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Abstract: The article presents the results of the numerical investigation of Lamb wave propagation
in concrete plates while taking into account the complex concrete mesostructure. Several concrete
models with randomly distributed aggregates were generated with the use of the Monte Carlo method.
The influence of aggregate ratio and particle size on dispersion curves representing Lamb wave
modes was analyzed. The results obtained for heterogeneous concrete models were compared with
theoretical results for homogeneous concrete characterized by the averaged macroscopic material
parameters. The analysis indicated that not only do the averaged material parameters influence
the dispersion solution, but also the amount and size of aggregate particles. The study shows that
Lamb waves propagate with different velocities in homogeneous and heterogeneous models and
the difference increases with aggregate ratio and particle size, which is a particularly important
observation for wave-based diagnostic methods devoted to concrete structures.
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1. Introduction

Ultrasonic waves have been widely used in diagnostics of engineering structures. Significant
scientists’ interest has been focused on the nondestructive evaluation of concrete, which is one of the
most popular construction materials used in the world. Its widespread use entails the need for the
development of effective methods of damage detection in the early stage to prevent the development
of significant defects, which would jeopardize the integrity and safety of the entire structure.

So far, a number of various approaches devoted to solving different problems have been proposed.
Ultrasonic waves are most commonly used for crack detection [1–7], monitoring the hardening
process [8–11], as well as for the quality assessment of the adhesive connection between concrete cover
and reinforcement [12–16]. The method of scanning the surface opening cracks in reinforced concrete
structures using transient elastic waves was developed by Liu et al. [1]. The effect of the depth of
surface-breaking cracks in concrete plates on Lamb wave propagation was described by Yang et al. [2].
The influence of the width of partially closed surface-breaking cracks in concrete structures, the incident
angle of waves with cracks, and the distance from the cracks on travel time and wave amplitude have
been investigated by Pahlavan et al. [3]. Ultrasonic shear-wave tomography was used by Choi et al. [4]
to identify horizontal cracks or delamination in concrete pavements, columns, and bridges. Surface
wave propagation was used by Ham et al. [5] to assess the volume content of relatively small distributed
defects and to characterize the microcrack networks in concrete. A combination of Rayleigh and
longitudinal waves was employed by Aggelis and Shiotani [6] to evaluate the parameters of surface
opening cracks in concrete before impregnation by the epoxy material, as well as to determine the final
repair effectiveness. Quiviger et al. [7] conducted a simulation study of the influence of the depth and
morphology of cracks in concrete on ultrasound diffusion.
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Wave propagation was also effectively employed to monitor the concrete hardening process.
The speed of propagation of ultrasound in various concrete samples varying in time of aging was
investigated by del Rio et al. [8]. Piezoelectric transducers embedded in concrete structures were
used by Dumoulin et al. [9] to monitor the setting and hardening phases of the early-age concrete.
The hardening process of ultra-high-performance concrete was monitored by Lee et al. [10] using the
characteristics of individual Lamb wave modes. The correlation between the shear wave velocity and
penetration resistance for mortar mixtures was presented by Liu et al. [11].

Several scientific papers were devoted to guided waves for the detection of debonding occurring
between concrete and internal or external reinforcement [12–15]. Monitoring of the interfacial
debonding of a concrete-filled pultrusion-GFRP tubular column based on stress wave propagation was
conducted by Yang et al. [12]. The wavelet packet-based energy index was proposed by Jiang et al. [13] to
detect debonding between a steel beam and a carbon fiber-reinforced polymer plate. The time-reversal
method was applied by Zhao et al. [14] to detect and localize the debonding along the steel–concrete
interface. Giri et al. [15] employed the partial least-squares regression technique for detecting gaps in
the steel–concrete composite specimens.

