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a b s t r a c t

The novel coronavirus disease (COVID-19) is primarily respiratory in nature, and as such, there is interest
in examining whether air pollution might contribute to disease susceptibility or outcome. We merged
data on COVID-19 cumulative prevalence and fatality rates as of May 31, 2020 with 2014e2019 pollution
data from the US Environmental Protection Agency Environmental Justice Screen (EJSCREEN), with
control for state testing rates, population density, and population covariate data from the County Health
Rankings. Pollution data included three types of air emission concentrations (particulate matter<2.5 mm
(PM2.5), ozone and diesel particulate matter (DPM)), and four pollution source variables (proximity to
traffic, National Priority List sites, Risk Management Plan (RMP) sites, and hazardous waste treatment,
storage and disposal facilities (TSDFs)). Results of mixed model linear multiple regression analyses
indicated that, controlling for covariates, COVID-19 prevalence and fatality rates were significantly
associated with greater DPM. Proximity to TSDFs was associated to greater fatality rates, and proximity to
RMPs was associated with greater prevalence rates. Results are consistent with previous research indi-
cating that air pollution increases susceptibility to respiratory viral pathogens. Results should be inter-
preted cautiously given the ecological design, the time lag between exposure and outcome, and the
uncertainties in measuring COVID-19 prevalence. Areas with worse prior air quality, especially higher
concentrations of diesel exhaust, may be at greater COVID-19 risk, although further studies are needed to
confirm these relationships.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The novel coronavirus disease (COVID-19) is an infectious dis-
ease characterized by respiratory illness that can range frommild to
serious symptoms and death (WHO, 2020a). Common symptoms
include fever, insistent cough, fatigue, sore throat, body pain, and
shortness of breath. The disease outbreak began in December 2019,
and as of June 4, 2020, there were over 6.5 million confirmed cases
around the world and more than 387,000 confirmed deaths (WHO,
2020b). The United States has been particularly impacted by the
disease, with more than 1.8 million confirmed cases and more than
107,000 deaths as of June 4, 2020 (CDC, 2020).

COVID-19 is primarily a respiratory disease, and as such, it has
been of interest to understand whether and how air pollution
might be a contributing factor to disease susceptibility or outcome
(Contini and Costabile, 2020). Conticini et al. (2020) suggested that
e by Payam Dadvand.

x).
air pollution might have been a contributing factor to the high
number of COVID-19 fatalities in Italy, and Ogen (2020) reported
that high ambient levels of nitrogen dioxide (NO2) were associated
with COVID-19 mortality in Italy and Spain. Zhu et al. (2020) re-
ported associations between particulate matter<2.5 mm and
<10 mm (PM2.5 and PM10), NO2 and ozone (O3) and counts of
confirmed COVID-19 cases in China. In the United States, Wu et al.
(2020) presented results as of April 5 from a county analysis
showing higher COVID-19 fatality rates in association with PM2.5.

Wemay consider possiblemechanisms for associations between
air pollution types or sources and COVID-19 susceptibility.
Contaminated groundwater from hazardous waste sites can
migrate through soil and into buildings via vapor intrusion,
resulting in indoor air contamination (Johnston and MacDonald
Gibson, 2015). Hazardous waste sites are also sources of air pollu-
tion (Fowler et al., 2010; Porta et al., 2009). There is evidence that
air pollution, including PM2.5, NO2 and diesel PM increases sus-
ceptibility to bacteria and viruses in the respiratory system
(Castranova et al., 2001; Chauhan and Johnston, 2003; Jaspers et al.,
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2005; Yang et al., 2001; Yang et al., 2020). Persons with pre-existing
respiratory conditions are most susceptible. Diesel exhaust parti-
cles result in oxidative stress and inflammation in lung cells (Brandt
et al., 2020; Takizawa et al., 2000). Long-term exposure to air
pollution impairs lung function (Chauhan and Johnston, 2003;
Gotschi et al., 2008) and may reduce resistance to viral infection
(Yang et al., 2020). Long-term traffic-related pollution is one
particularly important exposure source (Gotschi et al., 2008). Vi-
ruses normally are destroyed by phagocytosis, by which macro-
phages inhibit viral replication and remove virus-containing cells.
Cytotoxic T-lymphocytes destroy infected cells. These normal
functions can be impaired by exposure to air pollutants (Chauhan
and Johnston, 2003).

