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Abstract

Adulteration remains an issue in the dietary supplement industry, including botanical supplements. 

While it is common to employ a targeted analysis to detect known adulterants, this is difficult 

when little is known about the sample set. With this study, untargeted metabolomics using liquid 

chromatography coupled to ultraviolet-visible spectroscopy (LC-UV) or high-resolution mass 

spectrometry (LC-MS) was employed to detect adulteration in botanical dietary supplements. A 

training set was prepared by combining Hydrastis canadensis L. with a known adulterant, Coptis 
chinensis Franch., in ratios ranging from 5% to 95% adulteration. The metabolomics datasets were 

analyzed using both unsupervised (principal component analysis and composite score) and 

supervised (SIMCA) techniques. Palmatine, a known H. canadensis metabolite, was quantified as 

a targeted analysis comparison. While the targeted analysis was the most sensitive method tested 

in detecting adulteration, statistical analyses of the untargeted metabolomics datasets detected 

adulteration of the goldenseal samples, with SIMCA providing the greatest discriminating 

potential.

*Corresponding author, jjk6146@psu.edu.
#Present address: Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA

Publisher's Disclaimer: This Author Accepted Manuscript is a PDF file of a an unedited peer-reviewed manuscript that has been 
accepted for publication but has not been copyedited or corrected. The official version of record that is published in the journal is kept 
up to date and so may therefore differ from this version.

Compliance with Ethical Standards
2.Conflicts of Interest
The authors declare no conflicts of interest.
3.Availability of Data and Material
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable 
request. Original material also available upon request.
4.Code Availability
MzMine is an open source software and readily available to the public. Sirius is created by Pattern Recognition Systems and can be 
purchased here: http://www.prs.no/Sirius/Sirius.html. The code for the composite score analysis is available here: https://github.com/
jjkellogg/Composite-score.

HHS Public Access
Author manuscript
Anal Bioanal Chem. Author manuscript; available in PMC 2021 July 01.

Published in final edited form as:
Anal Bioanal Chem. 2020 July ; 412(18): 4273–4286. doi:10.1007/s00216-020-02678-6.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.prs.no/Sirius/Sirius.html
https://github.com/jjkellogg/Composite-score
https://github.com/jjkellogg/Composite-score


Keywords

metabolomics; goldenseal; Hydrastis canadensis; mass spectrometry; principal component 
analysis; dietary supplements

1. Introduction

The 2017 Council for Responsible Nutrition survey found that botanicals make up 39% of 

the total dietary supplement usage in the United States, the overall use of which has 

increased by 8% since 2015 [1]

Botanical dietary supplements encompass a wide range of over-the-counter products 

including capsules, tea, tinctures, and loose powders prepared from plant material. The 

Dietary Supplement Health and Education Act (DSHEA) of 1994 assigns the Federal Drug 

Administration (FDA) regulatory oversight of dietary supplements; however, regulation and 

quality control of these products is challenging due to their inherent complexity and 

variability, and because the landscape of companies is vast and constantly changing [2]. 

These regulatory and analytical challenges constitute a problem since contaminated or 

adulterated product may put the consumer at risk of adverse interactions [3].

A botanical product is considered adulterated when the composition reported on the label 

does not match the actual material being sold [4]. This problem can occur due to limited 

availability of the natural product (either from cultivation or ethical and legal wildcrafting), 

economic incentives to substitute other natural products or introduce other compounds, or 

poor quality control during production [5, 6]. While most adulteration and quality control 

are monitored by targeted analytical methods [7, 8], untargeted metabolomics methodologies 

have been employed to detect unknown adulteration in botanical dietary supplements [9–

12].

One botanical product for which there are known issues with contamination and adulteration 

is Hydrastis canadensis L. (Ranunculaceae), commonly known as goldenseal [4, 5]. While 

the benzylisoquinoline alkaloid berberine is present in goldenseal and frequently attributed 

as the main bioactive principle, it is common across a wide variety of plants including 

Berberis vulgaris L. (Berberidaceae), Mahonia aquifolium (Pursh) Nutt. (Berberidaceae), 

and Coptis chinensis Franch. (Ranunculaceae) [13, 14]. However, beyond berberine, these 

other species possess distinct secondary metabolite profiles from that of goldenseal; two 

defining secondary metabolites found in goldenseal are hydrastine and canadine, which are 

absent in other berberine-containing plants [4, 9, 15], while B. vulgaris (barberry), M. 
aquifolium (Oregon grape), and C. chinensis (Chinese goldthread) all have additional 

alkaloids (e.g.,coptisine, dihydrocoptisine, palmatine, and jatrorrhizine) that are not present 

in goldenseal [16–18]. The presence of these marker compounds are signs of possible 

adulteration; however, trace amounts of contamination may or may not be detectable and it 

is difficult to detect adulteration when the identity of the adulterants are unknown.

Both targeted and untargeted methods are used to interpret the data obtained from mass 

spectrometric analysis of mixtures. For a targeted analysis, the analyst chooses a series of 
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analytes a priori and analyzes the dataset to determine whether these analytes are present. 

Targeted analyses have the advantage of higher sensitivity and specificity compared to 

untargeted methodologies but requires knowledge about the sample and the potential 

adulterant prior to analysis.

