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Numerous land- and space-based observations have established
that Saturn has a persistent hexagonal flow pattern near its north
pole. While observations abound, the physics behind its forma-
tion is still uncertain. Although several phenomenological models
have been able to reproduce this feature, a self-consistent model
for how such a large-scale polygonal jet forms in the highly
turbulent atmosphere of Saturn is lacking. Here, we present
a three-dimensional (3D) fully nonlinear anelastic simulation of
deep thermal convection in the outer layers of gas giant plan-
ets that spontaneously generates giant polar cyclones, fierce
alternating zonal flows, and a high-latitude eastward jet with a
polygonal pattern. The analysis of the simulation suggests that
self-organized turbulence in the form of giant vortices pinches
the eastward jet, forming polygonal shapes. We argue that a sim-
ilar mechanism is responsible for exciting Saturn’s hexagonal flow
pattern.

planetary atmospheres | rotating convection | turbulence

In 1988, Godfrey (1) analyzed the 1981 flyby data from Voyager
2 and reported one of the most visually spectacular features

in planetary atmospheres: the presence of a hexagonal pattern
in the prograde zonal jet at around 15◦ away from Saturn’s north
pole. Since its discovery, Saturn’s hexagon (hereafter “hexagon”)
has been repeatedly observed, and we know that at least in the
last 40 y or so, the hexagon has been present and relatively
unchanged (2, 3). The hexagon exhibits some dynamical behav-
ior, including drifting slowly in the westward/eastward direction
with speeds ranging from −0.06 to 0.01◦ per day (in Saturn’s Sys-
tem III reference frame) (2, 4), although given the uncertainty
associated with Saturn’s rotation period (5–7), it is rather diffi-
cult to infer the actual drift rate of the hexagon. The hexagon
also encloses a circumpolar cyclonic (spinning in the planetary
rotation direction) vortex that is also known to be a stable fea-
ture (3, 8). We refer the reader to a recent comprehensive review
by Sayanagi et al. (9) for more detail on the observational and
modeling history of Saturn’s atmosphere.

The existence of such a prominent and stable feature on Sat-
urn gives us an opportunity to test different possibilities for
how atmospheric dynamics in Saturn generates such features.
Over the years, several models have been proposed. Shortly after
the discovery of the hexagon, Allison et al. (10) argued that the
hexagon is essentially a stationary Rossby wave produced by the
interaction of the eastward jet with a large anticyclonic vortex to
the south of the jet visible in the Voyager 2 data. When Cassini
later visited Saturn, this large anticyclonic vortex was no longer
present (8), questioning the idea of a forced Rossby wave. On the
other hand, Sánchez-Lavega et al. (11) argue that the hexagon is
a stationary unforced Rossby wave that exists on a deep (maybe
deeper than 10-bars) quasigeostrophic zonal jet. In the most
recent development on the modeling front, Morales-Jubeŕıas
et al. (12) study how perturbations affect an eastward jet stream.
In their model, perturbations evolve into hexagonal-shaped
meanders when the jet decays below the 2-bar level. The speed,
decay rate, and the curvature of the jet determine the dominant
wave number of the meander in this model.

Laboratory experiments have also shed light on the possi-
ble mechanisms for hexagon formation. Sommeria et al. (13)

performed experiments on a rotating annulus where barotropic
zonal jets were generated using mechanical forcing in the form
of mass sources and sinks. Depending on the mass flow rate and
the rotation rate of the container, they reported the existence
of wavy jets with different azimuthal wave numbers (from three
to eight). They interpret these features as Rossby waves excited
in the region where the potential vorticity has sharp gradients.
Each edge of the wavy perturbation on the jet was accompa-
nied by an adjacent vortex. More recently, Aguiar et al. (14) also
reported wavy shapes in a barotropic zonal jet excited in rotating
tanks using external forcing. Depending on the rotation rate of
the tank and the flow speed of the forced jet, they report wavy
features with wave numbers ranging from two to eight. They
suggest that these polygonal patterns are the manifestation of
a fully developed barotropic instability in a zonal jet. They also
observe vortical features adjacent to the polygon edges on the
zonal jet.

Considering the various theoretical models, simulations, and
laboratory experiments discussed above, the essential idea
emerges that jets can become unstable and give rise to polyg-
onal features. However, we note that all of these studies
either assume a zonal jet or it is generated via external forc-
ing. Furthermore, the deep planetary convection, which might
be the fundamental driving force behind the zonal jets, has
not been modeled in the earlier studies of hexagon forma-
tion. A model of how highly nonlinear fluid turbulence self-
organizes and gives rise to zonal jets with geometrical shapes is
lacking.