The above brief review of the literature indicates the multiplicity of investigation strands concerning
wave-based concrete diagnostics carried out in the last decades. However, in the majority of reported
cases, regardless of the considered problem, the diagnostic process requires some reference data
collected for an intact structure, which would be compared to the data obtained for the damaged
specimen. Due to obvious reasons, it is not always possible to make the baseline measurement
for a pristine structure, and thus, the development of reference-free diagnostic procedures is of
particular importance. The main idea of the recently developed reference-free methods is based on
the comparison of the experimental measurement with the theoretical predictions [16]. The greater
the difference between experimental and theoretical results, the greater the state of deterioration is
expected. However, the discrepancies between experimental measurements and theoretical predictions
were caused not only by the damage occurrence but also the simplification of the theoretical model
of wave propagation in the concrete structure. The theoretical models were usually developed for
homogeneous, isotropic materials characterized by the averaged macroscopic parameters, while the
concrete is a multi-phase, strongly heterogeneous material. The complex mesostructure of the concrete
led to inaccuracies in the wave propagation model. The theoretical predictions differed slightly from
the actual results registered for experimental specimens, which, in consequence, led to inaccuracies in
damage size assessment.

Although the papers published by Xu et al. [17], Abo-Quadis [18], and Ramaniraka et al. [19]
deal with the impact of the concrete mesostructure on waves characteristics, the problem of wave
propagation in heterogeneous materials is still not considered in detail, yet. The existence of aggregates
varying in size, shape, and material parameters, and pores and cracks may lead to additional disturbing
phenomena like scattering, diffractions, and wave attenuation affecting wave amplitude or propagation
velocity, which were commonly used as indicative parameters in the above-mentioned studies.
The wave propagation phenomenon may significantly differ for two different concrete specimens
despite their identical macroscopic material parameters. Thus, the comprehensive analysis of wave
propagation in concrete specimens taking into consideration their complex mesostructure is crucial for
the further development of wave-based concrete diagnostic methods.

The main contribution of the paper is the analysis of the aggregate size and content on Lamb
wave propagation. The algorithm of the generation of heterogeneous concrete models was developed
and described step by step. Several numerical plate models differing in parameters of the internal
mesostructure were developed using the Monte Carlo method. The averaged macroscopic parameters
determined theoretically were compared to material parameters determined based on the shape
of reconstructed dispersion curves for antisymmetric Lamb modes. The results obtained show
that the concrete mesostructure has a significant influence on the wave propagation phenomenon.
The wave velocity determined for the homogeneous concrete model differed from the velocity in
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the heterogeneous concrete model, even if the averaged material parameters were the same, and
according to the theoretical wave propagation model, differences in velocities should not be observed.
The difficulties in exact wave velocity determination must be taken into account, especially if the
developed diagnostic procedure involves monitoring of wave propagation velocity.

2. Theoretical Background

2.1. Theory of Lamb Waves

The existence of Lamb waves was described by Horace Lamb in 1917 [20]. Lamb waves are guided
between two parallel free surfaces and can thus be sustained in thin plates. Due to the dispersive
nature of Lamb waves, their velocity and number of wave modes depend on excitation frequency.
In general, two different mode families can be distinguished: Symmetric and antisymmetric wave
modes. When the wave motion is associated with symmetrical displacement and stresses with respect
to the middle plane, the symmetric wave mode propagates (Figure 1a). Antisymmetric displacements
and stresses are associated with antisymmetric modes propagation (Figure 1b). The relationship
between wavenumber and frequency for symmetric modes and antisymmetric modes can be obtained
by solving the following dispersion equations, respectively:
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Figure 1. Lamb wave modes: (a) Symmetric mode; (b) antisymmetric mode. Figure 1. Lamb wave modes: (a) Symmetric mode; (b) antisymmetric mode.

The velocities of shear and longitudinal waves in an infinite medium denoted as cT and cL can be
calculated based on known material parameters of the medium:
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(5)
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where µ and λ are Lame’s constants. The group velocity is the derivative of angular frequency over
the wavenumber:

cg =
dω
dk

(7)

For the given angular frequency, there is an infinite number of possible solutions that fulfill
Equations (1) and (2). The wavenumber k can be real, imaginary, or complex; however, if the plate is
considered unloaded, it is sufficient to consider real values only. The number of possible solutions also
increases with frequency range. For higher frequencies, the number of possible wave modes increases.

