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Abstract

Ever since the pioneering discoveries in the mid nineteen hundreds, the hypothalamus was 

recognized as a crucial component of the neural system controlling appetite and energy balance. 

The new wave of neuron-specific research tools has confirmed this key role of the hypothalamus 

and has delineated many other brain areas to be part of an expanded neural system sub serving 

these crucial functions. However, despite significant progress in defining this complex neural 

circuitry, many questions remain. One of the key questions is why the sophisticated body weight 

regulatory system is unable to prevent the rampant obesity epidemic we are experiencing. Why are 

pathologically obese body weight levels defended, and what can we do about it? Here we try to 

find answers to these questions by 1) reminding the reader that the neural controls of ingestive 

behavior have evolved in a demanding, restrictive environment and encompass much of the brain’s 

major functions, far beyond the hypothalamus and brainstem, 2) hypothesizing that the current 

obesogenic environment impinges mainly on a critical pathway linking hypothalamic areas with 

the motivational and reward systems to produce uncompensated hyperphagia, and 3) proposing 

adequate strategies for prevention and treatment.

1. Introduction

In less than a century, obesity rates have drastically increased in Western as well as in 

rapidly developing countries. Given the strong association with diabetes, cardiovascular 

disease, and cancer, obesity has become one of the major health burdens with a huge 

economic impact. Clearly, the rapid rise of obesity is inconsistent with changes in the gene 

pool as a causative factor. More likely, the modern obesogenic environment interacts with 

individual genetic predisposition and in addition may cause epigenetic changes that are 

propagated to offspring [1]. For more in-depth discussions of the genetics of obesity the 

reader should consult relevant recent reviews [1–4]. Here, we focus mainly on the 
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obesogenic environment causing obesity in individuals with a polygenetic obesity 

predisposition, also referred to as “common obesity”.

Whether body weight/adiposity is homeostatically regulated and how this regulation is 

accomplished has been the subject of much debate. Homeostatic regulation of body weight 

hypothesizes that body weight (or perhaps body fat) is actively defended owing to a 

coordinated response to any disturbance, similar to the regulation of body temperature in 

warm-blooded animals. The set-point model of homeostatic body weight regulation was 

mainly based on observations in laboratory rats and seasonal animals such as hamsters. 

When rats that have lost body weight after a period of food restriction are allowed 

unrestricted access to food, they overeat and body weight returns to exactly the same level of 

unrestricted rats within a few days or weeks, even taking into account an ascending body 

weight curve during growth [5, 6]. More impressively, after the same manipulation in 

Siberian hamsters during their seasonal weight loss phase, body weight returns to exactly the 

same low level of non-restricted hamsters, suggesting that “…the point of energy balance is 

continuously re-adjusted, reflecting an apparent sliding set point” [7–9]. Many more papers 

have focused on the dynamics of body weight/adiposity regulation, with evidence both for 

and against the concept of a body weight set point. The interested reader should consider the 

following reviews [10–18].

The goal of this present paper is to review the literature supporting the view that higher brain 

functions such as hedonic and cognitive processing are an integral part of the neural control 

of food intake and body weight/adiposity regulation, and in particular that the distinction 

between “homeostatic” and “hedonic” may no longer be useful. First, we will remind the 

reader that ingestive behavior is not simply the act of consumption, but is instead a complex 

behavior that depends on multiple neural systems. We will review the evidence for cross-talk 

between the “classical” homeostatic system and the reward, emotional, and cognitive 

systems in general, particularly focusing on recent insights into the physiology of 

basomedial hypothalamic agouti-related protein (AGRP) and pro-opio-melanocortin 

(POMC) neurons that are considered master nutrient sensors and motivational drivers. 

Second, we will discuss the hypothesis that one of the main mechanisms by which the 

obesogenic environment increases the level of defended body weight in genetically prone 

individuals is by impinging on this motivational drive. Third, we will briefly discuss 

evidence for some candidate mechanisms that might be responsible for the chronic elevation 

of the defended obese body weight, which makes weight loss so difficult. Finally, we will 

lay out some of the implications for the prevention and treatment of obesity prompted by our 

integrative neural model.

2. Multiple neural systems controlling food intake and body weight

Historical background

Some of the pioneers in ingestive behavior research had already included forebrain 

structures other than the hypothalamus in the overall neural system governing this crucial 

behavior. For example, Eliot Stellar included the thalamus, striatum, and cortical structures 

in his working model [19]. It may also not be appreciated that much of our understanding of 

higher brain functions such as learning & memory and decision making is based on 
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experiments using food reward in food-restricted experimental animals. However, for a long 

time, the bulk of research on ingestive behavior was directed towards the brainstem and 

hypothalamus. The few exceptions were studies looking at ingestive behavior following 

early manipulations of dopamine projections and signaling from the midbrain to the nucleus 

accumbens and other forebrain area [20–24], or opioid stimulation of the ventral striatum 

[25]. Even during the first few years after the discovery of leptin in 1995, the focus on the 

hypothalamus was reinvigorated, with little attention to higher brain functions.

