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Abstract
Extensive heterogeneity in autism spectrum disorder (ASD) has hindered the characterization of consistent biomarkers,
which has led to widespread negative results. Isolating homogenized subtypes could provide insight into underlying
biological mechanisms and an overall better understanding of ASD. A total of 1093 participants from the population-
based “Healthy Brain Network” cohort (Child Mind Institute in the New York City area, USA) were selected based on
score availability in behaviors relevant to ASD, aged 6–18 and IQ >= 70. All participants underwent an unsupervised
clustering analysis on behavioral dimensions to reveal subgroups with ASD traits, identified by the presence of social
deficits. Analysis revealed three socially impaired ASD traits subgroups: (1) high in emotionally dysfunctional traits, (2)
high in ADHD-like traits, and (3) high in anxiety and depressive symptoms. 527 subjects had good quality structural
MRI T1 data. Site effects on cortical features were adjusted using the ComBat method. Neuroimaging analyses
compared cortical thickness, gyrification, and surface area, and were controlled for age, gender, and IQ, and corrected
for multiple comparisons. Structural neuroimaging analyses contrasting one combined heterogeneous ASD traits
group against controls did not yield any significant differences. Unique cortical signatures, however, were observed
within each of the three individual ASD traits subgroups versus controls. These observations provide evidence of ASD
traits subtypes, and confirm the necessity of applying dimensional approaches to extract meaningful differences, thus
reducing heterogeneity and paving the way to better understanding ASD traits.

Introduction
Autism spectrum disorder (ASD) is a complex array of

neurodevelopmental conditions typically characterized by
social interaction and communication impairments, and
restricted and repetitive behaviors1. The heterogeneity of
ASD, reflected in its etiology, development, and biological
phenotypes, presents an enormous challenge in the deli-
neation and understanding of the disorder. It is therefore
fundamental to define distinct subgroups of ASD, and
dimensional approaches have been proposed as one way
to perform this.

It has been suggested that autistic traits, in particular
social and communication deficits, are distributed along a
continuum extending into the general population2–5.
Core autistic traits are often concomitant with behavioral
traits varying in type and degree, thus further compli-
cating the characterization of ASD. Common symptoms
reported in ASD patients include anxiety6, depressive
symptoms7, aggression8, attention deficits9, hyper-
activity10, and sleep difficulties11. ASD patients are also
more likely to present medical issues including seizures12,
immune system abnormalities13, and gastrointestinal
disorders14. Behavioral symptoms often indicate the pre-
sence of comorbid psychiatric disorders such as attention-
deficit/hyperactivity disorder (ADHD), major depressive
disorder, anxiety disorders, and conduct disorders. This
complexity enforces the legitimacy of implementing a
dimensional approach to examine continuous autistic
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traits and fluctuating behavioral symptoms as inter-
correlated constructs varying in expression. A dimen-
sional approach can promote stratification according to
behavioral and biological features as suggested by the
Research Domain Criteria15.
A prominently studied biological feature in ASD is

cortical morphometry. In particular, ASD is accompanied
by a range of aberrant cortical patterns present in both
volumetric and surface-based morphology studies16,17.
Several case-control studies have reported various chan-
ges in thickness including increases16,18 and decrea-
ses19,20. Surface area in ASD has been less investigated,
with most results reporting no differences16,21,22. Studies
have also reported significant global increases in surface
area at younger ages23,24, as well as decreases in later
stages of life24. Gyrification observations within ASD on
the other hand have greatly reported increases17,21,25,26,
with few showing decreases27,28. Though neuroanatomical
investigations in ASD have remained largely unreplicated,
few observations have persisted. This includes early brain
overgrowth in frontal and temporal lobes29–31, causing
children to achieve a nearly developed brain volume
earlier than controls. Also, longitudinal studies in cortical
thickness have shown a general trajectory of accelerated
thinning with age in ASD patients versus controls in
frontal, temporal, and parietal areas22,32. We presume that
the general variability and lack of reproducibility is due to
the frequently encountered practice of combining het-
erogeneous ASD patients into one group within case-
control studies.
The objective of the present study is to thus disentangle