2.2. Two-Dimensional Fourier Transform

The shape of dispersion curves can be determined by solving the dispersion equations, but also by
processing the signals captured at the investigated structure. It is possible to measure the amplitudes of
individual Lamb wave modes by using a 2-dimensional fast Fourier transform (2D-FFT) technique [21].
In this approach, the time-domain propagation signals recorded at the series of equally spaced positions
along the propagation path are transformed and the data from the time–space plane are converted into
the frequency–wavenumber plane according to the following expression:

Y(k,ω) =

+∞∫
−∞

+∞∫
−∞

u(x, t)e−i(kx+ωt)dxdt (8)

where u(x,t) denotes the displacement of the surface.

3. Concrete Model Generation

3.1. Concrete Mesostructure

Concrete is a multi-phase, strongly heterogeneous material and its mesostructure presents strong
randomness characteristics. It consists of aggregates varying in diameter and shape, mortar mix,
interface transition zones (ITZs) located between mortar and aggregates, cracks, and pores. All concrete
components are randomly distributed within its volume. The major part of the concrete mixture
is aggregate particles. They can be divided into two groups by size: Fine (≤4.75 mm) and coarse
aggregate (>4.75 mm). The content of coarse aggregate in the concrete volume is usually equal to
40–50% and, thus, it largely determines the parameters of the concrete mixture, as well as its cost.
The particle shape depends on the aggregate type. However, after other researchers [17,19,22] and for
the sake of simplicity, in a later part of the paper, we assume that they are spherical.

The next component distinguished at the mesoscopic level is ITZs, which are the regions of the
cement film covering the aggregate particles. As the first micro-cracks are induced at the interface,
the ITZs are considered as the weak link in the concrete. Their negligible influence on guided wave
propagation velocity was presented by Xu et al. [17] and, therefore, their existence is omitted in
further investigations.

In this study, we consider a two-phase concrete model comprising mortar matrix and aggregate
particles. In the following sections, the process of model generation is described step by step.
The mesostructure of the concrete is generated using the Monte Carlo method, which allows for
generation of random numbers with a specific distribution. The particles’ diameters are chosen based
on the a priori known grading curve, and particles’ coordinates are generated by taking into account
the certain restrictions related to the model dimensions.

3.2. Aggregate Particles Size

This section discussed the developed algorithm of diameter generation of the particles (Figure 2).
The particle size distribution in concrete is expressed in terms of cumulative percentage passing
through a series of sieves with openings with different sizes. The contribution of particle size fractions
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is usually presented in the form of a grading curve. The most popular and commonly used grading
curve, which lies within the limiting grading curves proposed by design recommendations [23], is the
empirical curve proposed by Fuller [22,24]. Fuller’s curve provides optimum density and strength of
the concrete and is described by the following formula:

P(d) =
(

d
dmax

)n

·100% (9)

where P(d) is the cumulative percentage passing through the sieve with diameter opening d, dmax is
the maximum particle size, and n is the exponential factor with a typical value of 0.4–0.7. The weight
percentage of the individual grading segment can be calculated as

P[ds, ds+1] = P(ds) − P(ds+1) (10)
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Figure 2. Generation of the aggregate particles.
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The aggregate volume fraction in the concrete mixture is

va =
ma

ρaV
(11)

where ma is the mass of aggregate particles, ρa is aggregate material density, and V is the volume of
the concrete specimen. The volume of the particles in the grading segment Va[ds, ds+1] can then be
calculated as

Va[ds, ds+1] =
P(ds) − P(ds+1)

P(dmax) − P(dmin)
·va·V (12)

To generate the particle belonging to the grading segment with randomly chosen diameter, one
can use the formula:

dp = η(ds+1 − ds) + ds (13)

where η is a uniformly distributed random number in the interval (0,1). The number of particles
generated in this way must ensure that the difference between the sum of their volumes and the volume
Va[ds, ds+1] is smaller than the volume of the smallest particle vs. belonging to the considered segment:

Va[ds, ds+1] −
n∑
i

Vi
p > Vs (14)

Based on the described relationships, the algorithm of diameter generation of the particles
was performed.