The situation is rather different if we take a broader per-
spective of Saturn’s atmospheric dynamics. The planetary-scale
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alternating zonal jets on Saturn have been studied in great
detail and have been generated in a completely spontaneous and
self-consistent manner in models incorporating fluid turbulence.
Here, two schools of thoughts have developed: on one hand, the
alternating jets on gas giant planets are “shallow,” existing above
10 bars or so (15–17); on the other hand, zonal jets are “deep,”
extending to tens of thousands of bars (18–22). In this regard,
exciting developments were made recently shortly before Cassini
took its final plunge into Saturn (the “Cassini Grand Finale”):
the interpretation of the gravity harmonics from the final Cassini
orbit hints at Saturnian zonal jets retaining their strength down
to at least 100,000 bars (23), strongly suggestive of the deep jets
scenario.

The recent Cassini results and the fact that the hexagon has
remained stable for the last 40 y or so (unperturbed by the solar
radiation forcing through Saturn’s year) suggest that it might be
a deep-rooted feature as previously noted by Sánchez-Lavega
et al. (11). Following this line of reasoning, here we report a
global simulation where our primary aim is to simulate one of
the most basic phenomena happening in the outer layers of Sat-
urn, namely deep turbulent compressible convection in a rotating
spherical shell. Several simulation studies have been conducted
in the past to investigate the deep convection-driven atmospheric
dynamics of gas and ice giant planets. They have reproduced the
equatorial superrotation (19–22), similar to Saturn and Jupiter,
as well as subrotation (24, 25), similar to the ice giants. Several
(26, 27) have also investigated the properties (number of jets
and their strength) of mid- to high-latitude alternating zonal jets
on Saturn and Jupiter. However, none of these studies report
Saturn-like polygonal jets.

Method
We assume that Saturn’s interior consists of a deep dynamo region, where
strong magnetic fields are generated that inhibit strong zonal flows, and an
outer “atmospheric” layer where the electrical conductivity of the fluid is
low, allowing strong zonal flows. Here, we simulate hydrodynamic convec-
tion only in the outer layer. We assume a spherical shell with inner radius
ri fixed at 0.9RS (where RS is Saturn’s radius) and the outer radius ro at RS.
The aspect ratio of the shell is then defined as η= ri/ro, which is 0.9 in
this case. The shell rotates with angular velocity Ω. We employ the widely
used anelastic approximation (28, 29) that allows density stratification in
the fluid but filters out sound waves. In this approximation, thermodynamic
quantities are decomposed as a static background and a small fluctua-
tion x̃(r) + x′(r, θ,φ). Here, we assume a density-stratified hydrostatic and
adiabatic reference state defined by

dT̃

dr
=−

g

cp
, [1]

where T̃ is reference-state temperature, g is gravity, and cp is specific heat
at constant pressure; cp is assumed constant. We assume an ideal gas fluid,
giving a polytropic equation of state where the background density and
temperature are related by ρ̃= T̃m, where m (assumed to be two) is the
polytropic index. Gravity is inversely proportional to r2 (r being the radius),
which assumes that most of the planetary mass is below 0.9RS (30, 31). We
refer the reader to Jones and Kuzanyan (30) for a more detailed discus-
sion about the anelastic equations used in the planetary deep convection
community.

Anelastic Equations. The nondimensional evolution equation for velocity is

∂u

∂t
+ u · ∇u + 2 ẑ× u︸ ︷︷ ︸

Coriolis term

= −∇
p

ρ̃︸ ︷︷ ︸
Pressure term

+
Ra E2

Pr

r2
o

r2
s r̂︸ ︷︷ ︸

Buoyancy term

+
E

ρ̃
∇ · S︸ ︷︷ ︸

Viscous term

, [2]

where p is pressure; u is velocity; s is entropy; ẑ and r̂ are rotation and radial
unit vectors, respectively; and

Sij = 2ρ̃
(

eij −
1

3
δij∇ · u

)
[3]

is the traceless rate-of-strain tensor with δij being the identity matrix and

eij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
. [4]

The entropy is governed by

ρ̃T̃E
(
∂s

∂t
+ u · ∇s

)
=

E2

Pr
∇ · (ρ̃T̃∇s)︸ ︷︷ ︸

Entropy diffusion

+
Pr co (1− η)

