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Abstract
Plants are a rich source of new antiviral, pharmacologically active agents. The naturally occurring plant alkaloid berberine 
(BBR) is one of the phytochemicals with a broad range of biological activity, including anticancer, anti-inflammatory and 
antiviral activity. BBR targets different steps in the viral life cycle and is thus a good candidate for use in novel antiviral drugs 
and therapies. It has been shown that BBR reduces virus replication and targets specific interactions between the virus and 
its host. BBR intercalates into DNA and inhibits DNA synthesis and reverse transcriptase activity. It inhibits replication of 
herpes simplex virus (HSV), human cytomegalovirus (HCMV), human papillomavirus (HPV), and human immunodeficiency 
virus (HIV). This isoquinoline alkaloid has the ability to regulate the MEK-ERK, AMPK/mTOR, and NF-κB signaling 
pathways, which are necessary for viral replication. Furthermore, it has been reported that BBR supports the host immune 
response, thus leading to viral clearance. In this short review, we focus on the most recent studies on the antiviral properties 
of berberine and its derivatives, which might be promising agents to be considered in future studies in the fight against the 
current pandemic SARS-CoV-2, the virus that causes COVID-19.

Introduction

Berberine (BBR) is a natural isoquinoline alkaloid with low 
toxicity. It is present in several medicinal plants, such as 
Berberis vulgaris, Coptis chinensis, Hydrastis canadensis, 
Coptidis rhizoma, Xanthoriza simplicissima, Phellodendron 
amurense, and Chelidonium majus. Berberine exhibits unu-
sual biochemical and pharmacological activities, including 
antidiabetic [1], hypolipidemic [2], antihypertensive [3], 
anti-inflammatory [4], antidiarrheal [5], hepatoprotective 
[6], antidepressant [7], anticancer [8], antibacterial [9], and 
antiviral [10] properties. BBR is capable of penetrating all 
cell lines, but the cumulative concentration is the highest 
in Hep G-2 cells [11]. It can cross the blood-brain barrier 

when it is administrated systematically, and it has a protec-
tive effect on the central nervous system [12]. Due to its vari-
ous properties, BBR is widely used as a dietary supplement. 
It has low toxicity and is well tolerated by the human body. 
However, high doses of BBR can cause gastrointestinal side-
effects. In liver cells, BBR is metabolized with the participa-
tion of cytochrome P450 1A2 (CYP1A2), cytochrome P450 
3A4 (3A4), cytochrome P450 2D6 (2D6), and UDP glucu-
ronosyltransferases. In phase I, it is metabolized by demeth-
ylation, and in phase II, by glucuronidation. Its metabolites 
are berberrubine, demethylene-berberine, jatrorrhizine, thal-
ifendine, and its glucuronidated derivatives [Fig. 1] [13–15]. 
BBR is administered by oral gavage, but its bioavailability is 
low. Currently, nanomaterials can be applied as an effective 
drug delivery system providing time-controlled and site-
specific delivery of the loaded drug. Conjugation of BBR 
with liposomes or micelles allows its bioavailability to be 
improved. In recent years, empirical evidence has shown that 
this bioactive plant alkaloid possesses strong antiviral activ-
ity against different viruses. The antiviral activity of BBR 
against herpesviruses, influenza virus, and respiratory syn-
cytial viruses has been scientifically documented. Its poten-
tial activity against SARS-CoV and other coronaviruses, as 
discussed below, also raises the question if it could be effec-
tive against the novel pandemic SARS-CoV-2 coronavirus, 
which is currently an overwhelming public-health problem 
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worldwide. The search for novel therapeutics against this 
virus and the symptoms of its disease, COVID-19, are of 
the highest importance.