and better understand the behavioral heterogeneity in
ASD by using subjects with autistic traits to extract
refined cortical morphometry features. To observe how
behavioral dimensions distribute in a general population
of children and adolescents that vary in degree of social
impairment spreading across the spectrum, we designed
the following experiment. We chose a broad age range
(5–18), including males and females, within a large-scale
multidimensional population-based cohort in order to
capture a larger effect variance (compared to a purely
ASD cohort) by focusing on behavioral constructs, and
not an ASD diagnosis. We then conducted an unsu-
pervised clustering analysis on the z-scores of several
behaviors, especially chosen due to their manifestation in
ASD, in order to isolate data-driven subgroups high in our
dimension of interest: social impairment, which is a sur-
rogate of autistic traits3,33. Extracted subgroups were
subsequently combined into one autistic traits group and
compared in cortical surface features (thickness, gyr-
ification, and surface area) to the remainder of the
population (i.e., the remaining subgroups that do not
exhibit high social impairments, serving as our controls),
thus mimicking a case-control study. We show that the

case-control paradigm does not extract meaningful cor-
tical features and that behavioral stratification is required.
Therefore, in order to achieve clinically relevant mor-
phometric signatures, we ran morphological analyses
comparing each of our isolated socially impaired sub-
groups to controls. This should provide us with a better
understanding of underlying heterogeneity present in the
physiology of autistic traits, and ultimately ASD.

Materials and methods
Part 1: Clinical profiles
HBN cohort and participants
The Healthy Brain Network (HBN) cohort initiative

within the Child Mind Institute began in 2015 with the
goal of collecting brain imaging, cognitive/behavioral, and
genetic data for 10,000 children and adolescents (5–21
years old) to investigate the heterogeneity behind neu-
ropsychiatric and neurocognitive development34. It com-
prises a population of individuals at-risk for developing
psychiatric disorders and typically developing partici-
pants. Subjects were recruited through flyer dissemination
and subsequently assessed on clinical questionnaires at
three sites in New York City, USA: Staten Island, Mobile
Van, Midtown.
In the status of the HBN cohort, consensus diagnostics

are not available for most of the subjects enrolled; how-
ever, this does not preclude the possibility to carry out our
dimensional study since subjects were not selected based
on an ASD diagnosis, but rather on the presence of
behavioral constructs relevant in the field of ASD. There
were 1800 subjects participating at the time of this study,
of which 1093 remained based on available overlap in
behavioral scores assessing social deficits, hyperactivity,
anxiety, irritability, depression, aggression, and attention
problems, and having a full-scale Intelligence Quotient
(FSIQ) >= 70. We selected these seven behaviors due to
their presence in comorbid psychiatric disorders com-
monly reported in ASD patients, and therefore their fre-
quent emergence along the autistic behavioral spectrum,
implicating them in the understanding of ASD behavioral
neuropathology35–39. Full-scale IQ was measured using
the Wechsler Adult Intelligence Scale (WAIS-III, for
those over 16) or the Wechsler Intelligence Scale for
Children (WISC-III). Written informed consent was
obtained from legal guardians and from participants
themselves. This cohort study initiative was approved by
the Chesapeake Institutional Review Board.

Behavioral assessments
One of the most prominent dimensions in ASD patients

is social impairment. Here, we used data from the widely
used 65-item parent social responsiveness scale (SRS) as a
quantitative measure of clinical autistic traits, making it
the central variable of interest in our study and in fact the
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score from which we separate out our autistic traits
individuals. The SRS has been proven as a valid measure
of autistic traits and thus has been used as a measure of
autistic traits (for the purpose of understanding ASD) in
several behavioral, genetic, and neuroimaging stu-
dies3,28,32,33,40–44. Though not a diagnostic tool, the SRS
exhibits high inter-rater and cross-cultural reliability, and
correlates greatly with the Autism Diagnostic Observation
Schedule (ADOS) and the Autism Diagnostic Interview—
Revised (ADI-R) diagnostic assessments for ASD from the
DSM-5, making it a robust measure to use in the
dimensional study of ASD behaviors3,33,40,45. Similarly, for
the remaining behaviors we did not use diagnostic
assessments but rather scales measuring behavioral trait
severity. Hyperactivity levels were determined using the
hyperactivity subscale within the Strengths and Difficul-
ties Questionnaire (SDQ)46; anxiety was measured using
the total score from the Screen for Child Anxiety Related
Disorders Parent-Report (SCARED-P)47; irritability was
defined using the total score of the Affective Reactivity
Index Parent-Report (ARI-P)48; and lastly, levels of
depression, aggression, and attention problems were
determined using subscales of the same names within the
Child Behavioral Checklist (CBCL)49.