Untargeted metabolomics methods have the advantage of comparing multiple complex 

products without any a priori knowledge of their composition or identification of major 

metabolites [19]. While it is not possible to measure the entirety of small molecules 

produced by an organism due to analytical limitations, by detecting as many of these small 

molecules as possible, untargeted metabolomics approaches enable a holistic analysis in 

comparing complex samples [20, 21]. Metabolomics has been utilized in a wide variety of 

applications in the natural product industry including natural product drug discovery [22], 

dietary supplement adulteration [9], and botanical products (e.g., green tea, goldenseal, 

Ginkgo biloba, black cohosh, and ginseng) for authenticity and possible adulteration/

contamination [9, 11, 21, 23–29]. In analyzing for potential adulteration, the variations in 

metabolite profiles can represent alterations in the chemical composition, which could be 

attributed to naturally occurring biological or genetic variability in the source material [26, 

27]. This variance is typically visualized using unsupervised statistical analysis (principal 

component analysis, PCA) and followed up with a supervised statistical analysis (soft 

independent modelling of class analogy, SIMCA) for a more quantitative assessment of 

outliers. A 95% confidence interval, calculated using Hotelling’s T2 [30, 31] or Q statistic 

[32, 33], may be applied to unsupervised statistical analysis to give a mathematical 

representation of outliers in addition to a visual interpretation [32].

Several studies have been conducted to assess the authenticity of goldenseal supplements, 

including targeted quantitative analysis [28], untargeted Fourier-transform near-infrared 

spectroscopy (FT-NIR) analysis [10], and untargeted ultra-performance liquid 

chromatography tandem mass spectrometry (UPLC-MS) metabolomics [9, 12]. Some of 

these methods employed targeted analysis of known metabolites of goldenseal using HPLC-

UV and GC-MS [8, 10, 15], and compounds from adulterating species were found in several 

of the commercial products [15].

An untargeted metabolomics study using FT-NIR analysis assessed a sample set comprised 

of goldenseal and common adulterants [34]. In this study, goldenseal adulteration was 

simulated computationally for four different adulterant species, yellow dock (Rumex crispus 
L., Polygonaceae), yellow root (Xanthorhiza simplicissima Marshall, Ranunculaceae), 

goldenthread (Coptis chinensis Franch., Ranunculaceae), and Oregon grape (Mahonia 
aquifolium (Pursh) Nutt., Berberidaceae) [34]. Employing two supervised statistical 

analyses, SIMCA and PLS (partial least squares), a 5% adulteration level (i.e., 95% 

goldenseal, 5% adulterant) was identified as a statistical outlier [34].

In the current study, goldenseal reference materials were physically (rather than 

computationally as in the study by Liu et al., 2018) blended with C. chinensis plant material 

to form a series of intentionally adulterated products. These products were analyzed using a 

metabolomics approach designed to detect adulteration in goldenseal products [9], while 

changing several analytical and statistical variables to compare approaches. Data were 
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acquired from two different platforms: an LC-MS system featuring a hybrid quadrupole-

Orbitrap mass analyzer and an LC-UV system. For the data analytics aspect of the study, 

multiple statistical procedures were employed to compare analysis of the resulting datasets. 

Composite score analysis, PCA, and SIMCA were contrasted to compare unsupervised 

versus supervised analysis. In addition, quantitative analysis of palmatine, a common 

adulterant of goldenseal, was performed to serve as a targeted analysis comparison against 

the untargeted methods. The goal of this study was to compare the sensitivity of outlier 

detection with different analytical platforms and statistical approaches.

2. Materials and Methods

2.1. Solvents and Samples

All solvents and chemicals used were of reagent or spectroscopic grade, as required, and 

obtained from ThermoFisher Scientific (Waltham, MA, USA) or Cayman Chemical (Ann 

Arbor, MI, USA). A palmatine chloride standard was purchased from Chromadex (Irvine, 

CA, USA) and was found to have a purity of 98% determined by UPLC-UV (data not 

shown).

2.1.A Sample Selection and Reference Materials—Ten commercial goldenseal 

products were selected based on their popularity in online consumer sales reports [35]. All 

products were capsules and derived from root/rhizome of Hydrastis canadensis. Each sample 

was randomly coded with an internal reference number (beginning with the letters “GS”) to 

maintain manufacturer anonymity (see Electronic Supplementary Material (ESM), Table 

S1).

Botanical reference samples for Hydrastis canadensis root (GS-13) and Coptis chinensis root 

(GS-14) were obtained from Chromadex (Irvine, CA). Both reference materials were 

obtained as dried powders and extracted using the same methods applied for the goldenseal 

samples.

2.1.B Sample Adulteration—Samples were intentionally adulterated in house by 

combining goldenseal and C. chinensis in different ratios. A representative and verified 

goldenseal commercial product (verified through prior LC-MS analysis), GS-4, was 

combined in with the C. chinensis reference material, GS-14, to achieve a range of ratios 

ranging from 5% to 95% adulteration (ESM, Table S2). Samples were extracted as described 

below.

2.1.C Sample Extraction—Samples were weighed into scintillation vials (200 mg of 

material per sample) and 20.0 mL methanol were added. Extractions were performed in 

triplicate to provide process replicates for analysis. Samples were shaken for 24 h, decanted 

into clean, weighed vials, and dried under N2 gas. Samples were stored at room temperature 

prior to analysis.