Mode of the antiviral activity of berberine

Viruses modulate and utilize many host cellular processes 
for their replication. Virus infection can result in changes 
in cellular metabolism and signaling that facilitate viral 
replication. These processes involve different molecules, 
including nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) and mitogen-activated protein 
kinases (MAPKs). NF-κB is a DNA-binding protein that 
is required in the transcription of various genes involved in 
controlling cellular processes, in particular, inflammatory 
and immune responses. The modulation of NF-κB path-
way by BBR is one of the mechanisms that inhibits virus 
infection. BBR downregulates virus-induced NF-κB acti-
vation and blocks degradation of the endogenous NF-κB 
inhibitor IκBα. MAPKs are involved in the regulation of key 
cellular signaling pathways, such as apoptosis, differentia-
tion, proliferation, and immune responses. MAPKs play an 
essential role in infection and cellular stress. Moreover, they 
are known to promote survival and generation of progeny 
virions. Four subgroups of MAPKs have been identified, 
namely, extracellular-signal-regulated kinase (ERK) 1 and 2, 
ERK5, isoforms of p38 protein (p38), and c-Jun N-terminal 
kinases (JNK) [16]. The JNK and p38 pathways play a key 
role in inflammation and tissue homeostasis. MAPKs are 
responsible for the phosphorylation of serine and threonine 
in many proteins. Phosphorylation plays a significant role 

in protein interactions, protein folding, and activation and 
deactivation of enzymes. ERK kinases phosphorylate multi-
ple substrates, such as c-Fos and Elk 1, which are involved in 
the regulation of cell cycle progression and survival. Protein 
phosphorylation also plays an essential role in the infection 
cycle of many viruses [17]. A number of viruses induce or 
inhibit the phosphorylation of cellular proteins at all levels 
of signal transmission pathways from the plasma membrane 
to the nucleus. Phosphorylation can affect a viral protein’s 
stability, activity, interaction with other cellular and viral 
proteins, and infectivity. Viruses such as Epstein-Barr virus 
(EBV) [18], hepatitis C virus (HCV) [19], and coronavirus 
type 2 [20] activate the phosphorylation of MAPK. Changes 
in the phosphorylation of proteins have been observed dur-
ing viral replication. For example, the human immunodefi-
ciency virus (HIV) protein p6 is phosphorylated at a specific 
site (Thr 23) by MAPK and ERK-2. Mutational analysis has 
demonstrated that Thr 23 is important for the infectivity, 
maturation, and budding of viral particles [21]. Phospho-
rylation of the coat protein (CP) of RNA viruses can signifi-
cantly affect CP-RNA interactions, the stability of viral par-
ticles, and the viral infection processes [22, 23]. Moreover, 
many viruses use phosphorylation of proteins to modulate 
signaling in order to prevent apoptosis and promote cellular 
survival and proliferation [24].

An example is chikungunya virus (CHIKV). It is trans-
mitted to humans mainly by infected mosquitoes, specifi-
cally Aedes aegypti and Aedes albopictus. CHIKV causes 
fever, joint swelling, headache, and severe persistent mus-
cle and joint pain in humans. CHIKV belongs to the family 
Togaviridae and has a positive-sense RNA genome. Host 
macrophages are the major cellular reservoirs of CHIKV 