Among prior studies on this topic, most have focused on fatality
as the outcome and have examined several commonly studied air
pollutants. Studies of disease prevalence are less common. Studies
of possible pollution sources that may contribute to disease risk
have not been reported. The purpose of the current exploratory,
hypothesis-generating study was to examine associations between
air pollutants that may represent long-term exposure, possible
pollution sources, and prevalence and fatality from COVID-19 in the
United States as of May 31, 2020. We included a measure of diesel
particulate matter that previous studies on this topic have not
included, and examined several possible pollution sources that
have not been previously considered. We examined associations
between pollution as measured by both emission concentrations
and source exposure, and population prevalence and fatality from
COVID-19.
2. Methods

2.1. Design and population

We conducted an analysis of COVID-19 cumulative prevalence
and fatality per 100,000 population across 3143 US counties as of
May 31, 2020. Pollution data were based on indicators from 2014 to
2019 as described below, such that associations represent possible
long-term but not acute exposures. Pollution datawere from the US
Environmental Protection Agency (EPA) environmental justice
screening tool EJSCREEN (EPA, 2018a). These data were merged
with COVID-19 prevalence and fatality data obtained from the John
Hopkins database (JHU, 2020) at the county level with control for
county population density (persons per square mile), state-level
testing rates, and population covariates from the County Health
Rankings data (CHR, 2020).
2.2. Measures

2.2.1. Exposures
Exposure data were drawn from the US Environmental Protec-

tion Agency EJSCREEN (EPA, 2018a). Data for the most recent
release year, 2019, were provided at the level of the Census block
group, however, time of original data collection for the individual
measures occurred earlier as shown below. We examined three
measures of pollutant concentrations and four measures of pollu-
tion sources as defined in the EPA’s technical manual (EPA, 2019a).

� Particulate matter: annual 2016 average PM2.5 concentration in
micrograms per cubic meter (mg/m3).

� Ozone: Summer (MayeSeptember) 2016 average of daily
maximum 8-h concentration in parts per billion.

� National Air Toxics Assessment (NATA) diesel particulate matter
(DPM): 2014 average micrograms per cubic meter (mg DPM/m3)
from all mobile emissions sources (EPA, 2018b).
� Traffic proximity: 2017 count of vehicles per daywithin 500m of
a block centroid, divided by distance in meters, presented as
population-weighted average of blocks in each block group.

� Proximity to National Priorities List (NPL) sites: Count of 2019
sites proposed and listed on the NPL (a key subset of all
Superfund sites), within 5 km of the average block group resi-
dent, divided by distance, calculated as the population-
weighted average of blocks within each block group.

� Proximity to hazardous waste Treatment, Storage or Disposal
Facilities (TSDFs): Count of 2019 TSDFs within 5 km, divided by
distance, presented as population-weighted averages of blocks
in each block group.

� Proximity to RiskManagement Plan (RMP) sites: The 2019 count
of RMPs (facilities required by the Clean Air Act to file risk
management plans) within 5 km, divided by distance, presented
as population-weighted averages of blocks within each block
group.

To examine the effect of PMwithout diesel PM, we calculated an
additional exposuremeasure as the difference between total PM2.5
and DPM.

2.2.2. Outcomes
The cumulative number of confirmed COVID-19 cases and

number of confirmed deaths as of May 31, 2020 was obtained for
every US county (N ¼ 3143) (JHU, 2020). These counts were con-
verted to counts per 100,000 county population using the popu-
lation variable from the 2019 County Health Rankings data.

2.2.3. Covariates
Control variables from the County Health Rankings data (CHR,

2020) included percent of the population over age 65; percent
race/ethnicity groups (African American, Asian, Native American/
Pacific Islander, Hispanic, and non-Hispanic White (used as the
referent in regression models)); percent of adults with at least
some college education; income inequality (the ratio of household
income at the 80th percentile to that at the 20th percentile); adult
smoking rate; adult obesity rate; and percent of the population
without health insurance. See the County Health Rankings website
(CHR, 2020) for measurement details. Population density was
measured from US Census data as population per county square
mile, and number of COVID-19 tests per 100,000 state population
was obtained from the COVID Tracking Project (2020).

2.3. Analysis

EJSCREEN data at the block group level were weighted by block
group population and then summarized to the mean value at the
county level. Each of the seven EJSCREEN indicators was stan-
dardized to a common scale with mean ¼ 100 (SD ¼ 10). Descrip-
tive statistics for study variables were calculated and bivariate
correlations examined. Mean imputation was used to replace
missing values for income inequality (n ¼ 2 counties), median
household income (n ¼ 1 county), and percent rural population
(n ¼ 7 counties.) Missing values for ozone and PM2.5 reduced the
sample to N ¼ 3108 for analyses with these variables.