2.1.D Compound identification—Variables, unique m/z value and retention time (m/z-

RT) pairs, present in the loadings plot were used to confirm and explain the variance in the 

corresponding scores plot. These ions were identified by using exact mass (< 5 ppm) and 
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retention time. The compounds berberine (1), canadine (2), hydrastine (3), coptisine (4), 

palmatine (5), jatrorrhizine (6), and dihydrocoptisine (7) are all known constituents of the 

botanicals under investigation (ESM, Fig. S1).

2.2. Sample Analysis

Liquid chromatography-mass spectrometry (LC-MS) data were acquired utilizing a Q 

Exactive Plus quadrupole-Orbitrap mass spectrometer (ThermoFisher Scientific) with a 

heated electrospray ionization (HESI) source coupled to an Acquity UPLC system (Waters, 

Milford, MA, USA). Samples were resuspended in CH3OH to a concentration of 0.1 

mg/mL. Injections of 3 μL were performed on an Acquity UPLC BEH C18 column (1.7 μm, 

2.1 × 50 mm, Waters) with a flow rate of 0.3 mL/min using the following binary solvent 

gradient of H2O (0.1% formic acid added) and CH3CN (0.1% formic acid added): initial 

isocratic composition of 95:5 (H2O:CH3CN) for 1.0 min, increasing linearly to 0:100 over 7 

minutes, followed by an isocratic hold at 0:100 for 1 min, gradient returned to starting 

conditions of 95:5 and held isocratic again for 2 min. The positive ionization mode was 

utilized over a full scan of m/z 150–900 with the following settings: capillary voltage, 5 V; 

capillary temperature, 300 °C; tube lens offset, 35 V; spray voltage, 3.80 kV; sheath gas flow 

and auxiliary gas flow, 35 and 20 units, respectively. Each sample was injected in triplicate 

to provide analytical replicates for analysis. Extracted ion chromatographs were obtained 

from the XCalibur software (ThermoFisher Scientific).

2.2.A Quantitative Analysis—Targeted analysis was performed using a palmatine 

standard purchased from ChromaDex (Los Angeles, California). A range of concentrations 

were prepped using serial dilutions in optima grade methanol (ESM, Table S2). Extracts 

were prepared at a concentration of 0.1 mg/mL (mass extract per volume of solvent) for 

analysis. The same parameters and LC method were utilized on LC-UV and LC-MS 

platforms. On the mass spectrometer platform, a selected ion monitoring (SIM) scan was 

performed from a m/z range of 350.1549–354.1549. The LC-UV data were collected in a 

range of 150–600 nm, but for processing purposes a range of 346.3–346.4 nm, the 

wavelength at which palmatine absorbs, was selected.

The limit of detection (LOD) for each approach was calculated using the equation LOD = 3s 

÷ m, where s is the standard deviation of the lowest point in the linear range and m is the 

slope of the regression line. The limit of quantitation (LOQ) was determined as the lowest 

concentration of standard in the calibration curve that provided a residual of less than 15%, 

as described previously [38]. The limit of detection was expressed in two different forms, 

ppm palmatine in the plant and w/w % of Coptis chinensis adulterant, for comparison to the 

untargeted methodologies. The quantity of palmatine in the plant was calculated using the 

initial plant mass (199.10 mg) and extract mass (45.78 mg) of the C. chinensis reference 

material. The w/w % of C. chinensis adulterant was calculated using the quantity of 

palmatine in the plant and the amount of palmatine in the C. chinensis reference material 

(1.24 mg of palmatine per gram of plant material).

2.2.B LC-UV Analyses—LC-UV data were collected in the same run on the Q Exactive 

Plus mass spectrometer, using the photodiode array detector (PDA) on the Waters Acquity 
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UPLC across a range of 189 – 600 nm. The retention time and peak area for each sample 

were exported from Xcalibur into Excel for analysis. A data matrix was created of all the 

samples with retention time and peak area. This was analyzed in Sirius to produce the 

principal component analysis (PCA) scores and loadings plots.

2.3. Data Treatments

The LC-MS data were analyzed, aligned, and filtered using MZmine 2.28 software (http://

mzmine.github.io/) with a slightly modified version of a previously reported method [9]. The 

following parameters were used for peak detection of the data acquired from the Q Exactive 

Plus: noise level (absolute value), 1×105 counts; minimum peak duration 0.5 min; tolerance 

for m/z intensity variation, 20%. Peak list filtering and retention time alignment algorithms 

were performed to refine peak detection. The join algorithm was used to integrate all the 

chromatograms into a single data matrix using the following parameters: the balance 

between m/z and retention time was set at 10.0 each, m/z tolerance was set at 0.001 or 5 

ppm, and retention time tolerance was defined as 0.5 min. The peak areas for individual ions 

detected in the process replicates and analytical replicates were exported from the data 

matrix for further analysis.

Relative standard deviation (RSD) filtering was utilized for all datasets. Analytical replicates 

would be expected to have comparable profiles. Ions detected within the analytical replicates 

with for which peak area differed by more than 25% [36] were assigned as artefacts of the 

instrument and excluded from the metabolomics analysis. The peak area of any feature (m/z 
and retention time pair) with an RSD value above 25% was replaced with a 0. Principal 

component analysis (PCA) was performed using Sirius version 10.0 (Pattern Recognition 

Systems AS, Bergen, Norway). Data transformation was carried out by a fourth root 

transform of peak area to reduce heteroscedasticity. The 95% confidence interval was 

calculated using Hotelling’s T2 with the R package ‘car’ [37].