Fig. 1   Berberine and its deriva-
tives
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during infection, and the production of the cytokines TNF, 
IL-1β, and IL-6, IL-8 may be associated with viral pathogen-
esis. During CHIKV infection, the major mitogen-activated 
protein kinase signaling pathways, p38, JNK, and ERK are 
activated. Activation of ERK and JNK kinases are essen-
tial for generation of CHIKV progeny virions. The specific 
molecular mechanism of CHIKV-induced MAPKs is not 
known. It has been shown that CHIKV can modulate the 
phosphorylation of p38 and JNK. Recently, it was demon-
strated that the CHIKV nsP2 protein interacts with p38 and 
JNK in host macrophages [25]. In addition, JNK modulates 
the replication of certain viruses. For example, replication 
of HSV, HIV, and rotaviruses is suppressed by JNK inhibi-
tion, while the replication of influenza virus is increased. 
CHIKV induces MAPK activation as well as expression of 
viral nonstructural and structural proteins. Varghese et al. 
showed that BBR significantly reduces CHIKV-induced 
activation of MAPKs. The P38, ERK and JNK signaling 
pathways are strongly inhibited upon treatment with BBR, 
which especially targets the ERK signaling pathway, result-
ing in a marked reduction in particle formations. The reduc-
tion in viral protein expression after BBR treatment is prob-
ably a consequence of a decrease in virus-induced signaling. 
BBR treatment does not inhibit virus entry or the enzymatic 
activity of the viral replicase [26]. Furthermore, CHIKV 
induces prosurvival signal cascades such as PI3K-AKT and 
autophagy [27]. It has also been reported that BBR signifi-
cantly reduces phosphorylation of p38 MAPK during res-
piratory syncytial virus (RSV) infection [28]. p38 MAPK is 
induced in the early stage of RSV infection [29]. Inhibition 
of the activity of p38 MAPK by BBR has also been observed 
during hepatitis B virus (HBV) infection. HBV is a member 
of the family Hepadnaviridae. Its virion contains a partially 
double-stranded relaxed circular DNA (rcDNA) genome, 
which, in the nucleus of an infected cell, is converted to 
covalently closed circular DNA (cccDNA). p38 MAPK 
plays a central role in the maintenance of HBV cccDNA in 
infected cells [30]. The cccDNA acts as a template for RNA 
synthesis, including mRNAs and pregenomic RNAs (pgR-
NAs). During the life cycle of HBV, pgRNA is converted to 
partially double-stranded rcDNA in the capsid by reverse 
transcriptase (RT). Inhibition of the activity of p38 MAPK 
is positively correlated with the suppression of HBV sur-
face antigen (HBsAg) production, HBV e-antigen (HBeAg) 
secretion, and inhibition of HBV replication. It has been 
reported that BBR also intercalates into DNA, inhibiting 
DNA synthesis and reverse transcriptase activity [31–34]. 
HBV infection is associated with a broad spectrum of liver 
diseases, including acute hepatitis, chronic hepatitis, cirrho-
sis, and hepatocellular carcinoma. About a million deaths 
globally are caused by HBV-related diseases each year, with 
more than a million people suffering from chronic hepatitis 
B worldwide [35]. The ability of BBR to inhibit MAPK 

might make it a potential candidate for a new antiviral agent 
against HBV infection. p38 MAPK has been suggested as 
a possible target for anti-HBV therapy. Kim et al. showed 
that biphenyl amides act as p38 MAPK inhibitors and sup-
press HBsAg secretion [36]. Curcumin, another well-known 
alkaloid, decreases the level of HBsAg and reduces the 
number of cccDNA copies, thus inhibiting HBV replica-
tion and expression. Moreover, this natural plant compound 
reduces the acetylation level of cccDNA-bound histone H3 
and H4 [37]. The current anti-HBV therapy options have 
disadvantages. These include high cost and cumulative tox-
icity, which results in bone disease and renal injury. Addi-
tionally, the therapy is limited to patients with viremia and 
elevated alanine aminotransferase (ALT) or fibrosis [38], 
and the MAPK pathway appears to be activated by other 
viruses, such as HCV [39], dengue virus [40], coronavirus 
[41], Venezuelan equine encephalitis virus (VEEV) [42], 
and enterovirus 71 (EV71) [43].