Unsupervised clustering analysis (K-means)
We conducted a k-means analysis on scaled z-scores of

the previously mentioned 7 behaviors. This extracted
subgroups varying in SRS and other accompanying
behavioral characteristics. Briefly, k-means is an algorithm
identifying mean cluster centroids, which serves to par-
tition a sample into k subgroups50. A substantial challenge
in such analyses lies in determining the number of clus-
ters, which is a user-defined parameter. To address this
problem, the chosen number of clusters k was determined
using a Bayesian Information Criterion (BIC) distribution
(Supplementary Fig. 1)51.
Mean behavioral scores, FSIQ and age were compared

between subgroups using non-parametric 2-sided
Mann–Whitney U tests, while gender differences were
determined using a chi-square test. Python version 2.7
and R 3.4.0 were used on a Linux platform to perform all
analyses in this study. Python packages used include
Pandas (version 0.19.2), SciPy (version 1.1.0), and Mat-
plotlib (version 1.5.1).

Part 2: Neuroimaging analysis of cortical surface features
Structural MRI acquisition and processing
MRI acquisition took place at three different sites:

mobile 1.5T Siemens Avanto in Staten Island, 3T Siemens
Tim Trio at Rutgers University Brain Imaging Center, and
3T Siemens Prisma at the CitiGroup Cornell Brain Ima-
ging Center (acquisition protocols are extensively descri-
bed in Alexander et al. 34).

T1-weighted images were processed using the Free-
Surfer software version 6.0.0 (https://surfer.nmr.mgh.
harvard.edu/). For more information on precise methods
of image analysis and the construction of anatomical
information for each individual done by this software,
refer to52,53. Briefly, the FreeSurfer analysis stream
includes intensity normalization, skull stripping, and
segmentation of gray (pial) and white matter surfaces52.
Subsequent tessellation, as well as various topology cor-
rections and inflation, leads to 3D meshes of cortical
surfaces in different resolutions. Our work is based on a
tessellation with ~160,000 vertices per hemisphere and
used the FreeSurfer fsaverage template. We focused on
three morphological measures of which the processing
stream created vertex-wise maps for analysis: cortical
thickness (CT), surface area (SA), and gyrification (lGI).
The local gyrification index is measured as the ratio
between buried and visible cortex54. All images were
manually inspected in-house, in addition to using the
Euler number as a metric of quality by retaining images at
a threshold of -217, as specified in Rosen et al. 55.

Elimination of site effects on cortical features using ComBat
A harmonization process was performed to account for

the multiple acquisition sites. Features extracted from
structural MR images are prone to technical variability
across acquisition centers such as differences in scanning
parameters, scanner manufacturers and field strengths. In
order to remove cortical feature bias and variability
caused by the unwanted site effects, the ComBat techni-
que was applied to harmonize feature data along our three
acquisition centers. This method adjusts the mean value
and variance of feature measures across sites56.

Statistical analysis
Vertex-wise statistical analyses were conducted using

the command-line group analysis stream in FreeSurfer.
Cortical surfaces for each participant were first registered
to a study-specific template, then smoothed using a full-
width-at-half maximum (FWHM) kernel of 10 mm for CT
and SA, and 5 for lGI. A general linear model was fit at
each vertex i to compare the three morphological mea-
sures between groups, using gender as a categorical cov-
ariate, and age and FSIQ as continuous covariates (site
effects were already accounted for at the vertex level), and
including the residual error:

yi ¼ β0 þ β1Groupþ β2Sexþ β3Ageþ β4FSIQþεi:

We performed a cluster-level analysis using a cluster-
forming threshold of p= 0.01. We report clusters with
cluster-wise p-value (cwp) of cwp <0.05. These p-values
were corrected for multiple comparisons using the
mri_glmfit-sim precomputed MonteCarlo simulation.
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Results
Part 1: Clinical profiles
Data-driven behavioral subgroups in HBN cohort
Based on the computed BIC value distribution, a k value