2.3.A Composite Score Analysis—Composite score analysis was performed using a 

custom R script (available from https://github.com/jjkellogg/Composite-score). Principal 

component analysis was conducted on the main dataset, and the model was cross-validated 

using the Kaiser-Guttman rule, Jolliffe’s modification of the Kaiser-Guttman rule, and 

Broken stick criterion to determine the optimal number of principal components. The 

optimal number of components to include in the model was determined to be four principal 

components, which were used to calculate the pair-wise similarity metric, the composite 

score, as previously reported [25, 39]. This matrix was exported to Cytoscape 3.6.1 (Seattle, 

WA) for network visualization, displayed as a network of nodes, with edges described by the 

composite score value. A sub-network was generated by defining a minimum significant 

similarity score delineating similar samples, either 0.1 or 0.3, as applicable.

2.3.B Supervised Statistical Analysis—Data were analyzed by SIMCA, a supervised 

method of analysis, using Solo (Eigenvector Research Inc., Wenatchee, WA, USA). SIMCA 

fits a PCA model to each pre-specified class of samples and then compares the models to 

determine the similarity (or difference) of the classes. However, for authentication, or 
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detection of adulterants, only one class of samples needs to be identified, the authentic or 

reference samples. Hence, one-class modeling is a subset of SIMCA.

Analytical data were imported to Solo from Excel (Microsoft, WA, USA) as a 2 dimensional 

matrix; 19 samples (12 authentic samples and 7 adulterated samples) versus averaged counts 

for 1462 masses (variables). The data were pre-processed by dividing each variable by the 

square root of the average count, normalizing each sample by the sum of the squares of the 

counts (a unit vector), and mean centering each variable.

The one-class PCA modeling produced scores and loadings based on the characteristics of 

the authentic samples, in this case the authentic goldenseal. The loadings also produced 

scores for the unknown samples. Unknown samples were compared to the authentic samples 

using the Q statistic. The Q statistic describes the distance of the sample from the model and 

is a more accurate indicator of adulteration than the Hotelling T2 statistic. In general, the 

variance of the Q residual is proportional to the degree of adulteration.

3. Results

3.1. Adulteration of Goldenseal Samples

C. chinensis contains characteristic marker compounds: magnofluroine ([M]+ 342.1700), 

coptisine ([M]+ 320.0918), dihydrocoptisine ([M]+ 322.1075), palmatine ([M]+ 352.1542), 

and jatrorrhizine ([M]+ 338.1392) [18]. As expected, these compounds were found to 

increase in abundance, corresponding to increases in the C. chinensis ratio (Fig. 1). In 

addition, Hydrastine ([M+H]+ 384.1435) and canadine ([M+H]+ 340.1538) are unique to 

goldenseal and absent in other berberine-containing species [15, 40], and the relative 

intensity of these alkaloids also decreased as the percentage of goldenseal decreased in the 

adulterated samples. Clear differences within the base peak chromatograms are visible at 5% 

adulteration (coptisine is visible), however, a distinct shift in the ratio between hydrastine 

and berberine was observed visually at 25% adulteration (Fig. 1).

3.2. Unsupervised Statistical Analysis

Unsupervised analysis of the untargeted metabolomics data was performed using principal 

component analysis (PCA) on both datasets to determine at which percentage adulteration 

could be detected. PCA is used to reduce the dimensions of a large data set into a series of 

orthogonal variables of decreasing variance that capture the patterns of the data. Thus, a 

PCA scores plot shows the relationship between different samples, where each data point is 

representative of that sample’s chemical profile (as described by features detected and 

associated peak area). The PCA data for the mass spectrometry platform (Fig. 2a) evidenced 

a trend in percentage of adulteration; i.e., the higher the adulteration, the further that the 

adulterated sample (orange squares) was spatially from the cluster of unadulterated 

goldenseal samples (blue diamonds). The purple diamond and red triangle represent the 

goldenseal and C. chinensis reference materials, respectively. The goldenseal reference 

material clustered with the group of commercial supplements, while the C. chinensis 
reference was observed to lie further away from the commercial supplements, closely 

aligned with the with 95% C. chinensis / 5% goldenseal sample. This suggested that the 95% 
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adulterated supplement can be distinguished as not pure C. chinensis, rather, it still contains 

some constituents found in goldenseal. Visually, it was clear that at 5% adulteration, the 

sample no longer clustered with the main goldenseal sample cluster. This would raise 

suspicion regarding the product identity. The same trend was observed on the LC-UV 

platform.

The loadings plot (Fig. 2b) provides a plot of the features (m/z-retention time-pairs) in 

which their positioning indicates their influence on the spatial distribution of the samples 

observed in the scores plot (Fig. 2a), thus, the loadings can be used to qualitatively correlate 

the features to the representative samples, and highlights the compounds that are different 

between the plant species. For the sample set, the green markers signified compounds unique 

to goldenseal, while red markers represented metabolites unique to C. chinensis. Hydrastine, 

canadine, as well as the 13C isotope of hydrastine were located in the upper left region, 

which corresponded to the position of the goldenseal supplements in the scores plot (Fig. 