3.3. Particle Placement

Next, the generated particles must be placed into the concrete volume. As mentioned,
they are randomly distributed; however, their placement must satisfy some primary conditions.
First, all particles must be located within the concrete volume, and secondly, none of them can overlap
with each other. Moreover, the placement process should include that the distance si,j between the
centers of adjacent particles must be greater than the sum of their radii because of the mortar film
covering the aggregates (Figure 3):

si, j ≥
di + d j

2
+ γi, j (15)
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In this study, the thickness of mortar film is equal to 5% of the sum of the diameters of adjacent
particles [24]:

γi, j = 0.05·
(
di + d j

)
(16)

Additionally, the distance between the particle and the specimen boundary must be at least
equal to:

γi = 0.05·di (17)
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The above conditions imply that the coordinates of the mass center of the particle with diameter d
located within the volume of the concrete plate with thickness h and length l must be generated in the
following way:

xi = η(xmax − xmin) + xmin = η(l− 1.1di) + 0.55di (18)

yi = η(ymax − ymin) + ymin = η(h− 1.1di) + 0.55di (19)

where η is the uniformly distributed random number in the interval (0,1).
The algorithm of the particle placement can be summarized in three steps:

• Step I: For the particle with diameter di, generate the coordinates of its mass center.
It is recommended to begin from the largest particles, which significantly facilities the
placement process.

• Step II: Check if the particle covered with the mortar film does not overlap with any other
previously generated particle. If it does, generate new coordinates and check again. If particles do
not overlap, generate the coordinates for the next particle.

• Step III: Repeat Steps I and II for all particles.

3.4. Description of Numerical Models

3.4.1. Model Geometry and Material Parameters

The plate model developed in the Abaqus/Explicit environment has the dimensions 50 mm
× 500 mm (Figure 4). The adopted material parameters of the mortar matrix and aggregate are
summarized in Table 1 [17,25]. The calculations were performed for nine models varying in aggregate
ratio and aggregate particle size (Table 2). The grading curves for particular models are presented in
Figure 5. In all cases, the exponential factor n was equal to 0.5. Particles smaller than 4 mm in diameter
were not introduced in any model, to avoid the problems with mesh generation.
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Table 1. Material parameters of matric mortar and aggregate particles.

Material Parameter Mortar Matrix Aggregate Particles

Elastic modulus (GPa) 26 60
Poisson’s ratio (-) 0.2 0.22
Density (kg/m3) 2100 2700

The models were developed with the use of four-node plane strain elements with reduced
integration (CPE4R). To ensure that the measured signals are dominantly influenced by the concrete
mesostructure, a layer of four-node infinite plane strain elements (CINPE4) with a thickness of 50 mm
was additionally introduced. The layer of infinite elements allows us to avoid the registering of
reflection from the edge of the plate. Moreover, they allow the size of the investigated structure to be
reduced. The dimensions of the finite elements were 1 mm × 1 mm and the length of the integration
step was to ∆t = 10−8 s. The dimensions of the infinite elements were 1 mm × 50 mm. To visualize the
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differences in aggregate particle concentration, the geometries of three exemplary models are presented
in Figure 6. Additionally, Figure 7 shows histograms of the special distribution of the generated
particles for three different aggregate ratios. It can be seen that the distribution is more or less uniform,
which confirms the random generation of particle placement.

Table 2. Parameters of numerical models.

Model Aggregate Ratio Aggregate Particle Size (mm)

A1 20%
A2 30% 4–12
A3 40%
B1 20%
B2 30% 6–14
B3 40%
C1 20%
C2 30% 8–16
C3 40%
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(c) A3.

3.4.2. Excitation Function

The excitation function was in the form of a windowed tone burst, which is commonly used in
Lamb wave-based inspections [26]. The tone burst is a modulated sine or cosine function by the Hann
or Gaussian window. The modulation allows the dispersion effect to be reduced and provides the
mode purity [26]. In this study, the five-cycle sine function with carrier frequencies of 25, 50, 100,
and 150 kHz modulated by the Hann window was used. In the numerical model, the excitation was
applied as a concentrated time-dependent force. As, in the actual cases, the actuators and sensors are
usually attached at the surface of the plate, the excitation was applied perpendicularly to the plate
surface. The signals were registered at the series of positions spaced 1 mm apart along the propagation
path with a length of 49.5 cm.