This focus on hypothalamus and brainstem started to change when two influential, 

anatomically-inspired review papers [26, 27] made the case for a much larger neural system 

underlying the control of ingestive behavior and ultimately the regulation of body weight. 

Looking at humans in the modern world and the typically housed laboratory rodent with 

food almost omnipresent, it might not be obvious that ingestive behavior requires much 

strategy and a sophisticated neural control system. However, throughout most of evolution, 

finding food and water in sufficient quantity and quality was a daily challenge and may well 

have contributed to the evolution of sophisticated higher brain functions such as learning and 

memory. Figure 1 shows the role of the brain in integrating external and internal information 

and orchestrating adaptive behavioral, autonomic, and endocrine responses necessary for 

body energy allostasis. Neural processing within cortico-limbic and external sensory brain 

areas and communication with the hypothalamus should be particularly important for human 

food intake, which is more and more guided by sensory, emotional and cognitive rather than 

metabolic aspects in the obesogenic environment of affluent societies. Watts provided the 

first comprehensive model of the workflow during the different phases of ingestive 

behaviors and its potential underlying neural substrate [28]. A modified diagram showing 

these phases in the greater context of the control of body weight is depicted in Fig. 2. The 

initiation and procurement phases can be particularly challenging in a restrictive natural 

environment, requiring a response plan and extensive foraging behavior, all depending on 

prior experience and the current environmental conditions.

Since then, many studies demonstrated such top-down modulation of homeostatic 

hypothalamic controls by cortico-limbic systems, as well as bottom-up modulation of higher 

brain functions by interoceptive signals of nutrient availability. The new genetics-driven 

neuroscience tool set was instrumental in this endeavor. We have regularly summarized such 

observations during the last 15 years [29–36] and suggested that hedonics act in unison with 

the classical homeostatic system in the neural control of appetite and regulation of body 

weight. A schematic diagram of identified and potential neural pathways accomplishing 

such integration and coordination is shown in Fig. 3. Here we further discuss these well-

known neural pathways and mechanisms in the light of some more recent studies.

Recent evidence for crosstalk between the classical hypothalamic homeostatic regulator 
and reward pathways

With the ability to selectively record neural activity from behaving animals, as well as to 

stimulate, inhibit, or permanently silence the activity of neuronal populations with specific 

molecular fingerprints, a new era of functional systems neuroscience has begun. The critical 

roles of AGRP/NPY and POMC/CART neurons in the arcuate nucleus were discovered by 
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demonstrating complete cessation of food intake after selective deletion of AGRP neurons in 

adult mice [37, 38] and powerful stimulation of food intake and gain of body weight during 

4 days of chemogenetic activation of AGRP neurons [39]. Conversely, POMC deficiency 

causes severe hyperphagia and early onset obesity in mice and humans [40–42], and 

optogenetic activation over longer periods of time decreases food intake [43].

Selective optogenetic activation of AGRP neurons in satiated mice evokes the complete 

behavioral responses necessary to find and eat food, abandoning any competing motivational 

drives [43–45]. The amount eaten strictly depends on the duration of stimulation, 

independent of any delay between stimulation and access to food for up to an hour, 

suggesting that “it transmits a hunger signal that accumulates in a downstream circuit even 

after AGRP neurons have been silenced” [44]. AGRP neuron stimulation produces 

conditioned and motivated eating, as mice will lever press for food reward on a progressive 

ratio schedule [39, 44]. Thus, the relatively small group of AGRP neurons in the basomedial 

hypothalamus appears to be at the center of food intake control and regulation of energy 

balance, and understanding its outputs and inputs should provide a comprehensive picture of 

how this regulation works.

Among the downstream targets of AGRP neurons are the lateral hypothalamus (LH) and the 

paraventricular nucleus of the hypothalamus (PVH), as optogenetic stimulation of AGRP 

neuron terminals in these brain areas elicited the same complete behavioral responses [44]. 

AGRP neuron projections to the LH likely activate diverse populations of LH neurons, 

including GABA, and orexin neurons known to project to the ventral tegmental area (VTA) 

[46–50], and in turn engage the mesolimbic dopamine reward system including the nucleus 

accumbens [48] (interactive pathway # 5 in Fig. 3). The connections to the mesolimbic 

dopamine system are likely responsible for eliciting the “wanting” of food upon AGRP 

neuron activation and the inputs to the PVH for engaging brainstem motor programs as well 

as the autonomic support necessary for ingestive behavior. Each of these subsystems has its 

own complexity, and the reader should consult [51, 52] for in-depth discussions.