2a). Palmatine, coptisine, dihydrocoptisine, and the 13C isotopes of palmatine and coptisine 

were visible in the lower right region of the plot, which corresponded to the position of the 

C. chinensis reference material (Fig. 2a and b). This supports the distinction between 

groupings of samples observed in the scores plot.

PCA is one of the most common methods employed as an unsupervised method to visualize 

metabolomics datasets and glean initial information on the relationship of samples without 

any a priori assumptions having been made about the dataset. PCA modeling and 

interpretation has often been employed to detect outliers from a dataset using the Hotelling’s 

T2 95% confidence ellipse [30, 31]. As such, the 95% confidence interval was used as a first 

method to detect outliers within the PCA dataset. While visual inspection of the PCA scores 

plot (Fig. 2a) suggested samples with adulteration at the 5% were differentiated from the 

main goldenseal sample set, the 95% confidence interval was employed to provide a more 

quantitative analysis using the standard deviation of the sample set. This was used to 

determine the percentage of adulterant needed to be labelled as an outlier within this 

approach. This calculation can be applied to multivariate data to assess similarity among 

samples- samples that fall within the confidence interval are believed to be similar with 95% 

certainty, while samples that lie beyond the confidence ellipse are considered statistically 

distinct. In the case where all adulterated and unadulterated samples were included in the 

sample set (ESM, Table S1), the application of the Hotelling’s T2 test enabled several 

outliers (the adulterated samples containing 75% - 95% C. chinensis) to be distinguished 

from the rest of the samples (ESM, Fig. S2).

It was hypothesized that the inclusion of so many adulterated samples within the dataset 

extends the confidence interval and limits the discriminatory power of the method; as the 

number of outliers increases, or as they are spatially located further from the norm, the 

standard deviation within the dataset increases and the resulting confidence interval becomes 

too broad to be an accurate determiner of outliers. As the original dataset included a range of 

adulteration percentages, the variability between the adulterated samples was large, and 

contributed an inability to distinguish adulterated and unadulterated samples. To heighten 

sensitivity of the confidence interval, one could increase the number of unadulterated 

goldenseal samples, which would reduce the goldenseal sample variability, or reduce the 
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number (and thus variation) of suspected adulterated samples, which would increase the 

inter-category variance, and result in higher sensitivity and greater applicability for 

untargeted situations. A semi-supervised approach was adopted, including only one 

adulterated sample at a time with the unadulterated goldenseal samples, which resulted in a 

decrease in variance for the adulterated samples and the overall discriminatory power of the 

confidence interval heightened (Fig. 2c). This iterative method enabled a substantial 

reduction in the level of adulteration that was determined to be an outlier (50% adulteration 

versus 10% adulteration via the LC-MS system) as compared to the dataset that included all 

adulterated samples.

3.3. LC-UV Metabolomics

The data obtained using liquid chromatography separation with an ultraviolet (UV) 

photodiode array (PDA) detector were also utilized for metabolomics analysis. Using UV or 

PDA data as an input source has appeal, as these spectroscopy instruments are more cost-

efficient for entities that might not have access to mass spectrometry equipment. With 

UV/Vis data, the independent variable was retention time, and peak intensity was used in 

place of peak area for PCA analysis (Fig. 3).

The same trend in composition was observed with analysis of the LC-UV data (Fig. 3) as 

with the mass spectrometry-based metabolomics (Fig. 2). The variance of the adulterated 

samples was proportional to the peak intensity of the unique metabolites in C. chinensis, as 

the peak area increases so does the weight of that variable within the statistical analysis. The 

PC 1 versus PC 2 scores plot encompassed 97.7% of the variance in the dataset. UV 

absorbance was generally not as sensitive as mass spectrometry; however, this did not seem 

to impact the PCA scores plot (Fig. 3a). One main disadvantage of utilizing UV absorbance 

data for metabolomics analysis approach was the reduction in useful information gleaned 

from the loadings plot. With no discrete m/z values as input data, the loadings plot is a near-

continuous plot of retention time (Fig. 3b). Thus, the loops visible in the loadings plot 

corresponded to the gradual increase in intensity associated with peak elution over time. 

Loops were observed because the variance grew as the peak elutes at a certain retention time 

and then receded. The resulting retention time values can be coupled with a targeted mass 

spectrometry-based analysis to achieve tentative peak identification. However, using only 

UV absorbance data yielded little additional information to discern responsible metabolites 

underpinning the visible trends. Mass spectrometry provides additional information, 

specifically m/z values, to improve identification of unknown compounds and determine 

which metabolites were responsible for the variation observed in the samples.

The advantage of collecting mass spectrometry data, as opposed to UV data, was apparent in 

the additional information garnered about the metabolites, chemical profile, and the ability 

to relate chemical composition to the variation of the samples. Pairing m/z value with 

retention time allowed for putative identification of secondary metabolites, which could 

suggest an identification of the possible adulteration source, in this case C. chinensis. 

However, the LC-UV metabolomics approach is a more cost-effective analytical input to 

gauge sample relationships and authenticity and could be improved if more data was known 

about the sample set. Ultimately, both dataset sources were successful in detecting 
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adulterated samples via untargeted methodologies; however, the data obtained with the LC-

UV did not provide as sensitive a level of distinction between adulterated and non-

adulterated samples in this application. The underlying reasons for this difference are likely 

multifaceted, as there are many differences in the instrumentation and methods used for data 

acquisition and analysis on the different platforms.