of 9 was retained as our supervised partitioning for this
study (Supplementary Fig. 1). Thus, upon running the
clustering analysis, we obtained nine subgroups with
various behavioral profiles (Table 1). The average SRS
levels were used to decide which subgroups represented
high autistic traits participants and which were controls.
From these nine subgroups, three expressed high levels of
SRS, representing our socially impaired “high autistic
traits” subgroups. The SRS levels of these three subgroups
fall within the “severe” or at least upper “moderate” clas-
sification of the SRS scale (an SRS value above ~80), thus
indicating a high level of social impairment, providing us
with greater confidence that subjects within these sub-
groups have “autistic-like” traits (Supplementary Fig. 2).
Additionally, mean SRS values in these three subgroups
are comparable to the average SRS level of ~86 reported
in diagnosed ASD patients33,57,58. Regarding the beha-
vioral compositions of our three high autistic traits sub-
groups, one subgroup showed high levels of reactivity,
aggression, and ADHD-like symptoms (hyperactivity and
attention issues), n= 107 (described as emotional dysre-
gulation—Emot); the second maintained normal levels in
all behavioral scores except for attention problems and
hyperactivity, n= 82 (described as attention problems—
Attn); and the third showed high levels of anxiety and
depression, as well as attention deficits, n= 61 (described
as anxiety depression—AnxDep) (Fig. 1). Clinically high
levels were determined for each behavioral measure
according to the literature3,47,48,59–61. Though the
remaining six subgroups contained subjects with SRS
values ranging from low to high, each of these subgroups
maintained an overall low SRS mean and were thus
combined as our control group (n= 843) with the aim of
creating a representative general population without
autistic traits subjects. Studies often barely obtain addi-
tional behavioral information on their controls other than
a “non-diagnosis” or “low SRS”. By combining these
remaining six subgroups into one control group, we
smooth out several behavioral heterogeneities and yield a
control group composed of a wide behavioral spectrum,
while still maintaining low mean levels of SRS (our target
variable of interest to be contrasted in subsequent ana-
lyses) (Supplementary Fig. 3).
Upon comparing the three socially impaired subgroups

to one another, several significant differences in beha-
vioral scores were found (Table 2a, “Comparisons between
subgroups”). We also compared each autistic traits sub-
group to controls and observed significant differences in
all behavioral scores, except for reactivity in the Attn
subgroup. Lastly, we decided to combine all three high Ta
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autistic traits subgroups into one “autistic-like” group
(combined high SRS, hSRS) to compare against controls,
which yielded highly significant differences in every
behavioral score (Table 2a, “Comparisons to controls”).
With respect to demographic information, there were

no significant differences in gender and FSIQ between all
subgroups. However, there were reported differences in
age, though age ranges were similar (mean age = 10.8,
SD= 3.4) (Table 2a, “Comparisons between subgroups”).
Upon comparing each subgroup to controls, we again
found no differences in gender. We did however find
differences in age between all subgroups and controls,
except for Emot. Although age differences were present,
age ranges were again similar. FSIQ differed between all
subgroups and controls, except for AnxDep, which is to be
expected since autistic traits are generally accompanied by
differences in FSIQ. Lastly, the comparison between the
hSRS group and controls yielded significant differences in
age and FSIQ, but not gender (Table 2a, “Comparisons to
controls”). Due to these differences, we deemed it
important to control for FSIQ, age and gender in the
subsequent neuroimaging analysis.

Part 2: Neuroimaging analysis of cortical surface features
Morphological comparisons
After removing subjects that have not undergone MRI

acquisition and/or did not pass the T1 image quality
check, as well as those removed during the outlier
detection step (Supplementary Fig. 4), we obtained a
sample of: n= 47 in the “Emot” group, n= 39 in the

“Attn” group, n= 31 in the “AnxDep” group, and n= 410
controls (Supplementary Table 1), producing a total of
527 subjects with available T1 data participating in the
study. Behavioral score and demographic information
comparisons were nearly identical to the behavioral
cohort (Table 2b, “Neuroimaging cohort’”). To delineate
the interest and significance of subtyping in an autistic
traits population, we first combined all three subgroups
into one large group (hSRS, n= 117) and compared
cortical thickness, local gyrification and surface area
against controls. Indeed, this comparison did not yield
significant differences in any of the measured surface
features. We then compared the same surface features
between each of our three subgroups against controls.
After correction for multiple comparisons, the Emot
subgroup exhibited decreases in gyrification in the right
hemisphere in two separate clusters, one spanning the
precuneus (including parts of the superiorparietal area)
(p < 0.01, Cohen’s d= 0.51), and another in the temporal
lobe (including the posterior inferior temporal gyrus and
the middletemporal) (p < 0.01, Cohen’s d= 0.48)(deno-
ted as PC and pITG) (Fig. 2a). The Attn subgroup dis-
played elevated local gyrification peaking in the
lateraloccipital area of the right hemisphere (denoted as
LO) (p < 0.01, Cohen’s d= 0.41). Additionally, the Attn
subgroup also exhibited two separate clusters in the left
hemisphere showing increases in surface area in the
precentral cortex (along the central sulcus) (p < 0.01,
Cohen’s d= 0.61), and superiorfrontal regions (p < 0.01,
Cohen’s d= 0.58) (denoted as PreC and SF) (Fig. 2b).
Lastly, the AnxDep subgroup showed increases in gyr-
ification spanning the left postcentral and precuneus
regions (PostC) (p < 0.01, Cohen’s d= 0.33), and
decreases in thickness in the left posterior mid-
dletemporal gyrus lining the superior temporal sulcus
(pMTG/STS) (p < 0.01; Cohen’s d= 0.55) (Fig. 2c)
(Table 3).