Mixed model linear multiple regression analyses were con-
ducted using SAS software version 9.4 Proc Mixed. Each model
included covariates as described above. A state class variable was
added as a random effect to account for possible within state cor-
relations between counties. Separate models were first run for each
of the seven EJSCREEN variables, followed by a model that included
the three pollutant emissions simultaneously, and another that
considered the four source measures simultaneously. Final models
included all seven indicators simultaneously. Models were



M. Hendryx, J. Luo / Environmental Pollution 265 (2020) 115126 3
repeated for COVID-19 prevalence and fatality rate per 100,000.

3. Results

A summary of study variables is provided in Table 1, categorized
by COVID-19 prevalence (none, greater than zero and less than
median, and higher than median). As of May 31, 2020, the mean
county level COVID-19 prevalence was 313.39 per 100,000 popu-
lation (range 0e12,640.76). The mean county level death rate per
100,000 was 12.72 (range 0e1324.31). Counties with prevalence
rates above the median, compared to counties without cases, were
younger, had higher percentages of African Americans and His-
panics, and higher smoking and obesity rates. Population density
was greatest in areas with rates above the median, but was lowest
in areas with positive cases below the median. Pollution emission
concentrations (except ozone) were higher in the areas with higher
disease rates.

A Pearson correlation matrix among the eight environmental
indicators was provided in Supplemental Table 1. PM2.5 and PM
without diesel were highly correlated (r ¼ 0.99); these two in-
dicators were not included together in the same regression models.
The next highest correlationwas observed between traffic and DPM
(r ¼ 0.62, p < .0001). Other relatively high correlations were
observed between traffic and TSDFs (r ¼ 0.55, p < .0001), DPM and
TSDFs (r ¼ 0.52, p < .0001), and DPM and PM2.5 (r ¼ 0.40,
p < .0001).

Results of mixed linear multiple regressionmodels for COVID-19
prevalence are presented in Table 2. Model Set 1 results are for each
of the indicators in eight separate models. Significantly higher
COVID-19 prevalence was observed in associationwith PM2.5, DPM
and RMP siteswhen each indicator was considered separately. After
removing DPM, the remaining PM2.5 estimate was not associated
with the outcome.

Model 2 show results for the emission concentration variables
considered simultaneously. In this model, only diesel particulate
matter was significantly associated with COVID-19 prevalence.
Model 3 shows results for the four pollution sources considered
simultaneously. Only RMP sites were significantly associated with
COVID-19 prevalence.

Model 4 shows results for all pollution indicators
Table 1
Descriptive statistics by COVID-19 prevalence category.

Variable COVID-19 Prevalence ¼ 0 (N ¼ 203)

Mean Std Dev Min. Max.

COVID Prevalence 0 0 0 0
COVID Prevalence 0 0 0 0
% 65 and over 22.7 6.05 5.97 42.1
% Black 1.75 5.70 0 63.0
% Hispanic 9.77 14.9 0.71 81.0
% Asian 1.43 4.72 0 43.4
% Native American/PI 5.49 13.6 0 92.2
Income Inequality Ratio 4.26 0.88 2.62 8.79
% Some College 60.7 13.5 20.4 100
% Smokers 15.8 4.16 8.34 41.0
% Adults with Obesity 30.3 5.03 17.8 50.5
% Uninsured 15.7 5.90 4.92 32.0
Population Density (population/square miles) 347 2724 0.05 26,649
Testing Rate per 100,000 4909 1978 2613 10,609
PM2.5 6.53 1.62 3.36 10.5
PM2.5 minus DPM 6.33 1.50 3.34 10.2
Ozone 42.9 4.66 28.5 54.7
DPM 0.19 0.42 .001 3.50
Traffic 93.1 488 0 4496
NPL sites 0.02 0.06 .001 0.74
TSDFs 1.46 12.0 .001 141
RMP sites 0.38 0.57 .002 3.01
simultaneously. Only diesel particulate matter and RMP sites were
significantly associated with higher prevalence risk. The inverse
association in Model 4 for traffic is likely an artifact of including
DPM and population density in the model, as traffic correlated at
r ¼ 0.62 with DPM and r ¼ 0.64 with population density.