Another strategy that plays an important role in the rep-
lication of some viruses is autophagy. Autophagy is an 
intracellular degradation process that helps to maintain 
cellular homeostasis under both normal and stress condi-
tions. It is a dynamic process starting with autophagosome 
formation, followed by fusion with lysosomes and degra-
dation of the enclosed cargo. Autophagy is also an antivi-
ral mechanism that selectively degrades viral components 
or viral particles inside lysosomes [44]. One example of 
a virus that exploits autophagy is the enterovirus EV71, 
a member of the family Picornaviridae. Picornaviruses 
are nonenveloped viruses with a positive-stranded RNA 
genome of 7.5 kb that contains a single open reading 
frame (ORF) flanked by 5’ and 3’ untranslated regions. 
This RNA serves as a template for translation of the viral 
polyprotein and for the amplification of the viral genome. 
Viral replication takes place on intracellular membranous 
structures and is dependent on autophagy. Enteroviruses 
induce autophagy to promote their own replication [45]. 
The mechanism responsible for this pro-viral function 
of autophagy is unknown. EV disrupts autophagosome-
lysosome fusion, which allows viral RNA and proteins 
to escape degradation and consequently facilitates viral 
replication by providing membranes for replication, lead-
ing to pathogenesis in the host. EVs are associated with 
neurological disorders, cardiovascular damage, and meta-
bolic disease. Recently, it has been reported that BBR can 
inhibit virus-induced autophagy and reduce viral RNA 
and protein synthesis [46]. BBR inhibits EV71-induced 
autophagy by affecting JNK, PI3KIII and AKT signaling. 
For example, BBR treatment increases AKT phosphoryla-
tion and reduces JNK and PI3KIII phosphorylation. JNK 
signaling is involved in autophagy, and its inhibition can 
inhibit this process. BBR also inhibits the MEK/ERK sign-
aling pathway, which is important for mediating innate 
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immunity to viral infections and plays a significant role 
in EV71 replication and pathogenesis [43, 46]. This sug-
gests that BBR acts by inhibiting MAPK signaling and is 
a potential agent for the treatment of enterovirus infection, 
especially since there are no other effective and licensed 
drugs available.

Activity of berberine against different 
viruses

Activity of BBR against viruses of the family 
Flaviviridae

In the past decades, HCV has become a major public-
health problem globally. At present, there is no effective 
vaccine against this virus. HCV is an enveloped, positive-
strand RNA virus belonging to the family Flaviviridae. 
HCV infection is associated with a broad spectrum of liver 
diseases, including cirrhosis and hepatocellular carcinoma 
(HCC). The viral proteins E1 and E2 mediate entry of the 
virus into cells, which is a key step in its life cycle. The 
HCV E2 is primarily responsible for preventing prema-
ture membrane fusion, as well as stabilizing attachment 
of the virus to cells. Hong et al. have shown that BBR 
suppresses hepatitis C virus replication by targeting the 
viral E2 glycoprotein, specifically blocking HCV attach-
ment and entry. Molecular docking studies have indicated 
that BBR interacts with the HCV E2 glycoprotein [47], 
suggesting that BBR could be a good candidate for the 
development of entry inhibitors for the prophylaxis and 
treatment of HCV infection. The antiviral effect of BBR 
does not seem to involve modulation of host cell functions 
such as the interferon response [47–49]. BBR also exhibits 
antiviral activity against dengue virus (DENV) and Zika 
virus (ZIKV) infections. Both of these viruses belong to 
the family Flaviviridae. DENV has four serotypes (DENV-
1, DENV-2, DENV-3 and DENV-4), which are transmitted 
to humans by Aedes aegypti and Aedes albopictus mos-
quitoes. The virus is responsible for diseases of different 
severity, including asymptomatic infection, dengue fever, 
dengue hemorrhagic fever (DHF), and dengue shock syn-
drome (DSS), which can be fatal [50]. ZIKV infection 
can cause congenital syndromes including microcephaly, 
spasticity craniofacial disproportion, irritability, seizures, 
and other brain dysfunctions [51]. The non-structural viral 
proteins NS5 and NS3 are crucial for the replication of the 
DENV and ZIKV genome. In an in silico study by Sriv-
astava, BBR was docked with NS5 methyltransferase of 
DENV and the NS3 protein of ZIKV using the AutoDock 
4.2 tool [52]. The results suggested that BBR might be a 
novel inhibitor of the non-structural proteins (NS5 and 

NS3) of DENV and ZIKV with potential to prevent infec-
tion. However, this needs to be studied experimentally.