Discussion
ASD studies have unceasingly demonstrated hetero-

geneity, warranting a shift in focus towards initially
characterizing these differences before subsequent analy-
sis, and steering away from case-control studies. To this
end, a dimensional approach proves most relevant. To the
best of our knowledge, this is the first study using an
unsupervised clustering analysis on a population-based
cohort to investigate how autistic traits cluster with other
behavioral dimensions into subgroups, with subsequent
isolation of subgroup cortical signatures. Recent evidence
advocates that autistic traits fall along a continuum within
the general population, which was why this study was not
limited to diagnosed individuals, but rather focused on
autistic traits as absolute constructs in order to avoid
potential selection or environmental biases often

Fig. 1 Radar plot of high autistic traits subgroups. A clustering
analysis yielded nine subgroups varying in behavioral composition.
From these, three exhibited high SRS levels. The first subgroup (Emot),
colored in green, had strong emotional dysregulation (aggression and
reactivity) with ADHD-like symptoms. The second subgroup (Attn),
colored in blue, showed ADHD-like tendencies. Lastly, the third
subgroup (AnxDep), colored in red, exhibited high levels of anxiety
and depression, as well as attention deficits. This plot was built upon
normalized scores that were converted to a scale of 1 to 100 (as
indicated by each encircling gray line) for simplification.
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Fig. 2 (See legend on next page.)
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accompanying diagnosed patients. We obtained three
autistic traits subgroups in our unsupervised clustering
analysis with the following behavioral profiles: (1) high
aggression, reactivity, and ADHD-like traits (Emot), (2)
high in attention deficits and hyperactivity (Attn), and (3)
high in anxiety and depression, as well as attention deficits
(AnxDep). Furthermore, upon neuroanatomical investi-
gation, we found that comparing each subgroup to con-
trols uncovers unique cortical signatures. Namely, after
correcting for multiple comparisons, the Emot subgroup
showed decreased gyrification in precuneus and posterior
inferior temporal regions (PC and pITG); the Attn sub-
group displayed increases in gyrification in the later-
aloccipital (LO) and increases in surface area in the
precentral and superiorfrontal regions (SF); and lastly, the
AnxDep subgroup exhibited an increase in gyrification in
the postcentral cortex (PostC), as well as a decrease in
thickness in the posterior middletemporal and superior
temporal sulcus area (pMTG/STS). Most interestingly, we
found that by comparing the structural brain features of
one heterogeneous autistic traits group (composed by
combing all three subgroups) to controls, we were unable
to uncover any cortical signatures. Simply comparing
behaviorally diverse ASD-like cases to controls proved far
too rudimentary to yield consistent features.
Though several case-control studies have reported

neuroanatomical differences in ASD populations, these
studies have remained grossly inconsistent, possibly due
to ASD heterogeneity. Here, we showed that by running a
direct comparison between subjects having high versus
low/absent autistic traits, no cortical differences were
reported. In a study by Haar et al., authors compared
cortical thickness differences between ASD and controls
and ran both univariate and multivariate comparisons62.
Results were strikingly weak and were attributed to the
considerable heterogeneity of the ASD population. The
authors ultimately suggested that previously reported
neuroanatomical differences between cases and controls
held low clinical significance, and advocated the necessity
of subdividing ASD groups by genetic, clinical and/or
behavioral traits in the identification of unique neuroa-
natomical abnormalities62. Further studies in animal
research have also encouraged subtyping in ASD, namely
a study by Ellegood et al., which ran a clustering analysis