4. Results

4.1. Visualization of Lamb Wave Propagation

Visualization of the propagating wave in the form of magnitudes of displacements at selected
time instants is presented in Figure 8. For comparison, the figure also contains the results for a
homogeneous plate characterized by mortar parameters (aggregate ratio 0%). It can be seen that in
the case of the homogeneous plate, the displacements of outer surfaces are the same and the map is
symmetrical with respect to the middle plane, which clearly indicates the existence of an antisymmetric
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mode. The presence of an even smaller number of aggregate particles significantly affects the observed
wave motion and mode purity. The displacements of the outer surfaces in model A1 are not the
same. Moreover, the symmetry of the displacement map is not sustained (Figure 8b). The symmetry
disruption becomes more visible in the model with a higher aggregate ratio (Figure 8c). In the case
of heterogeneous models, the propagating wave reflects from the particles characterized by different
material parameters than the mortar matrix. Part of the reflected wave energy propagates back along
the plate model. Note that, in the case of the homogeneous model after 0.22 ms, wave motion is
not observed at the initial part of the model, while in heterogeneous models, low-amplitude wave
motion resulting from wave interactions with particles is observed in the entire plate volume. It is
noteworthy that additional wave phenomena like diffractions and reflections resulting in additional
peaks registered in signals may lead to significant difficulties in interpretation of the results.
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The aggregate ratio also affected the dissipated energy. The wave amplitude is clearly higher
for the model made of pure mortar. The displacements caused by wave motion becomes lower for
increasing aggregate ratio.

4.2. Dispersion Curves

Figures 9 and 10 present the 2-D view of the wavenumber–frequency information, which was
obtained by carrying out the 2D-FFT (see Equation (8)) of the time series registered for four different
excitation frequencies in equally spaced points on the plate surface. The final map presents the
dispersion curves representing antisymmetric Lamb wave modes described by Equation (2). Based on
the 2D-FFT results, the shape of the curve for the first antisymmetric mode was reconstructed.
For comparison, the wavenumber–frequency information obtained for the homogeneous concrete
model is presented in Figure 9, while Figure 10 contains the results for nine heterogeneous models.

As we can see, the aggregate ratio clearly influences the visibility of the particular dispersion curves.
In the case of the homogeneous material, the curves can be unambiguously distinguished. The presence
of aggregate particles and aggregate-wave interactions affecting the signals’ characteristics resulted
in deterioration of the quality of the maps. The map with the worst quality was obtained for model
C3 characterized by the highest aggregate ratio and the largest particles (see Table 2). Heterogeneity
hinders the reconstruction of dispersion curves based on wavenumber–frequency information.
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4.3. Determining the Elastic Modulus of Concrete Plates

To compare the numerical results with theoretical predictions, the elastic modulus was estimated
in two ways. First, the shape of dispersion curves was reconstructed based on numerical results.
Secondly, it was calculated based on known proportions between aggregate particles and mortar matrix.

The elastic modulus identification procedure was developed in a MATLAB environment
using function fminsearch. The procedure of curve shape reconstruction can be summarized in
four steps. In the first step, the data obtained from the FEM analysis were transformed in the
wavenumber–frequency domain using a 2D-FFT-based algorithm. Further considerations were
conducted for the limited representative area of data (Figure 10a). In our case, due to the use of
excitation in the form of wave packets with central frequencies of 25, 50, 100, and 150 kHz, the frequency
range, which was taken into account, was 0–250 kHz and the corresponding wavenumber range was
0–1000 m−1. To optimize the calculation process, the 2D-FFT results were normalized with respect to
the maximum amplitude value for each frequency:

Ŷ(ki,ωi) =
Y(ki,ωi)

max
{
Y(ωi)

} (20)

