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Abstract

Summary: Most eukaryotic genes produce alternative polyadenylation (APA) isoforms. APA is dynamically regu-
lated under different growth and differentiation conditions. Here, we present a bioinformatics package, named
APAlyzer, for examining 30UTR APA, intronic APA and gene expression changes using RNA-seq data and annotated
polyadenylation sites in the PolyA_DB database. Using APAlyzer and data from the GTEx database, we present APA
profiles across human tissues.

Availability and implementation: APAlyzer is freely available at https://bioconductor.org/packages/release/bioc/
html/APAlyzer.html as an R/Bioconductor package.

Contact: rjwang.bioinfo@gmail.com or btian@wistar.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Most protein-coding genes in eukaryotes produce alternative polya-
denylation (APA) isoforms (Gruber and Zavolan, 2019; Tian and
Manley, 2017). APA events in 30UTRs alter 30UTR size and content,
whereas those in introns additionally change coding sequences.
These two types of APA are dynamically regulated across different
cell types and under various biological conditions (Ji et al., 2009;
Sandberg et al., 2008; Shepard et al., 2011; Singh et al., 2018;
Zhang et al., 2005). While sequencing methods focused on the 30

end provide precise information about the cleavage and polyadeny-
lation site (PAS) of a transcript, RNA-seq data have proven effective
in revealing APA changes (Cass and Xiao, 2019; Guvenek and Tian,
2018; Ha et al., 2018; Katz et al., 2010; Singh et al., 2018; Xia
et al., 2014). However, poor PAS annotation and intrinsic limita-
tions of de novo PAS prediction are major challenges. Here, we de-
velop a bioinformatics toolkit, named APAlyzer, which utilizes the
comprehensive PAS collection in the PolyA_DB database (http://
polya-db.org/polya_db/v3/) (Wang et al., 2017, 2018) to examine
APA events in all genic regions, including 30UTRs and introns.

2 Materials and methods

2.1 Definition of APA sites
Reference PASs in genomes, including those in 30UTRs and introns,
are used by APAlyzer for APA analysis (Fig. 1A). The REF4PAS

function converts genomic coordinates of 30UTR and intronic PASs
in the PolyA_DB database to genomic references. Conserved 30UTR
APA sites are used as default due to their high usage levels (Ara et al.,
2006; Wang et al., 2018). However, all sites could be used for com-
prehensive analysis, if required. PolyA_DB currently (version 3) con-
tains PAS coordinates in human, mouse, rat and chicken genomes.

2.2 30UTR APA
For 30UTR PASs, the PASEXP_3UTR function uses the first and last
PASs in the 30UTR (last exon only) of each gene for APA analysis
(Fig. 1B and Supplementary Text S1). The RNA-seq read density
(RD, mapped reads divided by region length) for the region between
stop codon and the first PAS, also called constitutive 30UTR or
cUTR, is calculated; so is the RD for the region between the first
and the last PASs, also called alternative 30UTR or aUTR (Fig. 1B).
30UTR APA of each gene is represented by a Relative Expression
(RE) score, which is calculated by log2(RDaUTR/RDcUTR) (Fig. 1B).
Note that users can also set read count cutoffs using the CUTreads
option in the APAdiff function to filter out genes that have a small
number of reads mapped in cUTRs or aUTRs. This may be desirable
to reduce noise that stems from genes with low read coverages.

2.3 Intronic APA
The PASEXP_IPA function is used to analyze intronic polyadenyla-
tion (IPA, Fig. 1C and Supplementary Text S2). An IPA RE is
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calculated by using log2((RDIU - RDID)/RDTE), where RDIU is read
density of intronic upstream region of IPA site, RDID is read density
of intronic downstream region of IPA site and RDTE is read density
of the constitutive region in 30 terminal exon (Fig. 1C). Note that
RDIU is distinct for the two IPA subtypes, namely, composite IPA
and cassette IPA (Fig. 1C). The use of RDID is to address potential
influence of intron retention, which is regulated by alternative splic-
ing. An IPA event is discarded if RDIU < RDID. Similar to 30UTR
APA analysis, users can set IU and TE read count cutoffs. Genomic
positions for IPA sites, 30 terminal exons, 50 splice sites and 30 splice
sites are provided in the package, based on RefSeq and Ensembl
databases (including mm9, mm10, hg19 and hg38). Users can also
generate PAS information from other sources using the PAS2GTF
function in the package.

2.4 Differential APA analysis
The APA difference of a gene between two samples or sample sets is
represented by RE difference (RED). The APAdiff function can use
different statistical methods depending on the experimental design
to assess APA significance. By default, the Fisher’s exact test is used
for a nonreplicate design, and a t-test is used for a replicate design.
P-value < 0.05 is used to call significance in both cases. To address
the multiple testing issue, users can choose Bonferroni or Benjamini
and Hochberg method to adjust P-values, using the option
p_adjust_methods. Based on REDs and P-values, APAlyzer reports
APA regulation as follows: for 30UTR APA, ‘UP’ indicates 30UTR
lengthening and ‘DN’ 30UTR shortening; for IPA, ‘UP’ indicates IPA
activation and ‘DN’ IPA suppression. ‘NC’ indicates no significant

change. Both boxplots (APABox function) and volcano plots
(APAVolcano function) can be used to visualize the result.