Ra
Qν︸ ︷︷ ︸

Viscous heating

, [5]

where

co = 2
e

Nρ
m − 1

1− η2
[6]

with Nρ = ln(ρ̃(ri)/ρ̃(ro)). The viscous heating contribution is given by

Qν = 2ρ̃
[

eijeji −
1

3
(∇ · u)2

]
. [7]

The anelastic approximation also demands that

∇ · (ρ̃u) = 0. [8]

The above equations have been nondimensionalized using the shell thick-
ness ro− ri as the length scale; the inverse rotation rate as the timescale; the
entropy contrast ∆s between top and bottom as the entropy scale; and den-
sity and temperature at top boundary as the density and temperature scales,
respectively.

Several fundamental control parameters determine the behavior of the
above set of equations: the Ekman number E = ν/(Ωd2), the Prandtl number
Pr = ν/κ, and the Rayleigh number Ra = god3∆s/(cpκν), where ν is viscos-
ity, κ is the thermal diffusivity, and go is gravity at ro. We assume viscosity
and thermal diffusivity to be constant throughout the shell.

Simulation Code. The hydrodynamic anelastic system of equations is solved
using the open-source “MagIC” code (https://magic-sph.github.io/), which
has been extensively benchmarked against other community codes (32).
It uses a toroidal–poloidal decomposition to maintain strict divergenceless
condition where needed: for example, mass flux is given by

ρ̃u =∇× (∇×Wr̂) +∇×Xr̂,

where W and X are scalar potentials. The code is pseudospectral in nature
and uses spherical harmonic functions horizontally and Chebyshev poly-
nomials radially. The code utilizes the open-source library SHTns (33) to
perform spherical harmonic transforms. The system of equations is time
advanced using an explicit second-order Adams–Bashforth scheme for Cori-
olis and nonlinear terms and an implicit Crank–Nicolson scheme for the rest
of the terms (34).

Control Parameters. In this paper, we analyze and report results from one
simulation case that acts as a proof of concept. The constant nondimen-
sional control parameters for this case are E = 10−5, Pr = 0.1, and Ra =

2.3× 108. We span five density-scale heights in the simulation, giving a den-
sity contrast of about 150 across the shell. The simulation was performed on
a grid with 160, 960, and 1,920 points in r, θ, and φ directions, respectively;
the latitude–longitude grid has a maximum spherical harmonic degree of
640. Due to the highly demanding nature of the simulation, we could simu-
late it for about 0.1 viscous diffusion time (about 1,600 rotations), which
is similar to earlier high-resolution studies (21, 35). Such a time span is
likely not enough to resolve all of the available timescales in the system.
For instance, the strength and number of zonal jets will evolve on a much
longer viscous diffusion time (36). However, the jet meanders and the cor-
responding vortices (re-)form and evolve on the much faster convective
turnover time. Furthermore, except for a slow change in the overall zonal
flow energy, the kinetic energy also quickly settles to a statistically station-
ary state. These indicators suggest that the simulation results we discuss
below are robust and nontransient phenomena.

Similar to Heimpel et al. (35), we employ hyperdiffusivity in which the
viscosity becomes a function of spherical harmonic degree after a certain
cutoff. MagIC code implements it by multiplying the following function to
the primary viscous diffusion operator:

d(`) = 1 + D
[

`+ 1− `hd

`max + 1− `hd

]β
, [9]
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where D defines the amplitude of the function, `max is the maximum spheri-
cal harmonic degree utilized in the simulation, `hd is the degree after which
the hyperdiffusion starts, and β defines the rise of the function for degrees
higher than `hd . For our simulation, we use D = 5, β= 5, and `hd = 350.

The boundaries at ri and ro are impenetrable and stress free to the flow.
Furthermore, the entropy is assumed constant on each boundary.

