-cell RNA-seq data
that computes allele-specific molecule counts of the HLA genes based on a personalized reference constructed from

the sample’s HLA genotypes.

Availability and implementation: scHLAcount is available under the MIT license at https:/github.com/

10XGenomics/scHLAcount.

Contact: martinezbarrio.alvaro@gmail.com or ian.t.fiddes@gmail.com
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The class I and class II human leukocyte antigen (HLA) genes play
an important role in antigen presentation in the immune system, and
are highly variable in the human population with hundreds of cata-
loged alleles (Robinson et al., 2015). Studies using bulk RNA-seq
data have shown that HLA genes are expressed at different levels
among human tissues and immune cell types (Boegel et al., 2018),
and allele-specific expression (ASE) has been observed in lympho-
blastoid cell lines (Aguiar et al., 2019; Lee et al., 2018). However,
expression of these genes may be underestimated in RNA-seq
experiments due to poor read mapping caused by sequence diver-
gence between the standard reference genome and the alleles in the
reads.

It is particularly useful to understand ASE of HLA genes in the
context of single cells and particular cell types. For example, cell
type-specific HLA class I and class II expression can influence im-
munotherapy response in cancer (Chowell et al., 2018; Johnson
et al., 2016). scHLAcount enables allele-specific analysis of the HLA
genes in single-cell gene expression data, such as those produced by
the 10x Genomics Single Cell Immune Profiling (5’ capture) and
Gene Expression (GEX) (3’ capture) Solutions. Based on the geno-
types of the sample, scHLAcount constructs a personalized reference
and computes allele-specific molecule counts for HLA class I and
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class IT genes. This output can be used to study ASE of HLA genes at
the single-cell resolution.

2 Implementation

scHLAcount is a post-processing workflow for single-cell gene ex-
pression data that produce allele-specific molecule counts for the
main HLA class I and class II genes in each cell (Fig. 1). Users pro-
vide the specific HLA alleles present in their sample of interest.
These can be obtained by specialized molecular tests, such as
sequence-specific oligonucleotide probe PCR, sequence-specific
primed PCR, or Sanger sequence-based typing (Erlich, 2012).
Alternatively, algorithms for sequence-based typing from next-
generation sequencing reads of the genome, exome or transcriptome
that use allele databases to infer genotypes can be employed
[reviewed by Bauer ez al. (2018)]. Tian et al. (2019) attempted to
genotype individual cells for HLA class I using scRNA-seq data, but
found that most cells did not have adequate read coverage.
Combining reads from many cells in an scRNA-seq experiment as a
‘pseudo-bulk’ dataset for genotyping is an interesting avenue for fur-
ther research.

Based on the genotypes provided, scHLAcount extracts the cod-
ing and genomic sequences of those alleles from the IMGT/HLA
database (Robinson et al., 2015) and builds two colored de Bruijn
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Overview of scHLAcount Workflow
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Fig. 1. scHLAcount takes as input an allele sequence database (e.g. IMGT/HLA),
genotypes for the sample being evaluated, cell barcodes and aligned reads (e.g. BAM
file from Cell Ranger). Allele sequences and relevant reads are extracted, and pseu-
doalignment is used to produce an allele-specific molecule count matrix. A snippet
of the output matrix is shown for two cell barcodes and one gene (HLA-A) with two
alleles

graphs, one containing the coding sequences (CDS) and one contain-
ing genomic sequences. In addition, scHLAcount uses the read align-
ments generated by scRNA-seq analysis tools such as Cell Ranger.
Reads associated with valid cell barcodes and reported as aligning to
the region of the genome containing the HLA genes are extracted
from the alignment file and pseudoaligned to the CDS graph follow-
ing the approach described by Bray et al. (2016). This yields the set
of alleles in the reference graph that could have generated the read,
also referred to as the equivalence class. If there is no significant
alignment to the CDS graph, pseudoalignment is attempted to the
genomic sequence graph. In 5 GEX datasets, we observed up to
12% of aligned reads were only aligned to the genomic sequence
graph and not the CDS graph. In 3’ GEX datasets, up to 80% of
aligned reads were aligned to the genomic sequence. This genomic
alignment step is intended to rescue reads that may be haplotype
specific in 3’ or 5’ untranslated regions (UTR). It also provides a
mechanism to handle reads from pre-mRNA in single nuclei RNA-
seq libraries. Parameters and approaches to missing genotypes are
discussed in Supplementary Material S1.

Reads sharing a cell barcode and unique molecular identifier
(UMI) are assumed to originate from the same RNA molecule. At
recommended sequencing depths with modest sequence saturation,
there are typically 1-3 reads per UMI. Individual reads may have
different equivalence classes according to their pseudoalignment.
We ignore reads whose equivalence class contains more than one
gene, which we observed was 15-45% of aligned reads in 5" GEX
datasets and 10% of reads in 3’ GEX. If more than half of the reads
from a molecule are assigned to a particular gene, that molecule
will be assigned to one of its input reference alleles (e.g. HLA-A
02:01), based on the constituent reads’ equivalence classes. In the
case of ambiguity, it will be assigned to that gene (e.g. HLA-A) in-
stead. The output is a sparse molecule count matrix where each col-
umn corresponds to a barcode in the provided cell barcode list, and
each row corresponds to an allele. See Supplementary Material S2

for a more detailed comparison of 3’ and 5 GEX data with
scHLAcount.

3 Results

To illustrate the applications of scHLAcount, we reanalyzed two previ-
ously published datasets. First, we applied our method to five acute
myeloid leukemia (AML) samples (Petti et al., 2019) (Supplementary
Material S3). Using the scHLAcount allele-specific molecule counts,
we detected cell type-specific allele bias. Detailed results from one pa-
tient are shown in Supplementary Figure S2 and Tables S1-S3. Second,
we reexamined data from two Merkel cell carcinoma (MCC) patients
(Paulson et al., 2018) (Supplementary Material S4). We extend the ori-
ginal finding that HLA class I expression is lost in tumor cells com-
pared with non-tumor cells and use scHLAcount allele-specific
molecule counts to show that this expression loss may be allele-specific
(Supplementary Fig. S3 and Tables S4-S6).

4 Conclusion

scHLAcount provides a simple way to assign reads from scRNA-seq
experiments to HLA alleles given genotypes, and is a powerful tool
for investigating ASE, loss of heterozygosity and mutational or epi-
genetic suppression of HLA expression in tumor immune-evasion.
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