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ABSTRACT
Background. Currently, acute myelocytic leukemia (AML) still has a poor prognosis.
As a result, gene markers for predicting AML prognosis must be identified through
systemic analysis of multi-omics data.
Methods. First of all, the copy number variation (CNV), mutation, RNA-Seq, and
single nucleotide polymorphism (SNP) data, as well as those clinical follow-up data,
were obtained based on The Cancer Genome Atlas (TCGA) database. Thereafter, all
samples (n= 229) were randomized as test set and training set, respectively. Of them,
the training set was used to screen for genes related to prognosis, and genes with
mutation, SNP or CNV. Then, shrinkage estimate was used for feature selection of
all the as-screened genes, to select those stable biomarkers. Eventually, a prognosis
model related to those genes was established, and validated within the GEO verification
(n= 124 and 72) and test set (n= 127). Moreover, it was compared with the AML
prognosis prediction model reported in literature.
Results. Altogether 832 genes related to prognosis, 23 related to copy amplification,
774 associated with copy deletion, and 189 with significant genomic variations were
acquired in this study. Later, genes with genomic variations and those related to
prognosis were integrated to obtain 38 candidate genes; eventually, a shrinkage estimate
was adopted to obtain 10 feature genes (including FAT2, CAMK2A, TCERG1, GDF9,
PTGIS, DOC2B, DNTTIP1, PREX1, CRISPLD1 and C22orf42). Further, a signature
was established using these 10 genes based on Cox regression analysis, and it served
as an independent factor to predict AML prognosis. More importantly, it was able
to stratify those external verification, test and training set samples with regard to the
risk (P < 0.01). Compared with the prognosis prediction model reported in literature,
the model established in this study was advantageous in terms of the prediction
performance.
Conclusion. The signature based on 10 genes had been established in this study, which
is promising to be used to be a new marker for predicting AML prognosis.
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INTRODUCTION
Acute myeloid leukemia (AML) is an aggressive hematological neoplasm commonly seen
in adulthood. It is characterized by immature myeloid hematopoietic cell accumulation,
particularly within the bone marrow (Kouchkovsky & Abdul-Hay, 2016). Peripheral blood
is typically affected, which can result in the infiltration of themalignancy to the liver, spleen,
lymph nodes, central nervous system (CNS), and skin. AML is commonly treated using
post-remission treatment and intensive induction chemotherapy,However, patient survival
has not improved substantially over the past thirty years (Lai, Doucette & Norsworthy,
2019). Remarkable remission rates can be initially attained through chemotherapy in most
AML patients but it is rare to see a complete elimination of the disease (Drummond,
2019). Alternative treatments like the CD33 chimeric antigen receptor (CAR)-based T-cell
treatment that targets CD33, combined with allogeneic hematopoietic cell transplantation
(HSCT) (Kenderian et al., 2015; Walter, 2018; Bhatt, 2019) may also be used to treat AML.
However, there is still a risk of recurrence in 75% of cases 5 years after the initial diagnosis.
It is necessary to find a biomarker that can be used to predict the prognosis of AML to
assist clinicians and be used for individualized healthcare.

The current prognosis criteria for AML is highly dependent on age, cytogenetic
abnormality, white blood cell (WBC) count at the time of diagnosis, and the identification
of the molecular genetic disorder specific to AML (Papaemmanuil et al., 2016). Many
studies have been conducted to examine the genomic landscape of AML and to improve
our understanding of its development. However, it is difficult to apply these findings to
the clinical treatment of AML and although great strides have been made in stratifying
risk, patients that exhibit fewer risk factors may relapse (Rollig et al., 2011). Biomarkers are
divided into multiple types, such as single molecules used as indicators to independently
predict prognosis (PDLIM (Cui et al., 2019), PDE7B (Cao et al., 2019), and DOCK2 (Hu
et al., 2019)), and gene markers established through different prognostic genes using high
throughput analysis of gene expression patterns. Huang, Liao & Li (2017) proposed a risk
score system based on an 11-gene signature to predict and assess the prognosis of AML.
Tang et al. (2019) used the least absolute shrinkage and selection operator Cox regression to
identify the signature based on 10 lncRNAs within lncRNA expression data. These studies
tested the contemporary gene signatures with an independent external data set but their
findings revealed low values of area under the curve (AUC) at 3–7 years. The identification
of the gene signature or biomarker predicting AML prognosis remains challenging and the
results should be verified in more cohorts. We must identify the gene signals related to the
prognosis for AML using bioinformatic analyses of specific biological activities.