on ASD neuroanatomy in a cohort comprising several
varieties of mouse models, and subsequently observed
resulting clusters’ corresponding gene and behavior pat-
terns63. The mentioned studies, along with several others,
promote a shift towards subtyping ASD and autistic traits
populations in order to better understand and treat the
disorder.
Compared to our high vs. low/absent autistic traits

contrast that yielded no results, by isolating behaviorally
refined autistic traits subgroups we observed cortical
signatures despite having lower statistical power than the
combined sample. Decreased gyrification detected in the
right PC and pITG region in the Emot subgroup is con-
sistent with studies in ASD27,64. In general, the precuneus
is highly implicated in the default mode network (DMN)
as well as in visuospatial processing, empathy and mem-
ory, while the temporal lobe correlates to memory, audi-
tion, theory of mind and visual processes65–68.
Considering that this group bears high in aggression,
studies have also reported a general decrease in gyrifica-
tion in aggressive patients69,70, as well as decreased
functional connectivity between the precuneus and other
brain regions in patients exhibiting higher aggression
traits, possibly due to its role in the DMN and empa-
thy71,72. Additionally, this subgroup exhibited high
ADHD-like symptoms which have also shown links to
precuneus regions of the brain73,74. In our second sub-
group, Attn, we observed increases in surface area in the
precentral (primary motor) cortex, which is involved in
voluntary motor control75,76, and the superiorfrontal
gyrus, which is part of the motor control network and also
harbors functions in attention, working memory, execu-
tive functioning and in the default mode network74,77,78. A
study has even suggested that early motor impairments
are predictors of future social communication delays,
further indicating the importance of understanding this
region in relation to ASD risk79. Specifically, within ASD,
atypical motor functioning has been measured in patients
from infancy until well into adulthood80,81. Seeing as how
we observed extensive structural alterations throughout
the motor control network in the Attn subgroup, this
warrants further investigation into the relationship
between ADHD-like traits and motor control in ASD and
autistic traits populations. The Attn subgroup also

(see figure on previous page)
Fig. 2 Surface feature comparisons between each subgroup and controls. a The Emot subgroup yielded decreases in gyrification in the right
precuneus and temporal regions (cwp = 0.0004 and 0.005, respectively). b The Attn subgroup exhibited increases in gyrification in the left
lateraloccipital region (cwp = 0.002), and increases in surface area in the left precentral and superiorfrontal regions (cwp = 0.02 and 0.02,
respectively). c The AnxDep subgroup showed increases in gyrification in the left postcentral area (cwp = 0.02), and decreases in thickness in the left
middletemporal gyrus/superior temporal sulcus (cwp = 0.04). Colors represent the –log10(p-value), with red(+) indicating an increase and blue(−)
indicating a decrease compared to controls in affected morphological features.
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presented decreases in gyrification in the lateraloccipital
region, which is heavily implicated in visual perception,
and specifically in face recognition, which greatly influ-
ences social communication25,82,83. The last subgroup,
AnxDep, exhibited increases in gyrification in the post-
central region (primary somatosensory cortex), which
functions as the main sensory receptive area of the
brain84,85. In ASD, atypical sensory reception, more
specifically over-responsivity to tactile sensory inputs, is
a very prevalent symptom86–88. This suggests that
autistic individuals could easily be overwhelmed, per-
haps forging a link to the development of anxious and
depressive behaviors, as observed in this subgroup. The
AnxDep subgroup additionally showed a decrease in
thickness in the pMTG/STS region, which has been
greatly implicated in language and social aspects, and
thus an extremely important cortical region of interest in
ASD behavioral studies89–91. Therefore, taking into
account dimensional constructs of behavior in ASD can
better prepare subgroups for the identification of bio-
logical mechanisms. Further investigation is warranted
into the relationship between affected regions and cor-
responding subgroup behaviors in the context of ASD
since these regions have been consistently reported
within the ASD literature.
The behaviors observed in our subgroups enforce the