Results and Discussion
As the simulation progresses, rotating turbulent convection grad-
ually builds up strong zonal flows. The generated zonal flow
profile is shown in Fig. 1. With the control parameters that we
use, the simulation generates a strong prograde jet, up to about
20◦ from the equator, which is followed by a strong retrograde
jet in the vicinity of the tangent cylinder (an imaginary cylindrical
surface tangent to the inner boundary and aligned with the rota-
tion axis). Several more alternating jets form at mid- and high
latitudes. These jets are by far the most energetic component of
the flow, carrying more than 10 times the energy contained in
the meridional and radial flow components, which is a generic
property of simulations with a low-enough Ekman number and
free slip boundaries (24, 37). The zonal jets in the simulation are
qualitatively as well as quantitatively (within a factor of two) sim-
ilar to the zonal jets observed on Saturn. Heimpel and Aurnou
(26) show that the zonal flow velocity and the topographic β
effect (i.e., changing axially vertical fluid column height with lat-
itude) due to the spherical geometry have a large impact on the
width and number of zonal jets in such simulations. The fact
that the shell thickness and the Rossby number of the zonal
flows are similar to the values on Saturn is likely responsible
for the good match of the simulation zonal flow profile with the
observations.

The zonal jets are largely invariant along the rotation axis
(despite a density drop of about 150 across the shell), demon-
strating the strong influence of the rotation on the flow at these
Rossby numbers. The westward jets north and south of the equa-
tor in the simulation are at a somewhat lower latitude than the
corresponding jets on Saturn. Noting that these jets usually form

in the vicinity of the tangent cylinder in such simulations (21, 31,
35), we speculate that Saturn’s atmosphere might extend some-
what deeper than 0.9RS , thereby giving a tangent cylinder at a
slightly higher latitude.

To reveal the various dynamical structures present in the sim-
ulation, in Fig. 2 we visualize a snapshot of the simulation using
flow streamlines on a spherical surface at radius 0.95ro . The fig-
ure shows that the system dynamics is much richer than just zonal
jets. Along with the jets, there are well-defined large-scale vor-
tices at mid- and high latitudes. One large cyclonic vortex sits on
the pole, accompanied by three anticyclonic neighbors. Another
set of smaller cyclonic vortices follows to the south of these three
anticyclones, followed by a strong eastward jet at about 60◦N of
the equator. In the polar region, (anti-)cyclones are arranged
such that they roughly define an eastward jet with a triangular
pattern. The pattern formed in the 60◦N jet is one with nine
edges. The other eastward jet visible close to 30◦N also con-
tains a polygonal pattern but with a higher wave number and less
well-defined edges than the jet close to 60◦N. The generation of
such large-scale structures by convection plumes—whose size is
similar to the wiggles in individual streamlines—shows the pres-
ence of an efficient inverse cascade of energy from small to large
scales. As mentioned above, the number and the widths of the
zonal jets are likely determined by the zonal flow strength and
the topographic β effect (26). However, which system parame-
ters control the size and properties of the giant vortices remain
unclear and demand a broad control parameter study.

A view of the simulation from a midlatitude vantage point
(SI Appendix, Fig. S1) reveals that broadly speaking, circular jets
dominate at low latitudes, while large vortices form and appear
to induce polygonal shapes in jets at mid- and high latitudes.
This is likely driven by the topographical β effect, due to the
spherical shell geometry, which is stronger near the equator, pro-
moting strong axisymmetric jets, while at higher latitudes, the β
effect decreases and the system approaches a rotating plane layer
where the formation of giant vortices is favored (e.g., refs. 15–17,
26, 38, and 39).

Fig. 1. A shows the azimuthally averaged zonal flow on the outer boundary of the simulation (left axis) and for Saturn (right axis). B shows the azimuthally
averaged zonal flow on a meridional plane. The simulation data are time averaged over a few rotations of the shell. The zonal velocity magnitude is given
in terms of the Rossby number defined here as u/(Ωro), where u is velocity, Ω is shell rotation rate, and ro is outer radius of the shell. The Rossby number
for Saturn is calculated using the observed cloud-level zonal flow velocities, Saturn’s mean radius 5.8232× 107 m, and the rotation period 1.64× 10−4 rad/s
in System IIIw (6).
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Fig. 2. Orthographic view of flow streamlines on a spherical surface at radius 0.95ro, as viewed from a north pole vantage point. The streamlines were
generated by randomly placing 4,000 massless seed particles in the northern hemisphere and then tracing their trajectories governed by the local horizontal
flow. The streamlines help us to visualize the instantaneous velocity structures. Since there is only a finite number of tracer particles, some of the regions on
the spherical surface remain untraced. We fill this empty region with white color for clarity. The color of each streamline represents the magnitude of the
local horizontal flow velocity in Rossby number. The 30◦N and 60◦N latitudes are highlighted in the plot using white circles. The red arrows indicated the
general flow direction of the streamlines.