Results of mixed linear multiple regressionmodels for COVID-19
fatality rates are presented in Table 3. Model Set 1 results are for
each of the indicators in eight separate models. Individually,
significantly higher COVID-19 fatality rates were observed in as-
sociation with higher PM2.5, diesel particulate matter, and
marginally with proximity to TSDFs. The inverse association for
traffic is again likely an artifact of including population density in
the model. Table 3, Model 2 results are for the emission concen-
tration variables considered simultaneously, and Model 3 results
are for the four pollution sources considered simultaneously. The
results for Model 2 were the same as for prevalence: higher fatality
rates were observed in association with higher diesel particulate
matter. For the four sources considered simultaneously (Model 3),
only the TSDF variable was significantly associated with higher
COVID-19 fatality. Finally, Model 4 showed that diesel particulate
matter and TSDFs were significantly associated with higher fatality
rates.

As an example of the association of outcomes with covariates,
the complete model for DPM (from Table 2 Model 1) with co-
efficients for covariates is provided in Supplemental Table 2. Higher
prevalence was associated with higher percentages of Black, His-
panic and Native American populations. Higher prevalencewas also
associated with less college education, greater health uninsurance,
greater population density, and higher state testing rates. Inverse
associations were observed for percent of the population aged 65
and over, and smoking and obesity rates; the inverse age-related
association reflects higher prevalence in areas that had generally
younger populations, and effects for smoking and obesity may be
due to model artifacts after accounting for other covariates.

4. Discussion

Associations observed in a previous COVID-19 study of fatality
rates (Wu et al., 2020) for PM2.5 were replicated here for both
prevalence and fatality when PM2.5 was considered as an exposure
COVID-19 Prevalence >0 to 147.13
(N ¼ 1470)

COVID-19 Prevalence �147.13
(N ¼ 1470)

Mean Std Dev Min. Max. Mean Std Dev Min. Max.

69.6 38.7 3.76 147 600 826 147 12,641
2.04 4.14 0 46.9 25.2 48.8 0 1324
20.2 4.58 6.82 41.5 17.9 4.14 4.8 57.6
4.07 6.97 0 61.4 14.9 17.8 0.08 85.4
9.07 14.3 0.61 96.4 10.2 13.1 0.64 95.5
1.23 2.56 0.05 43.0 1.93 2.96 0 35.95
2.73 7.81 0.13 84.0 1.88 6.59 0.11 92.6
4.46 0.66 2.54 8.69 4.60 0.82 2.99 12.0
57.4 11.0 15.2 87.8 58.0 12.3 20.9 90.7
17.6 3.59 7.37 38.7 17.5 3.49 5.91 41.5
32.7 4.99 14.4 51.6 33.4 5.83 12.4 57.7
13.3 6.24 3.37 42.4 13.7 6.20 2.68 38.7
81.9 188.6 0.04 2832 355 1544 0.31 484,488
4646 1554 2613 10,609 4986 1818 26.13 14,584
8.45 1.83 2.70 12.1 9.19 1.77 3.13 15.1
8.11 1.73 2.21 11.7 8.67 1.71 2.90 14.5
41.5 4.41 27.2 61.3 41.5 4.36 27.8 64.9
0.34 0.21 .001 1.78 0.51 0.38 .015 7.0
85.2 124.7 0 1876 177 328 .008 4444
0.04 0.08 .001 1.26 0.07 0.11 .002 1.08
0.26 0.40 .002 6.20 0.62 4.53 .004 168
0.46 0.50 .001 2.84 0.56 0.56 .006 4.22



Table 2
Linear multiple regression results for COVID-19 prevalence in association with environmental air pollutants and pollutant sources, adjusting for covariates.1

Variable 2 Model 1 Set 3 P< Model 2 3 P< Model 3 3 P< Model 4 3 P<

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

PM2.5 23.5 (10.3) .02 na na
Ozone 5.12 (3.29) .12 3.11 (3.29) .34 2.36 (3.29) .47
Diesel PM 253 (50.7) .001 225 (52.9) .001 237 (55.8) .001
PM2.5 minus DPM 15.6 (10.8) .15 9.80 (10.8) .36 8.96 (10.8) .40
Traffic �0.09 (.06) .12 �0.10 (.06) .08 �0.20 (.06) .02
NPL sites 67.9 (112) .54 65.6 (112) .56 �5.59 (113) .96
TSDFs �3.63 (4.95) .46 �3.17 (4.94) .52 �1.75 (4.95) .72
RMP sites 75.1 (21.8) .001 75.9 (21.9) .001 56.7 (22.6) .01