We used a systemic multiomics strategy to effectively identify a creditable gene signature
related to AML prognosis and search for genetic markers related to AML. We acquired the
data for all AML cases, the copy number variation (CNV), single nucleotide polymorphism
(SNP), gene mutation, and gene expression profile data from the GEO and TCGA
databases. A signature for identifying prognostic markers was established based on 10
genes by combining transcriptomic data with genomic data. The predictive capacity was
validated using external verification and internal test sets, respectively. Compared with
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other prognosis prediction models from the literature, our model was more accurate
and advantageous in predicting the prognosis for patients with survival of over 5 years.
According to GO analysis, the signature based on 10 genes took part in vital AML-
related pathways and biological processes. Similar findings were obtained through gene
set enrichment analysis (GSEA), suggesting that the as-constructed 10-gene signature
could efficiently estimate the prognostic risk among AML cases and may improve the
understanding of the AML prognostic mechanism at the molecular level.

MATERIAL AND METHODS
Data extraction and processing
The data used in this study are publicly accessible at The Cancer Genome Atlas (TCGA)
(search terms: TCGA-LAML) and NCBI GEO (accession number: GSE37642, GSE12417)
databases. We used the UCSC cancer browser to download CNV, clinical follow-up,
and TCGA RNA-Seq data of the SNP 6.0 chip. That information can be found at:
https://xenabrowser.net/datapages/?cohort=GDC%20TCGA%20Acute%20Myeloid%
20Leukemia%20(LAML)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%
3A443. The mutation annotation file (MAF) was collected based on the GDC client and
GSE37642 (Herold et al., 2018) and GSE12417 (Metzeler et al., 2008) expression patterns.
Clinical follow-up data were also obtained from the GEO database. 229 AML samples with
sufficient follow-up data were screened for TCGA RNA-Seq data and were randomized as
two groups, the test set (n= 107) and the training set (n= 102). The GSE37642 (n= 124)
and GSE12417 (n= 72) data sets were used as external verification sets. Table 1 shows
the sample details of every group. The mini format files were downloaded from the GEO
platform to be used for GEO data processing and the probe ID was converted to the gene
symbol according to the background file. We calculated the average value of multiple
genes corresponding to a single probe, the probes corresponding to multiple genes were
eliminated, and the expression spectrum matrix was further normalized.

Univariate Cox proportional hazard regression analysis
Univariate Cox proportional hazard regression analysis was conducted to identify genes
whose expression levels correlated with patient overall survival (OS) in the training set
with P < 0.01.

Analysis of CNV data
GISTIC was used to detect frequent and potentially overlapping recurrent events (Pecina-
Slaus et al., 2019). Consequently, GISTIC 2.0 was adopted for use with CNV data from
TCGA to determine the significantly deleted or amplified genes at p< 0.05 and fragments
that had >0.1 deletion or amplification length.

Analysis of gene mutation
Mutsig 2.0 (Rahane, Kutzner & Heese, 2019) software was used to recognize genes with
significant mutations based on the MAF of TCGA mutation data at P < 0.05.
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Table 1 Clinical information statics of each groups of data sets.