Activity of BBR against viral‑borne respiratory 
syndromes

BBR is also a possible remedy for infection with severe 
acute respiratory syndrome coronavirus (SARS-CoV), the 
etiological agent of the respiratory disease SARS. SARS-
CoV belongs to the family Coronaviridae. Recently, cor-
onaviruses have drawn much attention due to the current 
pandemic, which has life-threatening health consequences. 
SARS-CoV is an enveloped, single-stranded, positive-sense 
RNA with a genome of 29.7 kbp. During infection, the 
SARS-CoV proteins nsp1, nsp2, nsp7, spike, and nucleocap-
sid promote NF-κB activation. NF-κB is a DNA-binding 
protein that regulates the transcription of different genes 
whose products are involved in the control of cellular pro-
cesses such as inflammatory and immune responses. Dur-
ing SARS-CoV infection, the virus regulates the expression 
of pro-inflammatory mediators such as TNF, CCL2, and 
CXCL2. BBR has an inhibitory effect on the NF-κB signal-
ing pathway and therefore might function as an antiviral 
agent against coronavirus infection [53, 54]. Recent stud-
ies have indicated that an extract from Coptidis rhizoma 
containing BBR and other protoberberine alkaloids might 
inhibit coronavirus RNA synthesis and viral assembly and 
release [55]. It might be worth investigating the potential of 
BBR against SARS-CoV-2 in future studies.

Shinae et al. showed that the replication of RSV was sig-
nificantly reduced by treatment with BBR [56]. RSV is a 
member of the family Paramyxoviridae and has a negative-
sense, nonsegmented RNA genome. RSV infects the respira-
tory tract of most children before their second birthday and 
is a common cause of bronchiolitis and pneumonia in infants 
under the age of 1 year [57]. It has also been recognized as a 
significant cause of respiratory illness in older adults. Dur-
ing RSV infection, phosphorylation of p38 MAPK occurs at 
a very early stage of virus replication, and this phosphoryla-
tion can be reduced by BBR treatment. The precise molecu-
lar mechanism of this inhibition is still unknown, but recent 
studies have demonstrated that the effect of BBR is based on 
its direct interaction with a component of the TLR4 receptor 
complex. BBR can inhibit TLR4 activation and thus sup-
press p38 MAPK activation.

In addition, the production of interleukin 6 (IL-6) mRNA 
upon RSV infection is suppressed by BBR, which indicates 
its anti-inflammatory role during RSV infection [58]. It has 
been shown that BBR functions through several pathways, 
such as the NF-κB, ERK1/2 and p38 MAPK. As a conse-
quence, these functions decrease the levels of several proin-
flammatory cytokines, including tumor necrosis factor alpha 
(TNF-α), interleukin-1 beta (Il-1β), interleukin-6 (IL-6), and 
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prostaglandin E2 (PGE2). BBR also inhibits the phospho-
rylation of NF-κB and IκBα) [59].

Anti‑influenza activity

Although influenza virus often causes only mild respira-
tory illness, influenza can be a life-threatening infectious 
disease, especially in children, seniors, and immunocom-
promised patients. Yan et al. observed an antiviral effect of 
BBR against influenza H1N1 virus [60]. In some countries, 
seasonal influenza affects up to 40% of the population annu-
ally, and worldwide, up to 500 million people die from it 
each year [61, 62]. Influenza viruses (types A, B, C) are seg-
mented, negative-strand RNA viruses belonging to the fam-
ily Orthomyxoviridae. Influenza A viruses of various sub-
types infect many animal species (e.g., birds, swine, horses, 
dogs, marine mammals, and felids) as well as humans. Influ-
enza A viruses are classified into highly pathogenic subtypes 
based on their surface glycoproteins, with 17 hemaggluti-
nin (HA) and 10 neuraminidase (NA) subtypes currently 
recognized. The neuraminidase and hemagglutinin proteins 
dominate the virion surfaces and are responsible for virus 
infectivity. NA plays a role in virus replication by releasing 
new virus particles from host cells, separating them from the 
neuraminic-acid-containing glycan structures on the surface 
of the infected cell.