2.5 Gene expression analysis
APAlyzer uses protein-coding sequence reads to calculate gene ex-
pression changes to avoid the confounding situation where the same
reads are used for both expression calculation and APA analysis
(Supplementary Text S3). The related function is GENEXP_CDS.

3 Examples

3.1 APA of human gene IRF5 in differen SNP

populations
As an example, we used APAlyzer to examine APA of human IRF5
in different populations based on the single nucleotide polymorph-
ism (SNP) rs10954213. This SNP was previously shown to affect
IRF5 expression through APA (Graham et al., 2007) and, import-
antly, it is associated with the risk of systemic lupus erythematosus
(Graham et al., 2007). Consistent with a previous report (Graham et
al., 2007), using the GTEx data of blood samples (phs000424.v7
from dbGaP) (GTEx Consortium et al., 2017), we found that sam-
ples from individuals with the genotype A/A showed a much lower
RNA-seq read density in the aUTR relative to cUTR as compared to
those with G/G or G/A genotypes (Fig. 1D). This is well represented
by 30UTR APA REDs (using RE median of all samples as
reference)(Fig. 1E).

3.2 3’UTR and intronic APA profiles across human

tissues
We also systematically examined APA across human tissues using
5032 RNA-seq samples from GTEx (GTEx Consortium et al.,
2017). The median 30UTR APA REDs and IPA REDs of each sample
were used to represent the global 30UTR APA and IPA trends for
each sample, respectively. Consistent with previous reports (Zhang
et al., 2005), brain and blood samples, respectively, showed the
highest expression levels of long 30UTR isoforms and short 30UTR
isoforms, as indicated by their 30UTR REDs (Fig. 1F and
Supplementary Fig. S1A). In addition, we found that composite IPA
and cassette IPA events were generally correlated across tissues
(r¼0.84, Pearson correlation, Supplementary Fig. S1B–D), indicat-
ing similar mechanisms governing both. Notably, consistent with
previous reports (Singh et al., 2018; Zhang et al., 2005), blood sam-
ples had substantially higher IPA isoform expression for both types
than other tissues (Fig. 1F and Supplementary Fig. S1B–C). Using
combined IPA profiles (composite IPA þ cassette IPA), we observed
a modest negative correlation between 30UTR APA and IPA (r ¼
�0.39, Pearson correlation, Fig. 1F). This result indicates that while
30UTR APA and IPA in general are related, additional mechanisms,
splicing activity for example, may contribute to their distinct regula-
tion in specific tissues. Notably, brain and blood appear to be the
most important drivers for the correlation, highlighting their unique
APA mechanisms.

4 Conclusions

APAlyzer is a toolbox for APA analysis. In its current version,
APAlyzer examines APA by using RNA-seq data based on PASs
annotated in the PolyA_DB database. APAlyzer is distinct from
other existing tools in many aspects (summarized in Supplementary
Table S1), such as analysis of IPA events. We note that because dif-
ferent tools have their own strengths and weaknesses (see compari-
son of APAlyzer with Roar in Supplementary Fig. S2), users may
want to try multiple programs in their research to achieve good sen-
sitivity and specificity.

Fig. 1. APAlyzer design and examples. (A) Overall design of APAlyzer. (B)

Schematic of 30UTR APA analysis. RE, relative expression between two APA

regions; RD, read density. Constitutive regions are in blue, and alternative regions

in red. (C) Schematic of IPA analysis. Two IPA types are shown, namely, composite

IPA and cassette IPA. Note that only the constitutive region of the 30 terminal exon

(shown in blue) is used for calculation, avoiding complications from 30UTR APA.

(D) An example of 30UTR APA in human IRF5 gene that is affected by an SNP.

RNA-seq data are segregated by three SNP types. SNPs and PASs are indicated. The

SNP rs10954213 changes the PAS signal AAUAAA, as indicated. RNA-seq data

from blood samples were analyzed. (E) IRF5 30UTR REDs for three SNP popula-

tions. RED was calculated using the median of all samples as reference. P-value was

based on the Kolmogorov–Smirnov test between G/G and A/A populations. (F)

Scatter plot showing correlation between 30UTR APA REDs and IPA REDs across

human tissues. REDs are REs standardized across all samples. Tissue names are

indicated. 30UTR APA REDs and IPA APA REDs across human tissues were based

on the GTEx data. IPA REDs were based on composite and cassette IPA events com-

bined (Supplementary Fig. S1B and C). (Color version of this figure is available at

Bioinformatics online.)
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