Characteristic TCGA
training
datasets
(n= 102)

TCGA
datasets
(n= 127)

GSE12417
(n= 72)

GSE37642
(n= 124)

≤60 63 80 30 69
Age(years)

>60 39 47 42 55
Living 42 51 32 38

Survival Status
Dead 60 76 40 86
Female 48 60 / /

Gender
Male 54 67 / /
M0 10 12 1 7
M1 25 29 20 27
M2 23 31 33 45
M3 12 13 0 7
M4 21 27 9 14
M5 9 12 5 15
M6 1 2 3 7

FAB

M7 1 1 0 1
>80 41 48 / /

Bone marrow blast percentage
≤80 61 79 / /
>20 45 55 / /

White blood cell count
≤20 57 72 / /

Prognosis-related gene signature construction
The lasso cox regression was used to refine the identified prognostic genes using the glmnet
function of R package (Engebretsen & Bohlin, 2019). The MASS function of R package was
used to carry out stepwise regression analysis in accordance with the Akaike information
criterion and obtain the eventual 10-gene risk model. The formula used was:

RiskScore10 = 3.1175∗expCAMK2A
−1.3247∗expFAT2−1.7172∗expGDF9

−0.907∗expTCERG1−0.4339∗expDOC2B+0.4833∗expPTGIS

+0.426∗expPREX1+1.4097∗expDNTTIP1+4.6867∗expC22orf42

+0.8599∗expCRISPLD1.

The risk score values of the z-score were normalized and samples with the processed
z-score value of >0 were classified as the high-risk group, while those <0 were the low-risk
group.

Functional enrichment analyses
The clusterprofiler (v3.8.1) (Yu et al., 2012) was used to perform Kyoto Encyclopedia of
Genes and Genomes (KEGG) and Gene Ontology (GO) pathway enrichment analyses on
genes to recognize the enriched KEGG pathways and GO terms among the three categories:
cellular component (CC), molecular function (MF), and biological processes (BP). The
false discovery rate (FDR) value of <0.05 indicated statistical significance. The expression
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matrix of genes between different samples was converted into the expression matrix of gene
sets to evaluate which metabolic pathways were enriched. The correlation between the risk
scores and pathways was further calculated using Pearson correlation analysis. Signaling
pathways with a correlation coefficient of >0.35 were considered to be related to the risk
score.

Statistical methods
The median risk score of every data set was used as the threshold to plot the Kaplan–Meier
(KM) curves and the survival risks were compared in a high-risk group with those in
low-risk group. The feasibility of using the gene markers as the factors to independently
predict prognosis was determined through multivariate Cox regression analysis. P < 0.05
indicated statistical significance. The R version 3.6.0 was adopted for all statistical analyses.

RESULTS
Identifying gene sets related to OS
The flow diagram of our study is summarized in Fig. 1. Univariate regression analysis was
carried out on samples from the TCGA training set for the association of gene expression
with patient OS. 832 genes with the log rank p-value of <0.01 upon univariate Cox
regression analysis were found to be the underlying prognostic genes. Table 2 shows the
coefficient, HR, p-value, and z-score of the 20 genes showing the highest association with
OS.

Identifying genomic variant genes harboring mutations and CNVS
Figure 2A shows gene fragments with significant amplification within the AML genome,
whereas Table S1 displays genes with significant amplification within every fragment.
For example, KMT2A on chromosome 11q23.3 showed significant amplification (q-
value = 6.38E−12) (Sakhdari et al., 2019), ERG on chromosome 21q22.2 showed evident
amplification (q-value = 9.50E−05) (Canzonetta et al., 2012), and PRSS1 on chromosome
7q34 showed marked amplification (q-value = 0.037333). There were 23 genes amplified
in total. Figure 2B shows gene fragments with significant deletion within AML genome and
Table S2 presents genes with marked deletion on every fragment. For example, ADRB2
on chromosome 5q23.1 displayed marked deletion (q-value = 8.54E−12), CDKN1B on
chromosome 12p13.2 presented evident deletion (q-value = 7.28E−05). 774 genes were
deleted.