1 Covariates included: % population over age 65; percent African American; percent Hispanic; percent Asian; percent Native American/Pacific Islander; income inequality
ratio; percent with some college education; percent adult smokers; percent adults with obesity; percent without health insurance; population density; and state testing rate.
2 Abbreviations: PM ¼ particulate matter; DPM ¼ diesel particulate matter; NPL¼National Priority List; TSDFS ¼ Treatment, Storage or Disposal Facilities; RMP ¼ Risk
Management Plan.
3 In the Model 1 Set, each of the environmental indictors were run in separate models. In Model 2, the pollution emission concentrations were included simultaneously in one
model. In Model 3, the pollution sources were included simultaneously in one model. In Model 4, all indictors were considered simultaneously. Note that PM2.5 and PM2.5
minus DPM are not included in the same models.

Table 3
Linear multiple regression results for COVID-19 death rates in association with environmental air pollutants and pollutant sources, adjusting for covariates.1

Variable 2 Model 1 Set 3 P< Model 2 3 P< Model 3 3 P< Model 4 3 P<

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

PM2.5 1.08 (.54) .05 na na
Ozone 0.26 (.17) .13 0.12 (.17) .49 0.10 (.17) .54
Diesel PM 14.3 (2.54) .001 15.4 (2.66) .001 18.7 (2.80) .001
PM2.5 minus DPM 0.44 (.57) .44 0.12 (.56) .84 0.20 (.56) .72
Traffic �0.01 (.003) .002 -.01 (.003) .001 �0.01 (.003) .001
NPL sites 5.65 (5.60) .31 6.92 (5.62) .21 3.76 (5.65) .51
TSDFs 0.45 (.25) .07 0.49 (.24) .05 0.52 (.25) .04
RMP sites 0.84 (1.10) .44 0.97 (1.10) .38 �0.83 (1.14) .47

1 Covariates included: % population over age 65; percent African American; percent Hispanic; percent Asian; percent Native American/Pacific Islander; income inequality
ratio; percent with some college education; percent adult smokers; percent adults with obesity; percent without health insurance; population density; and state testing rate.
2 Abbreviations: PM ¼ particulate matter; DPM ¼ diesel particulate matter; NPL¼National Priority List; TSDFS ¼ Treatment, Storage or Disposal Facilities; RMP ¼ Risk
Management Plan.
3 In the Model Set 1, each of the environmental indictors were run in separate models. In Model 2, the pollution emission concentrations were included simultaneously in one
model. In Model 3, the pollution sources were included simultaneously in one model. In Model 4, all indictors were considered simultaneously. Note that PM2.5 and PM2.5
minus DPM are not included in the same models.
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by itself. However, when considering the effects of diesel PM, the
air pollution associationwith COVID-19 prevalence and fatality was
determined specifically by diesel PM and not general PM2.5 when
both were based on measurements from prior years potentially
representing long-term exposure. Regarding sources, there were
different associations dependent on prevalence or fatality as the
outcome, with RMP sites showing associations to prevalence, and
some evidence for TSDF sites in association with fatality.

A TSDF is a site that receives hazardous solid wastes for treat-
ment, storage or disposal. The hazardous material may be disposed
of via landfills, incineration, injection wells, or surface impound-
ments, kept in waste piles for temporary storage or treatment, or
treated as sludge, wastewater or by other means to alter its
chemical character (EPA, 2019b, 2019c). A “solid waste” refers to
any garbage or refuse; sludge from a wastewater treatment plant,
water supply treatment plant or air pollution control facility; and
other discarded material resulting from industrial, commercial,
mining, and agricultural operations, and from community activities
(EPA, 2019b). The EPA states that solid waste is not limited towastes
that are physically solid; solid wastes can be liquid, semi-solid, or
contain gaseous material. There are numerous metals, organics and
inorganics that are handled by TSDFs, and the current study could
not assess associations between different waste materials, treat-
ments or disposal methods and disease outcomes.

Facilities on the NPL, which consist of the most serious uncon-
trolled or abandoned hazardous waste sites, were not found to be
associated with COVID-19. Rather, the associations were observed
for themorewidespread TSDFs, which are regulated by the EPA and
are granted Resource Conservation and Recovery Act permits for
the purpose of generating a profit from waste management (EPA,
2005). Additional research on possible health consequences of
exposure to TSDFs is warranted.