Most relevant to this discussion are the connections between the hypothalamus and other 

forebrain structures such as the cortex, amygdala, and hippocampus, and the way 

nutritionally important information is integrated by these structures. With their capacity to 

integrate large amounts of information [53], medium spiny neurons in the nucleus 

accumbens are key for selecting appropriate behavioral action [54]. Besides dopaminergic 

input from the VTA, they notably receive glutamatergic inputs from the hippocampus and 

prefrontal cortex. The hippocampus is a brain region that integrates feeding-relevant internal 

and external signals with learning and memory processes [55–60]. Ghrelin signaling in the 

ventral hippocampus increased meal size by reducing the effectiveness of a number of 

interoceptive satiety signals such as GLP-1, cholecystokinin, and amylin through a pathway 

involving lateral hypothalamic orexin neurons and their brainstem projections [61]. Lesions 

of parts of the hippocampus [62] and selective optogenetic inhibition of glutamatergic 

pyramidal neurons in the dorsal or ventral hippocampus ([63] during the postmeal period 

increases future food intake. Glutamatergic inputs to medium spiny neurons in the nucleus 

accumbens from the prefrontal cortex are thought to modulate eating behavior in the context 

of other important drives and executive decisions. The orbitofrontal cortex, which is a major 
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hub in reward processing contains specific populations of neurons differentially responsive 

to aspects of food intake and social environment ([64–67]. Thus, the downstream targets of 

AGRP neurons are in a position to orchestrate appropriate behavioral, autonomic and 

endocrine actions necessary for the display of complete appetitive and consumatory 

behavior.

Regarding inputs to AGRP and POMC neurons, they primarily respond to interoceptive 

signals of nutrient availability, either through relevant receptors directly expressed by these 

neurons, or indirectly via neural inputs. In ad libitum fed mice, when baseline activity is low, 

the hunger-inducing gut hormone ghrelin increased activity of AGRP and decreased activity 

of POMC neurons [44, 68]. In fasted mice, when baseline activity is high, re-feeding, as well 

as systemic administration of leptin, glucose, fat, PYY, CCK, and GLP-1 decreased activity 

of AGRP neurons [68, 69]. These effects are consistent with AGRP and POMC mRNA 

expression levels. Notably, AGRP mRNA expression is about 2-fold higher in 24 hour food-

deprived and chronically food-restricted mice compared with ad libitum fed mice [70, 71] 

and returns to normal levels after 24 but not 6 hours re-feeding [71], suggesting that AGRP 

mRNA expression is a convenient readout for “hungriness”.

Interestingly, AGRP and POMC neuron activity changed before the hungry mice ingested 

any food. Simply seeing caged food or smelling inaccessible food was sufficient to produce 

a transient and small reduction in AGRP and increase in POMC neuron activity that rapidly 

reversed when consumption did not follow [68, 72]. This learned anticipatory response 

seems logical given the observation that elevated activity of AGRP neurons is acting as a 

negative valence teaching signal [73]. Importantly however, it indicates the existence of 

neural inputs from the environment via external sensory channels. While the exact nature of 

neural inputs to AGRP and POMC neurons has not been fully explored, they include direct 

and multisynaptic inputs originating in other parts of the hypothalamus [74], and other brain 

areas. Using the Cre-recombinase-enabled, cell-specific monosynaptic neuron mapping 

technique, strong excitatory direct inputs from thyrotropin-releasing hormone (TRH) and 

pituitary adenylate cyclase-activating polypeptide (PACAP) expressing neurons in the 

paraventricular nucleus of the hypothalamus, as well as from the dorsomedial nucleus of the 

hypothalamus, while the supraoptic nucleus, medial preoptic area, and lateral hypothalamus 

provided much weaker inputs to AGRP neurons [74]. These direct hypothalamic inputs were 

confirmed in another study that also found direct inputs from a large number of brain areas 

including septum, striatum, amygdala, pallidum, thalamus, hippocampus, midbrain, pons, 

and hindbrain, although most of them quite sparse [75]. A much earlier study, using virally-

assisted multi-synaptic retrograde tracing found AGRP neuron inputs from amygdala, 

cortical areas and other brain regions [76].

In summary, the ability to manipulate specific neuron populations in behaving animals 

tremendously enriched our understanding of the classical hypothalamic appetite control 

system. Although we have discussed here only a selection of relevant recent publications, 

some fundamental new insights emerge. First, AGRP neurons are not only responsive to 

interoceptive signals of nutrient availability, but also to environmental signals via the 

external sensory pathways and cortico-limbic areas of the brain. Second, AGRP neurons are 

uniquely capable of driving and coordinating the complete behavioral sequence underlying 
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natural food intake behavior, specifically they engage the mesolimbic dopamine reward 

system to generate the intense “wanting” of food in a hungry animal. Third, a number of 

other cortico-limbic brain areas with the ability to integrate exteroceptive and interoceptive 

information are anatomically and functionally connected to the “classical homeostatic” areas 

of the hypothalamus and brainstem, including AGRP and POMC neurons. Further, we 

hypothesize that environmental influences on food intake and energy balance regulation gain 

access to “classical homeostatic” brain areas mainly via these cortico-limbic structures.