Mutsig2 was used to discover genes with significant mutations at the threshold of
P < 0.05 for mutation annotation data from TCGA. 189 significantly mutated genes were
obtained. Figure 3 shows the distribution of missense mutations, synonymous mutations,
framework deletion or insertion, framework displacement, splice site nonsense mutations,
and additional non-synonymousmutations in the top 55 geneswith the greatest significance
(P < 0.01) within AML samples collected from TCGA. The histogram on the top stands for
all non-synonymous and synonymous mutations within the 55 genes of every case, whereas
the histogram on the right stands for the mutant sample number within those 55 genes.
Some of the 189 genes were previously identified in prior research and are closely correlated
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TCGA entire set (n = 127)

GEO datasets (n = 72 and 
n = 124)
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Comparison of other 
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（p < 0.01 ）832 mRNAs
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Gene set variation 
analysis (KEGG ssGSEA)

Figure 1 Flow diagram of methods for developing the prognostic 10-gene signature.
Full-size DOI: 10.7717/peerj.9437/fig-1

with tumor occurrence and progression (DNMT3A (Yuan et al., 2019), IDH2 (Largeaud
et al., 2019), TP53 (Hunter & Sallman, 2019) and IDH1 (Dunlap et al., 2019)).

Functional analyses on genomic variant genes harboring mutations
and CNVs
Genes with CNV amplification and deletion and significant mutations were merged
for KEGG and GO analyses to determine the functions of those genomic variant genes
(n= 977). A total of 977 genes were enriched in AML genesis and development-related
biological processes, including the myeloid leukocyte differentiation, the STAT signaling
pathway, and cell–cell adhesion (Fig. 4A). 977 genes were markedly enriched in 2 pathways
related to cell metabolism, including in taurine, hypotaurine, and glutathione metabolism
(Fig. 4B).
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Table 2 The top 20 genes showing the greatest association with OS.

Gene p value HR Low
95%CI

High
95%CI

CBR1 3.85E−09 1.235 1.152 1.326
BATF 5.17E−07 1.222 1.13 1.322
FIBP 1.89E−06 1.154 1.088 1.224
BCKDK 2.28E−06 1.153 1.087 1.223
MFNG 5.05E−06 1.045 1.026 1.065
FAM207A 6.56E−06 1.206 1.111 1.308
PPP2R4 7.72E−06 1.146 1.08 1.217
PTP4A3 8.56E−06 1.043 1.024 1.063
DNTTIP1 8.57E−06 1.192 1.103 1.288
NABP2 9.24E−06 1.284 1.15 1.434
PARVB 1.09E−05 1.137 1.074 1.204
ZNF511 1.48E−05 1.491 1.244 1.786
UBE2Q1 1.59E−05 1.239 1.124 1.365
TREML2 2.09E−05 1.145 1.076 1.218
FERMT3 2.16E−05 1.017 1.009 1.024
TGFB1 3.32E−05 1.009 1.005 1.013
TNNT3 3.55E−05 1.087 1.045 1.131
C7orf50 3.55E−05 1.39 1.189 1.625
ATP13A2 4.08E−05 1.086 1.044 1.13
DUSP7 4.23E−05 1.133 1.067 1.203

Constructing the gene signature related to AML prognosis
The gene sets related to prognosis and those harboring genomic mutations and CNVs were
merged and their intersection set became the potential gene set (n= 37). Many of these
genes were not useful for clinical detection and the gene scope was further restricted to
ensure greater accuracy. The glmnet function of R package was used for lasso cox regression
to refine the above-mentioned prognostic genes and the gene number was reduced from
37 to 20 (Fig. 5). The MASS function of R package was used for stepwise regression analysis
in accordance with the Akaike information criterion and 10 genes (Table 3) were acquired
to construct a risk model.