Yan et al. showed that BBR inhibits influenza virus rep-
lication in human pulmonary adenocarcinoma cells (cell 
line A549) and mouse lungs by suppressing the infection. 
This research confirmed that BBR inhibits the expression of 
TLR7 and NF-κB, both of which are upregulated in influ-
enza-infected lung tissues [63]. The infection is recognized 
by host pattern-recognition receptors (PRRs), for example, 
Toll-like receptors (TLRs), whose signaling pathways con-
verge on two families of transcription factors: NF-κB and 
interferon regulatory factor (IRF). Both of these factors are 
translocated to the nucleus, where they upregulate proin-
flammatory and antiviral responses [64]. Kim et al. showed 
that extracts from Cortex Phellodendri enriched in BBR can 
regulate the antiviral host response. It has been shown that 
BBR modulates the generation of proinflammatory sub-
stances such as cytokines and stimulates the antiviral state 
in infected host cells. The potential therapeutic mechanism 
of BBR in influenza-associated viral pneumonia might be 
the result of both inhibition of the viral infection and modu-
lation of the release of inflammatory factors [65, 66]. Other 
studies have shown that BBR and its derivatives also inhibit 
cytopathogenic effects and neuraminidase (NA) activity in 
vitro. Enkhtaivan et al. showed that the active site of the 
viral NA can be blocked by berberine derivatives (BDs) 
(Table 1) in the same way as it is blocked by the antivi-
ral drug oseltamivir (a well-known NA inhibitor) [65]. The 
inhibition of viral NA was confirmed in a molecular docking 

study using BD and the neuraminidases of both influenza A 
and B viruses [67].

Using this example of the anti-influenza activity of BBR 
and its derivatives, we can see that BBR is multifunctional 
and acts through diverse mechanisms. It can attach to protein 
molecules at their active sites, hence directly blocking their 
activity, as is the case with the influenza virus NA protein 
[67], and it can activate different signaling pathways lead-
ing to antiviral activity, e.g., inhibition of the expression of 
TLR7 and NF-κB [64]. The regulatory effects of BBR on 
the TLR signaling pathway has also been shown to affect the 
process of intestinal mucosal damage in rats, but the exact 
molecular interactions between BBR and other molecules 
remain to be identified. However, based on the existing evi-
dence, we might assume that they rely on binding of BBR 
to their active sites [68].

Anti‑inflammatory properties of BBR

BBR has also anti-inflammatory properties and is able to 
inhibit inflammatory cell infiltration and the production of 
TNF-α, IL-13, Il-6, IL-8 and IFN-γ [69]. This may occur 
through the activation of AMP-activated protein kinase 
(AMPK) and inhibition of NF-κB. It is noteworthy that in 
some viral infections, e.g., human cytomegalovirus (HCMV) 
and Ebola virus, AMPK activation has an adverse effect. 
The mechanism of the anti-inflammatory effect of BBR is 
complex. BBR can inhibit the binding activity NF-κB and 
activator protein 1 (AP1). AP1 and NF-κB are key transcrip-
tion factors that are responsible for regulating the expression 
of many genes involved in inflammation [69]. Moreover, the 
anti-inflammatory properties of BBR also involve the modu-
lation of MAPKs. BBR can inhibit generation of proinflam-
matory cytokines and moderate the inflammatory response. 
During RSV infection, BBR decreases interleukine-6 (IL-6) 
mRNA level. In influenza virus infection, BBR reduces the 
mRNA expression of TLR7 and NF-κB in lung tissue [70].