fact that ASD is highly concurrent with several psychia-
tric conditions in up to 80–95% of patients35,39. Reported
comorbid disorders include ADHD, depression dis-
orders, anxiety disorders, obsessive compulsive disorder
(OCD), and conduct disorders35–39. This high degree of
comorbidity (based on diagnostic information) corre-
sponds to our dimensional results, which describe these
associations in an even more descriptive and spectral
manner using behavioral constructs. Having access to a
multidimensional cohort containing assessments of
behaviors reported in ASD allowed us to explore how
core autistic traits inherently distribute with other
symptoms in a dimensionally continuous population. By
running a data-driven clustering analysis on a
population-based cohort, we isolated three main autistic
traits subgroups. The AnxDep subgroup is composed of
subjects high in anxiety, depression and attention defi-
cits. This is in line with findings reported in the literature
where anxiety and depression appear to be some of the
most common psychiatric comorbidities in ASD
patients38,39. The Attn subgroup could represent an
isolated population consisting purely of ADHD and
autistic traits in an otherwise behaviorally muted sub-
class. This may perhaps become the optimal subgroup
for studying the overlap between ADHD and ASD.
Lastly, the Emot subgroup has ADHD-like traits in
combination with emotional regulation abnormalities as
evidenced by high degrees of aggression and reactivity.Ta
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The Emot subgroup suggests a third combination of
behavioral traits showing that the aggressive behaviors
often observed in autistic traits participants can in effect
co-occur with ADHD-like traits. The diverse behavioral
profile of each subgroup highlights the importance of
combining independent behaviors into one multivariate
analysis to observe how they distribute. For example, as
mentioned previously, both the Attn and Emot subgroups
show high levels of attention problems and hyperactivity,
and remain relatively close in anxiety and depression
levels. The Emot subgroup, however, exhibits excep-
tionally high levels of aggression and reactivity, a factor
that separates one ADHD-like autistic traits subgroup
into two (i.e. Attn and Emot), thus increasing behavioral
homogeneity and the likelihood of extracting biological
features from cortical images.
Notably, the unsupervised clustering analysis yielded

high autistic traits subgroups with gender ratios (aver-
aging 2:1, male to female) differing from those usually
reported ASD populations (averaging 4:1, male to
female)92. However, this gender disequilibrium is not
entirely surprising as this difference can be explained by
the fact that studies sampling from the general population
often show a lower ratio (3:1)93, and that overall variability
may play a role. Moreover, several studies have reported
ratios ranging from 2:1 to 7:194–97, indicating a hetero-
geneity that warrants further exploration as well as a
diversity in gender ratio that depends on how cohorts are
built. Most importantly, within the current investigation
gender differences were controlled for in the neuroima-
ging analysis.
This study has several potential limitations. Firstly,

though the SRS included a repetitive behavior subscale, it
would have been interesting to include an independent
repetitive behavior component within the clustering
analysis. Concerning the unsupervised clustering, inher-
ent limitations include the somewhat arbitrary determi-
nation of the number of clusters, and difficulties to
reproduce the same partitioning in another dataset. Also,
it is challenging to account for covariates in unsupervised
clustering analyses. Alternative approaches could also
have been applied on this dataset that would prove
interesting in future studies including clustering based on
SRS subscales (with subsequent study of behavioral and
morphological traits), or clustering on a broader range of
scales (not only pertaining to behaviors central in ASD)
with subsequent isolation of subgroups high in SRS.
Additionally, the present study used a general
population-based cohort, and not one tailored for ASD
studies, thus warranting the careful isolation of beha-
vioral variables relevant to our objective. Within the
morphometric results, it is possible we did not observe
further thickness differences due to the wide age range of
our cohort. Thickness changes more with age and

environment and may thus present larger heterogeneities
than does gyrification (which is typically developed in-
utero and shortly after birth), leading us to observe
greater gyrification alterations within our results98,99.
Also, the average age of subjects in the current study
(~11.4 years old) could indicate that our cortical results
are consequences of differential child development, a
hypothesis however that can only be confirmed using a
longitudinal, prospective design. Clinical diversity in
autistic traits may be further explained by other mod-
alities, thus next steps would involve considering genetic,
volumetric, diffusion, and functional differences between
the acquired subgroups.
In conclusion, we showed that subtypes of autistic

traits yield refined signatures and therefore stress the
importance of stratification using a dimensional
approach. Several studies, including the current one,
have demonstrated the difficulty in yielding significant
biological features in case-control comparisons, leading
to large-scale inconsistencies within ASD literature.
Since several of the behavioral associations and affected
cortical regions discussed in this study have similarly
been implicated in ASD studies, our findings maintain
the growing assumption that outcomes in autistic traits
are related to variations observed in ASD patients. By
uncovering better-defined subtypes of ASD, studies can
finally begin to truly understand the underlying genetic,
biological and behavioral mechanisms of this syndrome.
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