The normalization process excluded the unequal influence of the individual frequencies. Moreover,
there was no need to use weight functions. Examples of normalized data are shown in Figure 11b.
Normalization was the last stage of data preparation. In the next step, the procedure for determining
the elastic modulus was initiated. In the first step, the dependence for the first antisymmetric Lamb
mode was calculated for the pre-established Young modulus. The determined values creating a
dispersion curve were considered as the sets of n pairs of numbers:

K =
{
(∆ω, k(∆ω)), (2∆ω, k(2∆ω)), . . . , (n∆ω, k(n∆ω))

}
=

{
(∆ω, k1), (2∆ω, k2), . . . , (n∆ω, kn)

}
(21)
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Next, the standardized 2D-FFT values for particular angular frequencies were interpolated,
forming a second set of data (Figure 10c,d):

Ŷint = {Ŷ(∆ω, k1), Ŷ(2∆ω, k2), . . . , Ŷ(n∆ω, kn)} = {Ŷ1, Ŷ2, . . . , Ŷn,} (22)

Finally, the value of the following function was calculated:

F̂ =
1

n
n∑
i

Ŷ2
i

(23)

The procedure was repeated for different values of elastic moduli until the function F̂ reaches
a minimum value. The minimum value of the function F̂ indicated that the dispersion curve that
analytically determined the best coincides with the dispersion curve visible in the map. This procedure
was tested first for the homogeneous material with parameters E = 26 GPa, v = 0.2, and ρ = 2100 kg/m3.
The elastic modulus determined based on numerical results was 25.92 GPa and the percentage error
was 0.309%, which is a satisfactory consistency of results. The analytical dispersion curves for the finally
determined Young modulus were imposed on the numerical maps by red dashed lines (Figure 10),
while the corresponding values of Young’s modulus denoted as EDC

c are summarized in Table 3.

Table 3. Parameters of numerical models.

Model Aggregate Volume
Fraction (-)

Density
(kg/m3)

EV
c acc. Voigt

Model (GPa)
ER

c acc. Reuss
Model (GPa)

EDC
c Based on Dispersion

Curves (GPa)

homogeneous
concrete model 0 2100 26 26 25.92

A1 0.163 2197.8 31.542 28.650 30.310
A2 0.250 2250.0 34.500 30.290 29.459
A3 0.342 2305.2 37.628 32.250 35.290
B1 0.163 2197.8 31.542 28.650 28.734
B2 0.250 2250.0 34.500 30.290 29.119
B3 0.342 2305.2 37.628 32.250 35.689
C1 0.163 2197.9 31.542 28.650 29.400
C2 0.250 2250.0 34.500 30.290 29.104
C3 0.342 2305.2 37.628 32.250 37.475

The second stage of the analysis involved the theoretical calculation of Young’s modulus. There are
several theoretical models, which allow the elastic modulus of two-phase heterogeneous materials to
be estimated. Two most common approaches were proposed by Voigt and Reuss. The use of either
of these two models requires knowledge of the modulus of elasticity of mortar and aggregate and
the volume of aggregates. According to the Reuss model, the elastic modulus is calculated in the
following way:

ER
C =

Em

1 +
(

Em
Ea
− 1

)
Va

(24)

The overall elastic modulus of concrete by Voigt is:

EV
C = Em

(
1 +

( Ea

Em
− 1

)
Va

)
(25)

where Em and Ea are elastic moduli of mortar and aggregate, respectively, and Va is the volume fraction
of aggregate. The elastic modulus calculated for all nine models is summarized in Table 3. Additionally,
the result for the homogeneous concrete model was added for comparison. It can be seen that if
Ea > Em, the Voigt model always predicts higher values of the elastic modulus than the Reuss model.
The experimental study presented in previously published papers showed that these two models
usually define the upper and lower bound of the concrete elastic modulus and the exact value usually
lies between their predictions [27]. Indeed, the modulus value predicted on the basis of dispersion



Materials 2020, 13, 2570 14 of 16

curves EDC
c lies between theoretically determined boundary values. The differences between particular

results, as well as the percentage errors, are reported in Table 4.

Table 4. Differences between theoretical and numerical results.