A remarkable property of the simulation is revealed when
we inspect the flow structure as a function of radius in Fig. 3
where streamlines are plotted on spherical surfaces with different
depths. As we look at shallower depths, the flow morphology in
high-latitude regions changes from smoother streamlines, polar
storm, polygonal jet, and coherent large vortices to one with
more irregular-looking streamlines, a fainter polygonal jet, and
a central cyclonic storm. We interpret this transition as follows.
In density-stratified convection, shallower and lighter fluid must

overturn faster to respond to the momentum of fluid parcels
coming from deeper, thicker layers. This leads to a gradual
increase in the mean velocity with increasing radius (e.g., refs. 31
and 40). In the current simulation, the mean velocity increases
by a factor of three or more in shallower layers (SI Appendix,
Fig. S2). Therefore, within one simulation, the Rossby num-
ber, which depends on the convective timescale (changing with
radius) and the rotational timescale (staying constant), changes
with depth. This leads to a situation where deeper layers with
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Fig. 3. Zoomed in streamline plots of the north polar regions of spherical
surfaces at different depths: 0.95ro in A, 0.97ro in B, 0.99ro in C, and 0.993ro

in D. All panels show the simulation case presented in Figs. 1 and 2. The
figure highlights the gradual emergence of large coherent vortices as well as
more coherent jets with depth. Note that the full white circle, representing
a constant latitude, is located at 60◦N of the equator in the local coordinates
of each spherical surface. The 60◦N latitude is omitted in D for clarity. Due
to less coherent flow structures at progressively shallower depths (from A to
D), flow streamlines become shorter and less surface filling, exposing more
of the hypothetical white surface that is shown for highlighting the colored
streamlines.

smaller Rossby number promote more coherent vortices and
jets, while shallower layers with larger Rossby number favor
more incoherent convection (31). This point is elucidated fur-
ther by SI Appendix, Fig. S3, which shows regular streamlines in
the deep and chaotic ones at shallower depths in a large vor-
tex. Coexistence of both these regimes allows a scenario where
the deeper energetic zonal jets manage to extend to the outer-
most layers, but the large vortices with weaker flow and smaller
energy get overpowered by the shallower chaotic convection and
therefore, lose their identity. The central cyclone, which can be
thought of as a tiny zonal jet at the pole, survives since it car-
ries significantly stronger flows than other nonpolar vortices. A
similar scenario can be imagined for Saturn where the hexago-
nal shape of the jet is sustained by adjacent six large vortices,
which are hidden by the more chaotic convection in the shallower
layers.

The southern hemisphere of the simulation also exhibits simi-
lar flow structures (SI Appendix, Fig. S4). However, the precise
arrangement is different from the northern region. The polar
cyclone is shifted away from the pole and is pinched by two
large surrounding anticyclones. Here, too, a polygonal jet exists
at around 60◦S, albeit with polygonal edges only in a limited
range of longitudes. Here, we note the observation of a sim-
ilar ephemeral limited-longitude polygonal shape observed by
Cassini on Saturn’s eastward jet at about 60◦S (41). The polygo-
nal edges are washed out in the eastward jet close to 30◦S. This
demonstrates the rich dynamics created by the turbulent fluid
interactions. The strength and longitudinal extent of polygonal
shapes in the jet are dynamic and evolve (Movie S1 shows evolu-
tion spanning about 90 rotations) due to nonlinear interactions.
The wavy pattern, as well as the adjacent vortices, drifts in the

westward direction on the 60◦N/S eastward jets. Fig. 4 shows a
time evolution of the meridional flow at 55◦N demonstrating a
coherent drift of about −2◦ per rotation. Saturn’s hexagon, on
the other hand, is much more stable with −0.06◦ to 0.01◦ per day
(2, 4). The eastward jet close to 30◦N/S portrays similar behavior;
however, this jet has less pronounced and short-lived modula-
tions. Since the vortices become less favored at low latitudes,
the low-latitude jets can indeed be expected to be less influenced
by them.