Risk Management Plans (RMPs) are required for sites that use
“extremely hazardous substances” (EPA, 2019d). The EPA lists more
than 250 regulated substances that require RMPs depending on the
amount used. It appears, however, that little research has been
reported on possible public health effects from exposure to these
sites. It is also unclear why there would be associations specific to
prevalence for one type of site and mortality for another; these
findings should be interpreted cautiously and require verification in
further research.

Among the exposure measures, associations between diesel PM
and COVID-19 prevalence and mortality were observed most
strongly and consistently. This particular exposure measure was
based on 2014 data, indicating possible effects of long-term expo-
sure but not acute exposure. There is evidence from prior labora-
tory and epidemiological research that diesel PM impairs lung
function and increases susceptibility to viral infection (Castranova
et al., 2001; Chauhan and Johnston, 2003; Ciencewicki et al.,
2007; Ito et al., 2006). This susceptibility may occur through
diesel-induced oxidative stress that increases the density of viral
invasion sites in the lungs or by suppressing macrophage function
(Ito et al., 2006; Yang et al., 2020).

Limitations of the study include the ecological design. We know
population characteristics, exposures and outcomes at the county
level but not pollution exposures experienced by individuals with
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or without the disease. Measures of pollution emissions and source
exposures were based on the most recent EPA public data but they
represent conditions in the years 2014e2019. This time differential
suggests that long-term exposure to air pollution, especially DPM,
Supplemental Table 1
Pearson correlation matrix among the environmental indicators. Correlations at r ¼ .04 or greater are significant at p < .05.

PM2.5 O3 DPM PM2.5 minus DPM Traffic NPLs TSDFs RMPs

PM2.5 1.00
O3 -.04 1.00
DPM .40 .09 1.00
PM2.5 minus DPM .99 -.06 .24 1.00
Traffic .09 .02 .62 -.02 1.00
NPLs .10 .05 .32 .05 .27 1.00
TSDFs .05 .01 .52 -.04 .55 .14 1.00
RMPs .03 .10 .25 -.02 .18 .11 .05 1.00

Supplemental Table 2
Linear multiple regression results for COVID-19 prevalence in association with
environmental air pollutants and pollutant sources, adjusting for covariates.*

Variable Estimate (SE) P <

Diesel PM 252.5 (50.6) .001
% 65 and over �14.6 (2.83) .001
% Black 10.5 (1.10) .001
% Hispanic 3.76 (1.26) .001
% Asian �1.10 (4.43) .80
% Native American/PI 4.54 (1.97) .02
Income inequality ratio 12.6 (16.9) .46
% some college �12.3 (1.38) .001
% Smokers �29.8 (6.57) .001
% Adults with obesity �7.01 (2.33) .003
% without health insurance 13.0 (4.02) .001
Population density 0.09 (.01) .001
State testing rate 0.05 (.02) .001
could increase susceptibility to COVID-19, but the data do not
address acute pollution exposures. Covariates represent a limited
set of confounders and may not capture all influences on disease
outcomes (Contini and Costabile, 2020). In particular there could be
residual confounding such that proximity to exposure sources re-
flects imperfect adjustment for other demographic or socioeco-
nomic conditions. There may be spatial autocorrelation issues that
the current study did not attempt to address, where people in one
county may be affected by environmental conditions in adjacent
counties. We also did not attempt to address possible effects of the
complex lockdown rules that were in effect in some states relative
to others and in some cities or counties within states. We examined
only a limited set of pollution sources as provided on the EJSCREEN
data; other sources, such as power plants or mines, were not
examined. We used data on cumulative confirmed cases as of May
31, 2020 and results may change as the disease progresses over
time or to different geographic areas. Cases of the disease that were
not counted because they were asymptomatic or because of testing
shortfalls were not considered; we adjusted for testing rate at the
state level but not county level.

In conclusion, results of the study are consistent with prior
literature indicating that air pollution increases susceptibility to
respiratory infectious illness (Castranova et al., 2001; Chauhan and
Johnston, 2003; Jaspers et al., 2005). The evidence suggests that
long-term diesel particulate matter exposure may be particularly
important. Results also suggest that novel air pollution exposure
sources through hazardous waste site TSDFs or RMP sites may be
risks for COVID-19 acquisition or fatality. These findings should be
taken as exploratory given the ecological design, the time-lag be-
tween measures of exposure and outcome, and the uncertainties in
complete case counting, and require additional confirmatory
research.
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