Model The Difference
|EV

c −EDC
c | (GPa)

Percentage Error
|EV

c −EDC
c |·100%
EDC

c
(%)

The Difference
|ER

c −EDC
c | (GPa)

Percentage Error
|ER

c −EDC
c |·100%
EDC

c
(%)

homogeneous
concrete model 0.08 0.309 0.08 0.309

A1 1.232 4.065 1.66 5.477
A2 5.041 17.111 0.831 2.820
A3 2.338 6.625 3.040 8.614
B1 2.808 9.772 0.084 0.292
B2 5.381 18.479 1.171 4.021
B3 1.939 5.433 3.439 9.636
C1 1.842 6.265 0.750 2.551
C2 5.396 18.540 1.186 4.075
C3 0.153 0.408 5.225 13.943

It can be seen that Young’s modulus calculated according to both theoretical models clearly
increased with the volume fraction of aggregate particles. The results obtained using the dispersion
curves do not show the same increasing tendency. As expected, the elastic modulus was found to be the
highest for models A3, B3, and C3, but the value of EDC

c was higher for model A1 than for A2, and that
for model C1 was higher than that for C2. This means that the aggregate presence affected wave
propagation velocity. Moreover, the wave-aggregate interactions could affect the signal characteristics,
which, in turn, resulted in a change in the shape of the dispersion curves.

Comparing the values of percentage errors reported in Table 4, it is clearly visible that the theoretical
Reuss models are better suited to numerical results obtained by dispersion curves’ reconstruction.
The average percentage error for the Reuss model is 5.714%, while for the Voigt model, it is 9.633%.
The greatest differences were reported for models with an aggregate ratio of 40%: 8.614% for A3,
9.636% for B3, and 13.943% for C3. One can conclude that the discrepancy between theoretical and
experimental results clearly increases with the number of scatterers, but also with their size.

The presented results indicate that the heterogeneity of concrete influences wave propagation
characteristics. The elastic modulus estimated using most common theoretical models differ from
the modulus estimated based on dispersion curves. Meanwhile, the difference in modulus values
leads to discrepancies in wave velocity estimation, which is particularly important if the wave velocity
is used as an indicative parameter in the diagnostic process. To illustrate the differences in wave
velocity, the Lamb dispersion equations were solved for model C3, for which the highest error was
noted. Figure 12 contains a comparison of the first symmetric and antisymmetric modes. Disregarding
the impact of the concrete mesostructure may lead to incorrect velocity determination—for some
frequencies, the discrepancy may reach over 400 m/s.
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5. Conclusions

The paper presents the results of the investigation of the influence of a concrete mesostructure on
Lamb wave propagation. The numerical calculations of guided wave propagation were performed for
two-phase concrete plate models varying in aggregate ratio and particle diameter size. The random
distribution of aggregate particles was generated using the Monte Carlo method. The diameter size
was generated according to Fuller’s grading curve.

The numerical visualization showed that the heterogeneous mesostructure of the concrete plate
affected the displacements associated with wave motion. The displacement maps were symmetric
with respect to the middle plane only for a homogeneous concrete plate. The presence of even a small
number of particles disrupted the displacement symmetry, as well as the wave amplitude.

The study also involved the comparison of Young’s modulus determined in two different ways:
Theoretically based on two models commonly used for two-phase heterogeneous materials (Reuss
and Voigt model) and numerically by reconstructing the dispersion curves calculated with the use
of time-domain signals registered at the plate surface after wave excitation. The values of elastic
modulus obtained theoretically and numerically differ, and the discrepancy increased with aggregate
ratio and the size of aggregate particles. The results obtained clearly indicate that a Lamb wave
propagating in an isotropic, homogeneous material characterized by the averaged macroscopic
parameters is characterized by different velocities than the wave propagating in a heterogeneous
material. The discrepancy increased with an increasing number of scatterers associated with more often
wave-aggregate interactions, affecting wave propagation. The influence of wave-aggregate interactions
also increased with particle size as the diameter approached the wavelength. These observations are
particularly important for diagnostic procedures, which use wave propagation velocity as an indicative
parameter for structural state assessment.
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