3. The obesogenic environment likely impinges on the powerful 

motivational system that is inextricably linked to the extended homeostatic 

regulatory system

Although a number of potential causes for the recent (last 50 years or so) steep increase in 

the prevalence of obesity have been mentioned, it seems clear that the obesogenic 

environment is the main driver. The most convincing fact is that we can reproduce this 

scenario over and over again, at least in animals. The key experiments were done a while 

ago by feeding rats a “Supermarket diet” and controlling their level of exercise. Compared to 

regular chow diet, the supermarket diet led to overeating and obesity within a short time and 

the less the rats had the opportunity to move, the more they became obese [77]. This 

experiment has been replicated hundreds of times in rats and mice with other diets high in 

fat and sugar and relatively empty of micronutrients and fibers - the typical supermarket and 

fast food diet. It can be shown in most species, including Drosophila [78], cats, and even 

elephants [79]. And this experiment is going on in the huge urban centers of rapidly 

developing and industrializing countries such as China [80]. Besides the diet, driving factors 

are the built environment, mechanization and automatization, which greatly reduce the 

opportunity for physical activity. Advertisement and pricing of palatable but poor quality 

foods are other important drivers. This obesogenic environment, originally generated in the 

spirit of re-building the economy after World War II, continues to be dominated by non-

sustainable economic models, leading to propagation of obesity for profit. Given the 

dominance of profit as a motive and an almost complete lack of political will to regulate, the 

obesogenic environment is not likely to be reversed or even halted soon.

Why and how does the obesogenic environment bypass or overpower the homeostatic 

regulatory system? The answer is likely not a simple one, as energy balance depends on both 

energy intake and energy expenditure, and the very purpose of the homeostatic regulator is 

to respond to an insult on one side of the equation with compensatory adjustments on the 

other side. So we would expect that reduced physical activity caused by the obesogenic 

environment is compensated by a commensurate decrease in energy intake. Conversely, the 

homeostatic regulator should increase energy expenditure in the face of overeating. Perhaps 

the simple fact that the obesogenic environment unfavorably affects both arms of the energy 

balance is key. It could be that the increased energy intake caused by the obesogenic 

environment is not compensated by commensurate changes in energy expenditure simply 

because the drastic changes in the built environment prevent rather than stimulate physical 

activity-induced energy expenditure.
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We hypothesize that the obesogenic environment impinges on a neural node that is most 

crucial for the defense of body weight, thereby resetting the level of defended body weight 

in the obese. Arcuate AGRP and POMC neurons, and their reciprocal connections with the 

reward system, potentially represent this crucial central node. The obesogenic environment 

somehow sensitizes this AGRP-dopamine motivational system so that it is hyperactive when 

metabolically hungry and remains active even when metabolically replete. The recent 

demonstration that AGRP and dopamine signaling are interdependent, meaning that changes 

in one automatically leads to changes in the other [69], could be one mechanism by which 

signals from the obesogenic environment drive overeating (Fig. 4). It is conceivable that, 

similarly to drugs of abuse, signals from the obesogenic environment not only activate the 

dopamine system, but also AGRP neurons, leading to hyperphagia. The fact that simply 

seeing or smelling food without ingestion produces small transient decreases, not increases, 

in AGRP activity [68, 69], seems at odds with such a hypothesis. However, it should be 

noted that the rapid decrease of AGRP neuronal activity is anticipatory and short-lived if not 

immediately followed by eating. Also, these experiments were carried out in food-deprived 

mice with high basal AGRP neuron activity, while one of the hallmarks of hedonic eating is 

that it mostly occurs in the absence of metabolic hunger, when baseline activity is low. It 

will be interesting to model rodent studies more closely to the human situation and 

investigate the effect of environmental stimuli on AGRP neuron activity under non-food 

deprivation/restriction conditions.

Changes in AGRP neuron activity may not be required for the obesogenic environment to 

drive hyperphagia. This was demonstrated in mice with neonatal AGRP neuron ablation, 

which in contrast to adult mice, does not lead to cessation of eating and starvation [38]. 

While under normal low-fat diet conditions, ghrelin can no longer elicit a feeding response, 

high-fat diet still leads to hyperphagia, and restores the feeding response to ghrelin in these 

mice by acting on the dopamine system in the ventral tegmental area [81]. These findings 

suggest that AGRP and dopamine neurons, both critical for driving food intake, are able to 

interact and partially substitute for each other.

In summary, we propose that exteroceptive stimuli emanating from the obesogenic 

environment gain access to the powerful motivational mechanisms underlying the natural 

drive to eat and produce a hyperphagic bias. The exact neural pathways and mechanisms of 

this bias are not known, but recently identified external sensory inputs to basomedial 

hypothalamic AGRP neurons and the bi-directional interdependent modulation of AGRP and 

mesolimbic dopamine neurons may play a role. However, whether the environmental 

pressure leads to a permanent resetting of defended body weight/adiposity, and the 

underlying mechanisms mediating the reset remain largely speculative. We will next discuss 

some of the molecular and neural mechanisms proposed to propagate the obese state and 

prevent its reversal.
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4. Does the obese state promote further resistance to body weight 

defense mechanisms: Evidence for a vicious circle?