Inflammation is an important aspect of the pathogen-
esis of Venezuelan equine encephalitis virus (VEEV) and 
is associated with the upregulation of multiple media-
tors, such as TLR signaling, cytokines, inducible nitric 
oxide synthase (iNOS), TNF-α, TGF-β, interleukins, 
and chemokines [65]. VEEV is a member of the genus 
Alphavirus, family Togaviridae, and has a positive-sense 
RNA genome. This virus causes severe encephalitis in 
humans. Four antigenic varieties of VEEV are known, 
namely IA/B, IC, ID and IE. Three of them, subtypes 
IA, IB and C are the epizootic strains that cause disease 
and lead to high mortality in equines. VEEV infection in 
humans is asymptomatic during the first 1-5 days, followed 
by the onset of a febrile illness that is characterized by 
fever, vomiting, headaches, myalgia, ocular pain, or diar-
rhea, which can last for 1-4 days. The disease can then 
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Table 1   Examples of berberine 
derivatives with antiviral 
activity

No. R1 R2 R3 Ac�vity Reference

1 -OH - An�-influenza Enkhtaivan et al., 

2017 [67]

2 -OH - Anti-influenza Enkhtaivan et al., 

2017 [67]

3 -OH - An�-influenza Enkhtaivan et al., 

2017 [67]

4 -OH - An�-influenza Enkhtaivan et al., 

2017 [67]

5 - -CH3 -CCl3 An�-human 

cytomegalovirus 

(HCMV)

Hoyashi et al., 

2007 [81]

6 - -CH3 -CN An�-human 

cytomegalovirus 

(HCMV)

Hayashi et al., 

2007 [81]

7 - -CH3 -H An�-human 

cytomegalovirus 

(HCMV)

Hayashi et al., 

2007 [81]

8 - - An�-HIV Bodiwala et al., 

2011 [80]

9 - - An�-HIV Bodiwala et al., 

2011 [80]

10 - - An�-HIV Bodiwala et al., 

2011 [80]
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progress to severe neurological disease, with an incidence 
of almost 14% [72]. Recent research suggests that BBR 
might be a potential therapeutic agent against VEEV [65].

Anti‑HPV effect

BBR also suppresses human papillomavirus (HPV) tran-
scription. HPVs are non-enveloped, epitheliotrophic viruses 
with a circular double-stranded DNA genome that belong 
to the family Papillomaviridae. Persistent infection with 
high-risk HPVs, such as HPV16 and HPV18, can lead to 
the development of cervical cancer. Cancer development and 
progression are driven by the expression of two oncogenes, 
E6 and E7. Their expression is mainly dependent on the viral 
E2 protein and on the availability of the host transcription 
factor activator protein 1 (AP1). HPV E6 and E7 interact 
with tumor suppressor proteins, p53 and Rb, respectively. E6 
binds and induces ubiquitin-mediated degradation of p53, 
while E7 inactivates the Rb protein and alters additional 
cellular signaling pathways that are important for transfor-
mation. BBR can effectively target both the host AP1 and 
the viral oncoproteins E6 and E7. Inhibition of AP1 and 
blocking of viral E6 and E7 oncoprotein expression seem to 
be among the anti-HPV mechanisms of action of BBR [73].

Activity of BBR against members of the families 
Herpesviridae and Picornaviridae

Low (micromolar) concentrations of BBR can also suppress 
the replication of different HCMV strains that are resistant 
to known DNA polymerase inhibitors. HCMV is a mem-
ber of the family Herpesviridae and has a dsDNA genome. 
HCMV is responsible for life-threatening pneumonia, gas-
trointestinal diseases, retinitis, and other conditions after 
primary infection and in immunocompromised patients. It 
also induces congenital defects in newborn infants, causing 
neurological disorders in approximately 0.1% of congenital 
infections. Lunganini et al. showed that BBR interferes with 
the transactivating function of the HCMV IE2 protein. IE2 
plays a critical role in the progression of HCMV replica-
tion and in viral pathogenesis and reactivation from latency 
[74]. It is the most important HCMV regulatory protein and 
a strong transcriptional activator of viral and cellular gene 
expression. IE2 binds to DNA and has the ability to inter-
act with cellular transcription factors, which is necessary 
for regulation of transcriptional activation of viral and host 
genes and cellular functions [75].