The training set samples were divided into high and low expression groups according
to the medium expression of the 10 genes and the KM curves were plotted. Significant
differences in OS were observed between the high and low expression samples of 8 genes
(P < 0.05) (Fig. S1). Among them, the low expression of FAT2, GDF9, TCERG1 and
DOC2B genes was related to poor prognosis, while the high expression of CAMK2A,
PREX1, DNTTIP1, C22orf42 and CRISPLD1 correlated with a terminal prognosis.

The risk score was calculated for each sample in the training set. Figure S2 shows the value
of the as-constructed 10-gene signature in classifying samples from the TCGA training set.
There were 45 cases in the low-risk group and 57 in the high-risk group, with a statistically
significant difference (Fig. S2C) (log-rank P < 0.0001, HR= 8.79 (4.34–11.78)). The ROC
curves are shown in Fig. S2B, and the AUC values at 1, 3, and 5 years are 0.92, 0.91, and 0.93,
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Figure 2 Identifying the genomic variant genes that possess CNV.mRNAs located within the focal
CNA peaks are related to AML. The false discovery rates (q-values) and scores obtained based on GISTIC
2.0 for alterations (x-axis) are plotted against the genome positions (y-axis); and the dotted lines stand for
centromeres. (A) Gene amplifications (red) are indicated. (B) Gene deletions (blue) are displayed. Typi-
cally, the green line stands for q-value threshold for determining significance.

Full-size DOI: 10.7717/peerj.9437/fig-2

respectively. As the risk score increased, the survival time decreased and a higher instance of
death was observed in the high-risk group (Fig. S2A). The high expression levels of PREX1,
CAMK2A, C22orf42, DNTTIP1, CRISPLD1 and PTGIS were risk factors according to
increases in the risk scores of the 10 distinct signature genes. However, high expression
levels of GDF9, FAT2, DOC2B, and TCERG1 were protective and were associated with a
low risk.

Verifying the robustness of the as-constructed 10-gene signatur
model
The model and threshold from the TCGA training set was used to verify the TCGA test
set and to determine the robustness of the as-constructed 10-gene signature. The value
in classifying samples in TCGA test set is presented in Fig. S3. There were 57 cases in the
low-risk group and 70 in the high-risk group, with a statistically significant difference (Fig.
S3C) (log-rank P < 0.0001, HR = 6.39 (3.62–11.29)). The ROC curves are displayed in
Fig. S3B and the area value under ROC curve at 1, 3 and 5 years are 0.90, 0.87 and 0.94,
respectively. Figure S3C shows similar findings as those obtained from the TCGA training
set. An increase in the risk score value correlated with a decrease in the survival time to
death.
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Figure 3 Distributions of various mutation types among those 55 genes that have the greatest signifi-
cance among AML samples from TCGA. The histogram in the top indicates the sum of non-synonymous
and synonymous mutations among the 55 genes in every case, whereas the histogram on the right stands
for the sample number suffering from mutantions among those 55 genes. In the heat map, the various col-
ors stand for various mutation types, whereas the gray color represents no mutation.

Full-size DOI: 10.7717/peerj.9437/fig-3

Data from the GEO platform (GSE12417 and GSE37642) were selected for two external
data sets to verify the value of the as-constructed 10-gene signature model in classifying
data collected from diverse data platforms. Our model was used to calculate the risk score
value for every sample. The threshold of 0 was used to classify samples into low- and
high-risk groups after the z-score processing of the risk scores. A better prognosis was
achieved in the low-risk group compared with the high-risk group (log-rank p= 0.082,
HR = 1.46 (0.95–2.23); log-rank p= 0.0051, HR = 2.47 (1.28–4.74)) (Figs. S4C and S5C).
The ROC curve analysis in Figs. S4B and S5B showed that the AUC values at 1–3 years
were 0.7–0.67 and 0.72–0.62, respectively. The associations of the 10-gene expression levels
with risk score were the same as those obtained in the test set and training set (Figs. S4A
and S5A). Our 10-gene signature model was able to effectively predict prognosis in both
the external and internal data sets.
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Correlations of the 10-gene signature with sample immune and
stromal scores and clinical features
A number of recent studies have reported that AML genesis and development is closely
related to immune cells, stromal cell infiltration, and the microenvironment (Boddu et
al., 2018; Ost et al., 1985; Panoskaltsis, 2005; Karjalainen et al., 2017). We evaluated the
relationships between the 10-gene signature and the immune and stromal scores of the
sample. The gene expression data was used to calculate the immune and stromal scores
of each sample. Further analysis suggested that the ImmuneScore, StromalScore, and
ESTIMATEScore showed significant differences between the high- and low-risk samples
(classified by the 10-gene signature) in the TCGA training set (Fig. S6).