Most rodent studies using inbred C57BL6 mice or outbred Sprague Dawley rats find that 

high-fat diet-induced obesity lasting up to 20 weeks is largely reversible after switching back 

to normal chow diet [82]. Although others find incomplete reversal, there is always a large 

and sustained weight loss after the switch back to normal chow [83]. It is also clear that 

when weight loss is induced through caloric restriction in rodents on a high-fat diet, they 

regain all the lost weight when ad libitum high-fat conditions are reinstated. These findings 

are consistent with the idea that in rodents the defended level of body weight/adiposity is 

strictly a function of diet and likely other environmental factors. The first type of study, 

namely completely removing the obesogenic diet and environment, has not been done in a 

controlled fashion over extended periods of time in humans, but the outcome would likely be 

similar to rodent studies. Although observations in prisoners and during war times tend to 

support such a conclusion, none of them looked at obese subjects and truly obesogenic 

environments (for review see [84]).

Most human studies with obese subjects can achieve meaningful weight loss for up to 2 

years with the combination of caloric restriction and lifestyle modification [85]. However, 

the majority of these subjects re-gains the lost weight within a year or two of ending therapy 

[86], This weight regain is epitomized by the scientific follow-up of the “Biggest Loser” 

television contest, showing that a significant reduction of metabolic energy expenditure and 

increased hunger were the drivers of weight regain [87]. These counter-regulatory responses 

are consistent with the view that in most humans the obese body weight is actively defended, 

representing one of the biggest hurdles in the treatment of obesity [87]. It should be noted, 

however, that after stopping the intervention, the subjects typically go right back to the same 

obesogenic environment that caused their obesity in first place. Therefore, the conclusion 

should be modified, stating that most obese humans defend their obese body weight if they 

remain in an obesogenic environment. This is distinct from the reversal of obesity in rodents 

that are returned to regular (low-fat) chow.

A number of potential mechanisms have been proposed through the years that may explain 

the development of obesity and the resistance to reverse it. One proposed mechanism has 

been functional leptin-resistance, based on the observation that “common” obesity is 

typically associated with high circulating leptin levels that are unable to produce a catabolic 

response profile and counteract obesity induced by an obesogenic environment [88, 89]. The 

exact molecular and neural mechanisms leading to this inability of high circulating leptin 

levels to prevent or reverse obesity are not well understood. A limited number of 

experimental involuntary overfeeding studies lasting 2–3 weeks and producing mild obesity 

and increased circulating leptin levels in rats have provided some answers. One study 

demonstrated that intragastric overfeeding increased POMC mRNA expression in the 

arcuate nucleus, and that blockade of the melanocortin-3/4 receptor with intraventricular 

SHU9119 during the post-gastric infusion period completely rescued the suppressed food 

intake of control rats with intraventricular saline infusion [90]. Furthermore, while 

intragastrically overfed control Zucker rats spontaneously reduced their food intake for 6 
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days in the immediate post-overfeeding period, obese Zucker rats with impaired leptin-

signaling, failed to exhibit this persistent hypophagia, with intake returning to near baseline 

in only one day [91]. Together, these studies suggest that in these reversible rodent obesity 

models, increased leptin does contribute to the compensatory reduction in food intake, 

mainly by stimulating POMC neurons and MC3/4 signaling. Therefore, resistance to these 

particular actions of leptin and melanocortins could be responsible for the irreversible 

“common” obesity in humans. However, it is important to note that the obesity induced in 

these models was relatively mild and that the diet used for overfeeding was low-fat and 

bypassed the oral cavity and its ability to activate cephalic phase responses. Also, other 

studies found that preventing hyperleptinemia and leptin resistance in high-fat-diet induced 

obese mice has no effect on high fat diet induced weight gain and suggests that high fat diet 

drives weight gain and insulin resistance independent of leptin resistance [92].

Perhaps the most influential idea is that consumption of unhealthy foods which are high in 

saturated fats and sugars but low in fibers and micronutrients leads to inflammation in the 

hypothalamus [93, 94] that corrupts the proper function of arcuate AGRP and POMC 

neurons. However, recent studies [95, 96] suggest that high-fat diet-induced inflammation in 

the hypothalamus and perhaps other brain areas [97], is not the primary cause of obesity, but 

may contribute to its irreversible effects.

Another idea that has gathered considerable momentum is the diet- or obesity-induced 

weakening of satiety mechanisms both in the periphery at the level of vagal afferents, and 

centrally at the level of the hippocampus. Gastric vagal mechanosensitivity is persistently 

reduced in chronic high-fat diet-induced obese mice for 12 weeks following the return to 

normal chow [98], impairing satiation signaling to the brain [99] and possibly mediated by 

elevated nitric oxide signaling [100]. As discussed above, the hippocampus is a brain region 

that integrates feeding-relevant internal and external signals with learning and memory 

processes and has the ability of interoceptive states such as satiety to inhibit responding to 

previously rewarded cues [60]. Western diets high in fat and sugar are weakening this 

mechanism both in rats [101] and humans [102], leading to overeating and propagating 

obesity.