The inhibitory activity of BBR on the IE2-dependent 
transactivation of early genes depends on activation of 
MAPKs. BBR is active against human herpes simplex 
virus types 1 and 2 (HSV 1 and 2) and also against mouse 
cytomegalovirus (MCMV). HSV infection is character-
ized by small blisters on the skin or mucous membranes 

of the mouth, often called “cold sores” or “fever blisters”, 
and can cause a sore throat. It has been reported that BBR 
inhibits DNA synthesis by intercalating into DNA. BBR 
also inhibits the synthesis of both HSV-1 and HSV-2 late 
genes and proteins [76]. Inhibitory activity of BBR has 
also been observed against different genotypes of entero-
virus 71 (EV71), which belongs to the family Picorna-
viridae and has a positive-sense RNA genome. This virus 
is the primary cause of hand, foot, and mouth disease, 
which spreads among infants and young children. Wang 
et al. showed that BBR and its derivatives (including a 
variety of esters and ethers at positions 3 and 9) (Table 1) 
exert moderate activity against EV71 replication. This is 
achieved mainly through downregulation of MEK/ERK 
signaling, inhibition of EV71-associated autophagy by 
activation of AKT, and suppression of the phosphoryla-
tion of JNK [77].

Anti‑HIV activity

Human immunodeficiency virus type 1 (HIV-1) is the causa-
tive agent of the worldwide acquired immunodeficiency syn-
drome (AIDS) epidemic. Approximately 38 million people 
were estimated to live with HIV in 2018. Acute HIV infec-
tion often manifests clinically as a nonspecific viral infec-
tion syndrome with sore throat, fever, lymphadenopathy, or 
aseptic meningitis. HIV belongs to the family Retroviridae, 
subfamily Orthoretrovirinae.

The HIV genome consists of two identical single-stranded 
RNA molecules that are enclosed within the core of the virus 
particle. The virus has a very high genetic variability. The 
genome of the HIV provirus, also known as proviral DNA, is 
generated by reverse transcription of the viral RNA genome 
into DNA, degradation of the RNA, and integration of the 
double-stranded HIV DNA into the host genome. HIV is a 
retrovirus that occurs as two types: HIV-1 and HIV-2. HIV 
protease is an important enzyme for viral maturation. It 
cleaves Gag and the Gag-Pol polyprotein precursor at nine 
sites to produce mature active proteins. Therefore, HIV 
protease inhibitors (PIs) are used in highly active antiret-
roviral therapy (HAART) against HIV infection. However, 
some inhibitors induce expression of TNF-α and IL6, which 
are major mediators of the inflammatory response and are 
implicated in the pathogenesis of the variety of inflamma-
tory diseases, including atherosclerosis [78]. BBR signifi-
cantly inhibits HIV-PI-induced TNF-α and IL6 expression 
and ERK signaling [79].

BBR and berberrubine along with 9-substituted deriva-
tives of berberine have demonstrated antiviral activity 
against HIV [80], probably due to inhibition of reverse tran-
scriptase (RT) activity. The use of 20 µg of BBR per reac-
tion resulted in 94% inhibition of HIV-1 RT. An improved 
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therapeutic effect was observed when berberine-9-0 esters 
were used [80] (Table 1). BBR might therefore have a poten-
tial application as a complimentary therapeutic agent against 
HIV infection.

Conclusions

Recent studies have demonstrated therapeutic activity 
of BBR and its derivatives, especially against viral entry 
and replication. BBR has the ability to inhibit infection of 
various viruses including influenza virus, HSV, HCMV and 
CHIKV, and to reduce virus production. For some of these 
viral infections (e.g. CHIKV) there are still no approved 
drugs or treatments. Many viruses can target the MAPK 
pathway to manipulate cellular functions and control viral 
replication, leading to host cell death. These pathways are 
also involved in inhibitory effect of BBR. In addition, BBR 
can inhibit inflammatory responses triggered by viruses. 
Interestingly, in recent years, many scientific reports have 
reported immunostimulating and anti-inflammatory activity 
of BBR. Recent research suggests that BBR and its deriva-
tives are active plant biomolecules that can be applied suc-
cessfully for antiviral pharmacological strategies, possibly 
and hopefully also against SARS-CoV-2, which is currently 
a major problem worldwide.
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