3.4. Composite Score Analysis

Composite score analysis was performed using the PCA model from data acquired on the 

LC-MS system. In the previous approaches, the PCA data was limited to just two principal 

components (i.e., PC1 and PC2). However, there is additional variation in the dataset that is 

not encapsulated within only two principal components. Expanding the analysis to include 

multiple principal components would allow for a more comprehensive analysis of the 

dataset.

From the multi-component PCA, a similarity score was calculated between every sample, a 

correlation coefficient that ranges from −1.0 to 1.0. The correlations can serve as the 

foundation for a network diagram, with nodes (individual samples) while connections are 

derived from the correlation to connect nodes. For the analysis of all samples (Fig. 4a) a 

similarity score threshold of >0.3 was set. From the composite analysis, there were two 

distinct clusters observed: the adulterated samples (orange) and the unadulterated goldenseal 

samples (blue) (ESM, Tables S1 and S2). More connections were observed in the composite 

score analysis plot with all positive connections (0–1.0) but the two groups were still distinct 

(ESM, Fig. S6).

When calculating a composite score network comparing the goldenseal sample cluster 

against a single adulterated product (Fig. 4b), the analysis was not as sensitive as principal 

component analysis based upon the LC-MS untargeted metabolomics (Fig. 2a). This is due 

to the similarity between the plants; there should be some overlap in metabolite content 

given the plants belong to the same family (Ranunculaceae). In addition, the “adulterated” 

samples are still partially comprised of goldenseal so a level of connectivity should be 

expected. Using the composite score’s network diagram facilitates visual determination of 

potential outlier samples; the score serves as a quantitative measure to differentiate 

dissimilar samples. Restricting the connectivity threshold to 0.3, the distinction between the 

two groups was clear (Fig. 4b). While the cutoff point is relative and will vary among 

datasets and combination of samples, it provides an important metric for authentication. In 

this sample set, using a similarity score of >0.10, 25% Coptis chinensis was completely 

differentiable (no connection edges) from the goldenseal sample cluster. Again, ascribing a 

definitive score cutoff is a more restrictive way to use this model (compared to a holistic 

interpretation of the whole network) but was successful in this application in differentiating 

the two sample types (adulterated vs. unadulterated). Similar to the statistical methods 

described earlier, this approach could be made more sensitive if the same goldenseal product 

were being analyzed rather than an assortment, or if the two samples were vastly different 

botanicals. However, composite score analysis is a useful way to utilize and display principal 

component analysis data in a more quantitative and comprehensive way than a traditional 

1x1 principal component comparison.
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3.5. Supervised Statistical Analysis

While the adulterated samples were visually separated from the authentic samples (Fig. 2), 

with the application of the Hotelling’s T2 95% confidence interval as cut-off, it was not 

possible to fully resolve the adulterated samples at the lowest concentration analyzed (5% C. 
chinensis). This limitation was observed even using the semi-supervised approach, in which 

only one adulterated sample was included in the dataset at a time. Supervised statistical 

techniques such as SIMCA are better suited for distinguishing outliers in a dataset than 

unsupervised methods, although they require some a priori knowledge of the underlying 

groupings present in the dataset.

In this study, SIMCA analysis was conducted in which only authentic H. canadensis samples 

were identified and subjected to PCA, i.e., a one-class model. The loadings were used to 

compute Q statistic scores for both the authentic and unknown, adulterated samples. For 

detection of adulteration, the Q statistic (which provides the distance of the sample from the 

model) has been shown to take precedence over the Hotelling’s T2 statistic [32]. Plotting the 

samples versus the 95% confidence interval for the one-class model (Fig. 5a), all the 

reference samples were observed to fall below the 95% confidence limit (and thus be within 

the model’s limitations) while all the adulterated samples fall above the limit (fall outside 

the model). Thus, all the adulterated samples were correctly judged to be adulterated.

An alternate means of examining the Q residual values is to plot them as a function of the 

concentration of Coptis chinensis (Fig. 5b). Interestingly, in the case of adulteration with a 

single entity (C. chinensis), a linear plot is obtained despite the complexity of the spectra 

and variation at many masses. However, the variation at each mass is proportional and a 

linear relationship is obtained as a function of concentration. The linearity of Fig. 5b 

establishes confidence in the one-class model and the Q residual as a means of detecting 

adulteration and determining the LOD for the method, slightly less than 5%.