Another potential mechanism that may explain the development of obesity and the resistance 

to its reversal is reward-deficiency. This hypothesis suggests that obesogenic diets and the 

obese state erode the ability of the mesolimbic dopamine pathways to generate reward, and 

that subjects with obesity further increase consumption of high-energy foods in an attempt to 

self-medicate to maintain food reward [103, 104].

To summarize, in distinction to animal models of obesity, our understanding of human 

obesity and its reversibility is complicated by the fact that the obesogenic environment (the 

main cause of obesity in first place) cannot be easily and completely removed. This suggests 

that all the proposed reasons for why the obese body weight is defended ultimately hinge on 

this inability to remove the obesogenic environment. There is no convincing evidence in 

animal models that a vicious circle propagates an irreversible obesity that persists once the 

obesogenic environment is completely removed. In contrast, there is lots of evidence that 
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obesity is irreversible only when the obesogenic environment persists. As we see next, this 

concept has major implications for the prevention and treatment of obesity.

5. Implications for prevention and treatment

The most effective measure to prevent or reverse obesity would be to remove the root cause 

– the obesogenic environment. Of course, the most optimistic mind realizes that a complete 

reversal of the modern environment is simply not possible, but small changes could go a 

long way. For this to happen, the public, scientists, health care professionals, food and 

insurance companies, and governments need to be on the same page and put aside self-

interests. However, under the current political and corporate climate which is downplaying 

environmental concerns, it is unrealistic to expect much progress in reversing the obesogenic 

environment in the near future.

Unable to significantly reverse the obesogenic environment, the next best approach is to 

change people’s relationship with the obesogenic environment. Such a strategy may not be 

useful for adults with moderate to severe obesity, as the obese body weight is staunchly 

defended and habits are extremely difficult to break. However, this strategy is particularly 

indicated for children and adolescents that have a high probability to develop obesity later in 

life but are not yet obese. In this population, we need to instill immunity to the toxic effects 

of the obesogenic environment. Multi-component strategies that target the child, family, 

school, social network, and community, as well as diet, physical activity, sleep quality, and 

behavior/cognitive change, are likely to be most successful [105–108], particularly, if they 

can be combined with, at least, small changes to the food and built environment. In addition, 

behavioral phenotyping of children before they are overweight or obese will allow 

treatments that are tailored to children’s individual predispositions and will be more 

effective [109]. A number of behavioral phenotypes have been identified, such as 1) the 

ability to calorically compensate for a preload (also called selfregulation), 2) the ability to 

resist high energy-dense snack foods when not metabolically hungry (eating in the absence 

of hunger), 3) the willingness to work for food reward (relative reinforcing value of food), 4) 

ability to resist the drive to palatable food items (reward sensitivity), and 5) the rate of eating 

[109]. While phenotype-specific treatment seems straight forward for some of these 

behavioral subtypes such as high eating rate and eating snacks in the absence of hunger, it is 

currently unknown how to modify self-regulation, the relative reinforcing value of food, and 

reward sensitivity. Small changes in the environment such as banning television 

advertisements for food to children may go a long way. Also, we do not have a good 

understanding of the underlying neural mechanisms for each of the behavioral subtypes, 

except that some of them (e.g. self-regulation) depend more on impaired interoceptive 

signaling and others more on impaired exteroceptive signals and reward expectations. 

Therefore, much needs to be done to understand the underlying neural mechanisms and 

develop adequate treatment methods for each behavioral subtype.

In children, adolescents, and young adults that are already obese, the initial use of low-

calorie diets may be necessary to achieve meaningful weight loss. In clinical “behavioral and 

lifestyle modification” studies in adults, intensive behavioral therapy is typically 

accomplished with regular face-to-face or electronic coaching sessions elastically spaced 
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over a year, with or without low-calorie meal replacements for the first few weeks or months 

[85, 110]. Typical weight loss at 1 year in subjects with obesity is about 5–10%, with one 

study reporting an impressive 17.9% [111]. However, in almost all studies the intervention is 

stopped at 1 year, and most of the weight is regained. Changing habits, which is really the 

goal of this therapy, is extremely difficult for most humans, and if there is no continued 

pressure, old habits take over again [112–118]. The use of electronic media to do the bulk of 

counseling is promising because more people can be reached for longer times, and the cost 

for long-term treatment can be kept minimal [119, 120].

Pharmacotherapy or surgery should always be the last resort for treatment of obesity and 

only used in patients with a heavy genetic predisposition for obesity before they become 

obese, or in morbidly obese patients that failed to respond to behavioral modification. For 

in-depth discussions of obesity pharmacotherapy and surgery, the reader is directed to two 

recent reviews [121, 122]. The critical question for this discussion is whether 

pharmacological and surgical treatments are purely symptomatic or whether they are able to 

reset the elevated and defended body weight associated with obesity and suppress the 

powerful counter-regulatory adaptive responses, namely increased hunger and hypo-

metabolism.