We observed the correlations of the 10-gene signature with the sample clinical features
and discovered through survival analysis that the OS for TCGA training set samples was
only significantly related to patient age (Fig. 6), but was not correlated with gender, bone
marrow blast percentage, white blood cell count, and FAB. We also discovered that the
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Table 3 10 genes showing significant correlation with the OS of patients from training set.

Symbol Coef HR Z -score P value Low
95%CI

High
95%CI

CAMK2A 3.1175 22.591 1.844 0.065 0.822 621.14
FAT2 −1.3247 0.265 −2.631 0.009 0.099 0.713
GDF9 −1.7172 0.179 −2.095 0.036 0.036 0.895
TCERG1 −0.907 0.403 −2.019 0.043 0.167 0.974
DOC2B −0.4339 0.648 −1.807 71 0.405 1.037
PTGIS 0.4833 1.621 1.953 0.051 0.998 2.633
PREX1 0.426 1.531 1.884 0.06 0.983 2.385
DNTTIP1 1.4097 4.094 3.204 0.001 1.729 9.7
C22orf42 4.6867 108.492 3.115 0.002 5.686 2070.118
CRISPLD1 0.8599 2.362 4.533 5.80E−06 1.629 3.427

10-gene signature was able to distinguish patients of different ages (young and elderly
groups), different M stages (M0–M3, M4-M7), different sexes (male and female), and
different white blood cell counts (WBC > 20 and WBC ≤ 20 per mcl of blood) into high-
and low-risk groups. The OS revealed a significant difference between the two groups
of samples (P < 0.01). These findings further demonstrated that our 10-gene signature
displayed favorable grouping prediction capacity for patient prognosis among different
clinical features (Fig. 7).

Univariate and multivariate Cox regression analyses were used to examine the clinical
data from the TCGA test set, TCGA training set, and GSE37642 and GSE12417 data sets.
The p-values, HR, and corresponding 95% CIs were analyzed to determine the capacity
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Figure 6 The KM curves of samples with different clinical characteristics. (A) Age, (B) FAB, (C) gen-
der, (D) bone marrow blast percentage, (E) white blood cell count.
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Figure 7 The risk distinguishability of 10-gene signature with different ages. (A and B), M stages (C
and D), sexes (E and F) and white blood cell count (G and H).
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of our 10-gene signature model in independent clinical application. Clinical data from
TCGA, GSE37642 and GSE12417 samples, including gender, age, white blood cell count,
and FAB, were analyzed. Table 4 displays the grouping information of the as-constructed
10-gene signature. Univariate Cox regression analysis was applied to the TCGAdata set. The
results indicated that risk score, age, WBC, and FAB were closely correlated with survival.
Multivariate Cox regression analysis revealed that age, WBC count, and risk score (HR
= 5.356, 95% CI [2.970–9.658], p= 2.42E−08) were clinically independent. Univariate
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Table 4 Identification of clinical parameters related to patient prognosis.