3.6. Targeted analysis for detection of adulterants

A targeted approach (specifically selecting for the known alkaloid palmatine, present in the 

C. chinensis adulterant) demonstrated a lower limit of detection on all three platforms (Table 

1) than the untargeted methods. For the least sensitive of the two instrument platforms, the 

LC-UV system, the targeted analysis yielded a limit of detection for palmatine of 0.027 μM, 

corresponding to a palmatine concentration of 20 ppm in the sample, or 1.7% w/w C. 
chinensis adulterant. The mass spectrometric methods were even more sensitive, with the 

LC-MS system giving a calculated limit of 0.3% w/w C. chinensis (Table 1). These values 

are well below even the lowest cut-off (10% adulterant) observed with untargeted 

metabolomics using unsupervised data analysis (5% adulterant). Thus, for situations where 

the adulterant is of known identity, a targeted analysis will detect adulteration at much lower 

levels (33-fold in this case). However, it is worth noting that a disadvantage of targeted 

analysis is that it requires a priori knowledge of the identity of the adulterant. Analyzing a 

sample set where there was no suspicion or prior knowledge concerning adulteration, or if 

the identity of potential marker compounds was not known, it would not be possible to 

utilize a targeted analysis.
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4. Discussion

Untargeted metabolomics analyses, employing both supervised and unsupervised statistical 

analysis, were compared against a targeted analysis. In a completely unsupervised approach 

(PCA), the Hotelling’s 95% confidence interval was used to estimate the limitations of the 

detection and observe potential outliers. However, as the variance between the dataset and 

potential outliers increased, the confidence interval expands and its discriminatory ability in 

detecting outliers decreased substantially (ESM, Fig. S2). Switching to a semi-supervised 

approach, in which a single adulterated sample was included in the PCA analysis 

sequentially, improved the power of the confidence interval to differentiate between 

authentic and adulterated samples. This approach made it possible to detect adulteration at 

the 10% m/m and 50% m/m levels for the LC-MS and LC-UV datasets, respectively. 

Composite score analysis combined four principal components to encompass a larger 

percentage of the variation in the dataset, as compared to the two principal component 

comparisons of traditional PCA and had a similar sensitivity in detecting adulterated 

samples.

As PCA was not originally designed to distinguish outliers from a large dataset, a supervised 

statistical analysis, SIMCA, was also included in the analysis. SIMCA was more effective 

for outlier detection than the unsupervised methods, yielding a detectable amount of 5% or 

less adulteration for the samples tested. The disadvantage of model-based statistics is the 

relationship between the samples is not further related to the variables. This technique has 

applications in scenarios where there is considerable prior knowledge and reference samples 

available, such as manufacturing quality assurance/control [12]. While each of the statistical 

techniques used in the study (PCA with 95% confidence interval, composite score, and 

SIMCA) can be successfully applied for authentication of goldenseal samples, the 

supervised, model-based approach (i.e., SIMCA) yielded a more sensitive quality control 

measure with the identification of reference samples to guide the model formation.

Of the methods compared herein, the targeted analysis was the most sensitive to detecting 

adulteration, with low limits of detection (0.0047 µM and 0.25 µM for the LC-MS and LC-

UV respectively) on both platforms. These limits corresponded to a w/w % of 0.3% and 

1.7% of C. chinensis adulterant. It is worth noting that a generic chromatographic method 

was used for analysis on both platforms. This facilitates comparison across platforms, but it 

is possible that the sensitivity could have been improved by optimizing the method for any 

system. However, using a more general method for this test case demonstrated that all 

platforms were viable for detection of botanical adulteration.

5. Conclusion

This methodology provided an untargeted process for ascertaining the authentication of 

supplements as well as a targeted methodology employing quantified marker compounds. 

Untargeted metabolomics can be used as a tool to identify adulterated samples and provide 

information about potentially unknown marker compounds that contribute to the 

differentiation, which is especially beneficial in situations when there is little prior 
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knowledge of the composition or adulterant. Targeted analysis can be used for a direct and 

quantitative comparison in addition to verifying the level of adulteration present.

With the application of untargeted metabolomics, it was possible to discern authentic and 

adulterated goldenseal samples using data obtained from two different analytical platforms. 

The mass spectrometry platform allowed heightened sensitivity within the analysis as well 

as useful information (m/z-RT pairs) about the sample set. However, mass spectrometers are 

costly to purchase and maintain. LC-UV is a common tool utilized in the natural product 

community. Here it is clear that either platform is able to differentiate between an authentic 

and adulterated set of products. Thus, LC-UV can be used in place of mass spectrometry in 

order to detect adulteration via untargeted or targeted analysis, but with lower sensitivity (at 

least in the test case evaluated here).

In this study, different commercial products were used to provide a robust test case to 

challenge the analytical and statistical methods. In other settings, such as an industrial 

quality control environment, an increased number of authenticated products would increase 

the sensitivity of any of the statistical methodology, as more references or authenticated 

materials would tighten the variation among goldenseal samples and heighten the variance 

between the potential outliers and the goldenseal sample clusters. In situations where a mass 

spectrometer is not accessible, LC-UV metabolomics offers a more affordable but 

comparable option. Regardless of the analytical instrumentation, untargeted metabolomics 

with unsupervised or supervised data analysis for adulteration detection could be adapted 

and enhanced for implementation in various applications.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Extracted ion chromatograms of three adulterated samples and the H. canadensis reference 

material on the LC-MS system. Each set includes chromatograms of 5, 25, and 95% 

adulteration (percentage of Coptis chinensis present, remaining material is goldenseal). 

Marker compounds were identified by accurate mass and retention time, <5 ppm. Hydrastine 

and canadine are marker compounds in Hydrastis canadensis, while magnofluroine, 

coptisine, dihydrocoptisine, and palmatine are unique to C. chinensis. As the percentage of 

C. chinensis in the samples increases, the presence of hydrastine and canadine decreases and 

is replaced by an increase in coptisine, palmatine, magnofluroine, and dihydrocoptisine. 

Chromatograms were normalized to the same relative intensity for comparison.