Four of the five currently available drugs approved for long-term treatment of obesity in the 

USA act on the brain [121]. Lorcaserin is a 5-HT2c receptor agonist. Liraglutide and 

Semaglutide are GLP-1 receptor agonists. Phentermine + Topiramate is a combination of a 

norepinephrine-releasing/uptake inhibitor and a drug (Topiramate) with a number of actions 

(L-type sodium channel blocker, AMPA/kainite glutamate receptor antagonist, enhancer of 

GABA-mediated chloride fluxes, and carbonic anhydrase inhibitor). Finally, Naltrexone + 

Bupropion is a combination of an opioid receptor antagonist and an atypical antidepressant 

with norepinephrine and dopamine reuptake inhibitory as well as nicotinic receptor 

antagonist activities.

The modest effectiveness of the 5-HT2c receptor agonist Lorcaserin as an anti-obesity drug 

appears to be based on its actions on at least 3 key pathways, i) hypothalamic [123] and ii) 

brainstem [124] POMC neurons, and iii) ventral tegmental dopamine neurons [125, 126]. 

The GLP-1 receptor agonists Liraglutide, and the newer, slow-release Semaglutide, are the 

most effective anti-obesity drugs to date, with Semaglutide (1 mg once weekly for 30 weeks) 

resulting in 5.8% weight loss and a meaningful reduction of HbA1c by 1.7 percentage points 

[127]. These effects are likely due to both, peripheral actions on insulin secretion and gastric 

emptying, and central actions on hypothalamic and extrahypothalamic systems involved in 

the control of food intake and body weight regulation [128–131].

Bariatric surgery, in particular gastric bypass surgery and ventral sleeve gastrectomy, are by 

far the most effective obesity treatments, with sustained weight loss of 15–25% for up to 20 

years. For patients with severe obesity and diabetes, the long-term benefits of a higher life 

expectancy and quality clearly outweigh the disadvantages of the surgery being invasive and 

irreversible. Given the remarkable anti-obesity effects of the GLP-1 receptor agonists 

Liraglutide and Semaglutide discussed above and the drastic increases in circulating GLP-1 

after both gastric bypass and vertical sleeve gastrectomy [132, 133], central GLP-1 action 
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seemed to be the key mechanism by which these bariatric surgeries suppress food intake. 

However, a role for GLP-1 could not be confirmed in GLP-1 receptor-deficient mouse 

models of gastric bypass [134] and vertical sleeve gastrectomy [135]. One explanation for 

this conundrum may be that unlike the stable analogs Liraglutide and Semaglutide, even 

high circulating levels of endogenous peripheral GLP-1 may not reach these central 

receptors in sufficient amounts.

Interestingly, gastric bypass surgery does not indiscriminately reduce appetite and lower 

body weight through a restrictive mechanism, but rather appears to change the defended 

body weight or body weight set point. Unlike weight loss induced by food restriction, which 

results in increased hunger and hypometabolism, weight loss induced by gastric bypass 

surgery appears to suppress these counter-regulatory adaptations. Consistent with this 

conclusion, we recently demonstrated that AGRP mRNA expression in mice, unlike after 

starvation-induced weight loss, is not increased after gastric bypass-induced weight loss 

[70], suggesting that a new set point has been established. The observation that gastric 

bypass surgery is less effective in MC4R-deficient compared with wildtype mice is 

consistent with this interpretation [136]. At present, the mechanisms through which bariatric 

surgery acts on the brain to establish this new body weight set point are unclear. 

Identification of this mechanism might be key for developing pharmacological tools that can 

eventually replace the invasive surgery.

Newly available experimental neuroscience techniques open up new ways to further explore 

the mechanisms of obesity drugs and surgery. Interesting experiments include in vivo 
recording of AGRP and POMC neuron activity to test whether these drugs and surgeries are 

able to suppress hunger or increase satiety at the key central node.

6. Summary and Conclusions

The sobering conclusion is that in the absence of political will to halt harmful environmental 

changes propagated by for-profit thinking, the prevention and treatment of obesity remains 

largely symptomatic and thus relatively ineffective. The first line of defense is thus relegated 

to improving behavioral modification therapies, particularly in children and adolescents, 

even before they develop overweight or obesity. Realizing that the obese body weight is 

defended by strong adaptive biological responses to weight loss, makes prevention the 

number one priority. Much can be gained by developing all aspects of behavioral 

modification therapy in children, such as the involvement of the entire community, 

behavioral phenotyping leading towards personalized approaches, and the use of electronic 

techniques to reach more subjects for longer periods. The goal should be no less than 

making children immune to the toxic effects of the obesogenic environment. In subjects that 

are already obese and have not or have poorly responded to behavioral modification therapy, 

pharmacotherapy and surgery are valid treatment options. A more complete understanding 

of how the obesogenic environment corrupts normal functions of the neural systems 

governing appetitive and consumatory behaviors will be instrumental in improving 

behavioral modification efforts, in making drugs more selective and efficient, and in 

revealing the mechanisms which make bariatric surgeries so effective.
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Highlights

• Despite presence of physiological mechanisms for the regulation of body 

weight, the obesity epidemic continues unabated.