Variables Univariate analysis Multivariable analysis

HR 95%CI of HR P value HR 95%CI of HR P value

Entire TCGA cohort
Risk score (High/Low) 6.395 3.621–11.29 1.59E−10 5.356 2.970–9.658 2.42E−08
Age 1.036 1.019–1.053 1.61E−05 1.025 1.007–1.042 0.005
Gender (Male/Female) 1.001 0.637–1.574 0.994 0.751 0.462–1.219 0.246
FAB (M0–M3 vs M4–M7) 1.658 1.041–2.644 0.034 0.986 0.595–1.635 0.957
Bone marrow 0.997 0.986–1.009 0.679 1.004 0.992–1.016 0.512
White bloodcell count 1.005 0.999–1.011 0.05 1.006 1.001–1.012 0.03

GSE12417 cohort
Risk score (High/Low) 2.467 1.284–4.737 6.70E−03 2.458 1.273–4.746 7.40E−03
Age 1.031 1.004–1.059 0.022 1.03 1.004–1.056 0.022
FAB (M0–M3 vs M4–M7) 0.733 0.337–1.593 0.432 0.679 0.310–1.488 0.334

GSE37642 cohort
Risk score (High/Low) 1.457 0.951–2.232 8.40E−02 1.443 0.937–2.223 9.60E−02
Age 1.021 1.005–1.037 0.0073 1.02 1.005–1.035 0.01
FAB (M0–M3 vs M4–M7) 0.928 0.575–1.499 0.762 0.904 0.559–1.463 0.681

Cox regression analysis in the GSE12417 and GSE37642 data set demonstrated that age
and risk score displayed a marked association with survival, whereas the multivariate Cox
regression analysis revealed that age and risk score (HR = 2.458, 95% CI [1.273–4.746],
p = 7.40E−03; HR = 1.443, 95% CI [0.937–2.223], p = 9.60E−02) exhibited clinical
independence. The as-constructed 10-gene signature model served as an independent
factor to predict prognosis and patient outcomes in a clinical setting.

Potential signaling pathways related to the 10-gene signature
The gene expression profiles of these samples were selected for single sample GSEA using
the GSVA function of R package to further reveal the signaling pathways involved in
regulating AML patient prognosis and to observe the relationships between the sample risk
score and the regulatory signaling pathways (Hanzelmann, Castelo & Guinney, 2013). Most
signaling pathways were negatively correlated with sample risk score but a small fraction
were positively correlated with the risk score (Fig. 8A). The 24 KEGG pathways with the
correlation significance of >0.35 were selected and clustering analysis was performed
according to their enrichment scores (Fig. 8B). Among the 24 pathways, cell adhesion
molecules cams and hematopoietic cell lineage increased with higher risk scores, whereas
the Hedgehog signaling pathway decreased with the higher risk score. These results show
that the dysregulation of these pathways was closely related to the development and
progression of AML.

Comparisons between the 10-gene signature risk model with other
AML prognosis prediction model reported in literature
We selected 4 prognosis-related risk models based on a review of the literature.
These included models with an 11-gene signature (Huang, Liao & Li, 2017), a 6-gene
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Figure 8 The correlations of enriched signaling pathways with risk score.
Full-size DOI: 10.7717/peerj.9437/fig-8

signature (Zhao, Li & Wu, 2018), a 6-gene signature (Zhang et al., 2019) and a 4-gene
signature (Nguyen et al., 2019) to compare with our 10-gene signature model. The risk
score of each AML sample in the TCGA database was calculated according to the same
method based on the levels of corresponding genes in these 4 models to make the model
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comparable. The samples were divided into Risk-H and Risk-L groups according to the
medium risk score to calculate the OS difference between two groups of samples. The ROC
and OS-KM curves of the 4 models are displayed in Fig. 9. It was observed that the 1–5 year
AUC values of the 4 gene models were above 0.71 but that their predictive accuracy was
slightly inferior to that of our 10-gene signature. We used the rms package to calculate the
concordance index (C-index) values of these 5 models to further compare the prediction
performance of these models on the AML samples. Our 10-gene signature had the highest
C-index (Fig. 10A) among the 5 models, suggesting that it had superior overall prediction
performance. The restricted mean survival (RMS) can be explained as the mean free event
survival time within a specific time period, which is equal to the area under the KM curve
at a specific time point. The RMS time was used to evaluate the prediction performances of
the 5 models at different time points. The RMS curves showed that the 10-gene risk model
was superior to the models proposed by Li, Wu, Deng, and Heller (Fig. 10B) for a period
>80 months, as suggested by the AUC values of these 5 models.