Wallace et al. Page 18

Anal Bioanal Chem. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: 
Principal component analysis (PCA) scores plot (a), PCA loadings plot (b), and Hotelling’s 

T2 95% confidence interval (c) from the LC-MS data. The points in the scores plot are 

labeled to indicate the percentage of adulterant (Coptis chinensis) added to the Hydrastis 
canadensis plant material (A-5 is 5% C. chinensis, 95% H. canadensis, A-10 is 10% C. 
chinensis, etc.). Similar variance was showcased with a PC 1 (53.5%) versus PC 2 (9.3%) 

comparison of the LC-MS data for a total of 62.8% variance. The red triangle denotes the 

reference material for C. chinensis, while the purple diamond represents the reference 

material for H. canadensis. In the loadings (b) each data point represents a feature (a unique 

m/z value-retention time pair) detected in the sample. Variables in red are associated with 

Coptis chinensis, while those in green are associated with Hydrastis canadensis. The 95% 

confidence interval (c) was applied to PCA analysis of the goldenseal samples with only a 

single adulterated sample included in the dataset. The inclusion of just one outlier improves 
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the ability to detect outliers as compared to datasets where multiple outliers were included 

(ESM, Fig. S3). At 5% adulteration the sample was not an outlier however, at 10% 

adulteration the sample was beyond the confidence interval and became a visible outlier.
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Fig. 3: 
LC-UV metabolomics PCA scores and loadings plots. The scores plot (a) yielded a similar 

trend in adulteration percentage as seen with mass spectrometry data (Fig. 2). The trend was 

not as exaggerated and followed a more linear trend between adulterated samples (orange 

squares) and goldenseal samples (blue diamonds). The C. chinensis and H. canadensis 
reference materials were spatially located with the appropriate clusters. The loadings plot (b) 

showed the directionally correlated retention time with the scores plot. Loops were observed 

due to the continuous nature of the UV/Vis signal as a peak eluted. The retention time can be 

compared against standards for a targeted analysis and achieve tentative peak identification. 

The dominant discriminating features were similar to the mass spectrometry analysis; 

however, dihydrocoptisine and jatrorrhizine were absent from the C. chinensis region of the 

plot. Canadine was also absent from the H. canadensis ions. In calculating the outlier 

determination (c) an adulterated sample of 25% falls on the 95% confidence interval line 
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(ESM Fig. S3). This could be deemed an outlier, while a sample with 50% adulteration (c) 

was a clear outlier, plotting far outside the 95% confidence interval.
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Fig. 4: 
Composite score analysis of the entire sample set, a, (ESM, Tables S1 and S2) and 

composite score analysis with 25% adulterated product (b). The adulterated samples, in 

orange, are separated from the goldenseal commercial samples (in blue). The light blue node 

represents the goldenseal vouchered reference material. The connected lines represent a 

similarity score of >0.3, the highest score being 1.0. In the composite score analysis of the 

authentic supplements versus the 25% adulterated product (b) a similarity score range of 

0.10–1.0 was applied. The 25% adulterated product (orange) is no longer connected to the 

other nodes (blue).
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Fig. 5: 
A one-class model (SIMCA) plot based on goldenseal products (a) and plot of Q residual 

versus adulterant concentration (10–95%) showing a linear relationship between the Q 

residual and concentration of adulteration (b). The Q residual (y-axis) is the distance of the 

sample from the model (a). The dotted line represents the 95% confidence limit. The 

confirmed goldenseal products (blue diamonds) clustered below or on the 95% confidence 

interval. The adulterated products (orange squares) fell above the confidence interval with 

the Q residual proportional to the level of adulteration. In (B) the blue diamond represents 

the mean Q residual value for the unadulterated botanicals and the horizontal dashed line 

provides the 95% confidence limit. As the concentration of adulteration increases, the 

sample is plotted further away from the model and thus moves further away from the 95% 

confidence interval. The outlier limitation determined using the linear detection 

methodology was 5% adulteration.
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Table 1:

Limit of detection (LOD
a
) and limit of quantitation (LOQ

b
) of palmatine with targeted analysis on different 

instrument platforms, as well as the LOD in ppm palmatine in the plant
c
, and the % w/w of C. chinensis that 

would be detectable as an adulterant
d
.

Method of analysis Limit of detection 
(LOD) palmatine 

(µM)
a

Limit of quantitation 

(LOQ) palmatine (µM)
b

Limit of detection expressed as 
ppm palmatine in C. chinensis 

plant
c

Minimum detectable 
Coptis chinensis (% 

w/w )
d

LC with UV/VIS 0.027 0.54 20 1.7

LC-MS 0.0047 0.12 3.8 0.30

a
Limit of detection was calculated using the following equation: LOD = 3s ÷ m where s is the standard deviation and m is the slope from the 

regression line.

b
Limit of quantitation was determined as the lowest concentration of standard in the calibration curve that provided a residual of less than 15% 

[38].

c
Calculated using the limit of detection and the original plant mass and extract mass of the Coptis chinensis reference material to give a value of 

ppm palmatine in the plant.

d
The w/w % of Coptis chinensis adulterant that would yield a concentration of palmatine corresponding to the limit of detection, calculated using 

the quantity of palmatine in the Coptis chinensis reference material (1.24 mg of palmatine per gram).
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