• Here we critically discuss potential reasons for this conundrum and identify 

the obesogenic environment as primary driver of obesity.

• We hypothesize that the obesogenic environment impinges on critical neural 

circuitry in the hypothalamus and limbic system to raise the defended body 

weight.

• Implications for prevention and treatment of obesity are discussed
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Fig. 1. 
By integrating external (red) and internal (blue) information, the brain (yellow) can regulate 

long-term body weight/adiposity flexibly and adaptively, to accommodate special 

circumstances (allostasis). Red dashed arrows represent sensory information to the brain. 

Green arrows represent behavioral, autonomic, and endocrine motor outflow from the brain. 

Reproduced with permission from [32].
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Fig. 2. 
The phases of ingestive behavior and its logistical tasks. Internal state and environmental 

signals interact to initiate ingestive behavior. In a natural restrictive environment, the 

procurement phase is the most complex and typically relies heavily on previous experience. 

It can involve extensive foraging, requiring considerable physical activity and energy, and it 

generates new memories for guiding future foraging behavior. The consumatory phase is 

typically less demanding when not contested. Besides rhythmic movements and autonomic 

support for ingestion and digestion, associative memories of the sensory qualities detected at 

all levels are formed, a process that continues after termination of the ingestive bout during 

digestion and absorption. The procurement, consummation, and termination phases are 

influenced by environmental factors. Short and long-term metabolic feedback signals lead to 

satiation and satiety. Hedonic feedback signals are derived from both sensory and 

postabsorptive consequences of food. Parts of the diagram are adapted from [28]. Blue boxes 

and arrows depicts metabolic, red boxes and arrows depict hedonic processes and signals.
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Fig. 3. 
Schematic diagram showing the intimate relationship between the classical homeostatic 

(light blue) and the hedonic (pink/red) neural systems controlling appetite, energy balance, 

and body weight. The classical homeostatic system (integrative energy sensor and response 

allocator) in the brainstem and hypothalamus is capable of sensing the internal milieu 

through circulating (broken light blue lines) and neural (solid light blue lines) signals and 

control energy intake and expenditure subconsciously (dark blue lines). The hedonic system 

senses signals from the environment, calculates emotional valence and reward value of 

potential goal objects through learning and memory, and can influence energy intake and 

expenditure through both conscious voluntary (red arrows) and unconscious (purple arrows) 

actions. Known interacting pathways are numbered, with blue numbers/pathways 

representing bottom-up modulation and red numbers/pathways representing top-down 

modulation. Bottom-up modulation: Circulating interoceptive signals have been shown to 

modulate external sensory inputs, various cortical areas, and other areas involved in learning 

and memory (pathway 1), as well as reward processing areas (pathway 2). Interoceptive 

signals mainly carried by vagal afferents reach vast cortical and subcortical areas, including 

the insular cortex (pathway 3). In addition, interoceptive information processed in the 

hypothalamus and brainstem reaches thalamus, hippocampus, and the reward system 

(pathways 3, 4, and 5). Specifically, there are orexin projections from the LH to the 

paraventricular nucleus of the hypothalamus and in turn to the nucleus accumbens (pathway 
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3), and to the ventral tegmental area (pathway 5). Top-down modulation: Taste, olfactory, 

and visual information can directly reach parts of the hypothalamus (pathway 6). Amygdala 

to lateral hypothalamic pathways mediate conditioned food intake (pathway 7). The 

hypothalamus receives massive inputs from many cortical and subcortical areas (pathway 8). 
The LH receives direct GABA-ergic input from the ventral striatum (pathway 9). 
Subconscious motor actions including autonomic nervous system outflow can originate from 

the striatum, the central amygdala (emotional motor system), and certain cortical areas, 

some of them passing through the periaqueductal gray (Pathways 10 and 11). Finally 

conscious willful motor actions can affect both food intake, food choice, and energy 

expenditure. Abbreviations: PAG, periaqueductal gray; VTA, ventral tegmental area; Vent. 

Pall, ventral pallidum; vmPFC, ventromedial prefrontal cortex.
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Fig. 4. 
Potential role of the basomedial hypothalamus and mesolimbic dopamine system in 

integrating classical homeostatic and hedonic controls of food intake and energy balance. 

AGRP and POMC neurons are key in sensing the nutritional state (blue arrows and boxes) 

and orchestrating adaptive anabolic and catabolic responses through behavioral, autonomic 

and endocrine actions (purple arrows). Notably, nutrient deficiency drives AGRP neuron 

activity and in turn the mesolimbic dopamine reward system to produce a sustained 

“wanting” of food. Environmental factors gain access to both AGRP neurons and the 

mesolimbic dopamine system through sensory channels and conditioned reward and energy 

expectancies (red boxes and arrows). We hypothesize that environmental pressure enhanced 

by easy availability, palatability, conditioned reward expectancy, and other factors further 

stimulate the AGRP-dopamine pathway, so that it is active even in the absence of a 

metabolic deficit.
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