DISCUSSION
AML can be diagnosed and treated in its early stages. However, the conventional
clinicopathological factors including stage, age, and WBC counts cannot be used
successfully in a predictive fashion (Dohner, Weisdorf & Bloomfield, 2015). There is no
effective universal therapeutic strategy for stratifying risk. Therefore, it is important
to screen the prognostic molecular markers that comprehensively reflect the biological
characteristics of cancer for a more individualized approach to patient care for AML.
Our study examined the expression patterns in AML samples from the GEO and TCGA
databases. We constructed a reliable OS-related 10-gene signature that was not dependent
on clinical parameters.

Several gene signatures are currently used in clinical practice including the Oncotype
DX for grading the risk of disease relapse on the basis of 21 gene expression levels in
breast cancer (Chen et al., 2013) and the Coloprint that is established according to 18
gene expression levels in colon cancer (Tan & Tan, 2011). The above findings indicate
that new cancer prognostic markers identified according to gene expression data is a
prospective high-throughput identification approach at the molecular level. Systemic
biological approaches are used to identify the genetic biomarkers related to AML prognosis
and to construct the genetic features. However, the AUC value at 3–5 years can be low
when using an external data set or an excessive gene number is occasionally observed,
which may disadvantage big data promotion and verification. Our as-constructed 10-
gene signature achieved a high AUC value with a low gene number and can be applied
clinically. PREX1, CAMK2A, C22orf42, DNTTIP1, CRISPLD1 and PTGIS served as
risk factors and GDF9, FAT2, DOC2B and TCERG1 were protective factors. 9 out
of 10 (PREX1, CAMK2A, DNTTIP1, CRISPLD1, PTGIS, GDF9, FAT2, DOC2B and
TCERG1) genes are typically suggested as biomarkers in several cancers and show close
correlations with multiple cancer prognoses, including in endometrial cancer, breast
cancer (BC), ovarian cancer, lung cancer, oral cancer, and colorectal cancer (CRC)
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Figure 10 The prediction performance of these five models on the AML samples. (A) The concordance
index (C-index) values of these 5 models. (B) The RMS curves of these five models.
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(Dillon & Miller, 2015; Chen et al., 2017; Sawai et al., 2018; Li et al., 2019; Singh, Chandra
& Bapat, 2015; Du et al., 2012; Katoh, 2012; Satyamoorthy et al., 2014).

The identified genes are closely correlated to tumor prognosis. Our study was the first
to determine these new prognostic markers for AML. The results of GSEA suggest that the
10-gene signature-enriched pathways were closely associated with the biological processes
and pathways involved in the development of AML (Savona et al., 2018). Such findings
indicate that the as-constructed model may be a useful clinical tool and may be a potential
diagnostic target for patients.

The bioinformatic technique was used to identify the possible prognosis-related genes
within a large number of samples. Nonetheless, there were limitations to our study. Some
samples did not have complete clinical follow-up data, so it was impossible to examine
the feasibility of using these biomarkers in distinguishing patient prognosis according to
additional health factors. The bioinformatic analysis results alone were insufficient and
additional large-scale and genetic study experiments must be performed to verify the
results.

A prognosis stratification system based on the 10-gene signature was proposed in our
study and showed a favorable AUC in the verification and training sets. It was independent
of clinical features. The gene classifier is relative to clinical features and contributes to
improving the prediction accuracy of survival risk and is recommended as a molecular
diagnostic test for evaluating AML prognosis.
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