The polygonal modulations in the zonal jets are sensitive to
the azimuthal length scale available. When we restrict our simu-
lation domain to only one-quarter of the 0◦ to 360◦ longitudes,
with periodic boundary conditions on the edges, the polygo-
nal patterns disappear, and only circular jets remain. Here, the
azimuthal length scale of the mid- to high-latitude zonal jets
becomes similar to the length scale of the polygonal modula-
tion. Such conditions do not support the formation of wavy
jets in our setup. When we increased the size of the simu-
lated wedge to cover 0◦ to 180◦ longitudes, the polygonal jets
appeared again. Furthermore, the polygonal jets are also sen-
sitive to the Rayeligh number of the simulation, which sets
the mean Rossby number attained in the simulation. When we
decreased the Rayleigh number from 2.3× 108 (used above)
to 1.5× 108, the polygonal shapes disappeared, and only cir-
cular jets remained. When we increased the Rayleigh number
to 4.5× 108 (simulated for about 140 rotations due to compu-
tational constraints), the number of polygonal edges decreased
from nine in the case discussed above to seven (SI Appendix,
Fig. S5). This trend is similar to those found in earlier labora-
tory experiment where the wave number of the modulation on
a zonal jet decreased as the Rossby number of the jet increased
(13, 14).

Although the model does not capture every aspect of the
observations of Saturn, it does, however, produce polygonal
zonal jets self-consistently in a deep convection setup. The
polygonal shapes form due to mid- to high-latitude vortices
pinching adjacent zonal jets [see Marcus and Lee (42) for
a similar interpretation]. The vortices, however, have much
weaker flow (as compared with jets) that gets masked by the
more incoherent convection at shallower layers, leaving only
polygonal jets as the prevalent flow profile. We find that sim-
ulating the entire azimuthal extent of the shell is crucial for
modeling meandering jets, which explains why earlier models
with wedge simulation geometries did not produce such fea-
tures. The westward drift of the polygonal shapes was faster
(about −2◦ per rotation) than observations in our reported case.

Fig. 4. The latitudinal velocity at 55◦N of the equator as a function of time.
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However, this drift was significantly lower (about −1.3◦ per
rotation) in a simulation at a higher Rayleigh/Rossby num-
ber (SI Appendix, Fig. S5). Therefore, it is conceivable that a
simulation with higher Rossby numbers than what we could
achieve will show polygonal jets with much weaker drifts. A
more detailed parameter study of the control parameter space
should be possible in the future with increased computational
resources, which will help us narrow down the finer ingredi-
ents needed to produce more observations simultaneously in a
single model.

Data Availability. The simulation input file that can be used to
reproduce the results is available at https://doi.org/10.6084/m9.
figshare.12110982.v1. The simulation code used is open access
and is available at https://github.com/magic-sph/magic/.

ACKNOWLEDGMENTS. R.K.Y. thanks Hao Cao for interesting discussions.
The initial stages of this work were supported by the NASA Juno project.
The computing resources were provided by the Research Computing, Fac-
ulty of Arts & Sciences, Harvard University, and NASA High-End Computing
Program through the NASA Advanced Supercomputing Division at Ames
Research Center.

1. D. Godfrey, A hexagonal feature around Saturn’s north pole. Icarus 76, 335–356
(1988).

2. J. Caldwell, B. Turgeon, X. M. Hua, C. D. Barnet, J. A. Westphal, The drift of Sat-
urn’s north polar spot observed by the Hubble Space Telescope. Science 260, 326–329
(1993).

3. A. Sánchez-Lavega, J. Lecacheux, F. Colas, P. Laques, Ground-based observations of
Saturn’s north polar spot and hexagon. Science 260, 329–332 (1993).

4. R. Hueso et al., Saturn atmospheric dynamics one year after Cassini: Long-lived
features and time variations in the drift of the hexagon. Icarus 336, 113429 (2019).

5. J. D. Anderson, G. Schubert, Saturn’s gravitational field, internal rotation, and interior
structure. Science 317, 1384–1387 (2007).

6. P. Read, T. Dowling, G. Schubert, Saturn’s rotation period from its atmospheric
planetary-wave configuration. Nature 460, 608–610 (2009).

7. C. Mankovich, M. S. Marley, J. J. Fortney, N. Movshovitz, Cassini ring seismology as a
probe of Saturn’s interior. I. Rigid rotation. Astrophys. J. 871, 1 (2019).

8. L. Fletcher et al., Temperature and composition of Saturn’s polar hot spots and
hexagon. Science 319, 79–81 (2008).

9. K. M. Sayanagi et al., “Saturn’s polar atmosphere” in Cambridge Planetary Science,
K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard, Eds. (Cambridge University Press, 2018),
pp. 337–376.

10. M. Allison, D. Godfrey, R. Beebe, A wave dynamical interpretation of Saturn’s polar
hexagon. Science 247, 1061–1063 (1990).

11. A. Sánchez-Lavega et al., The long-term steady motion of Saturn’s hexagon and the
stability of its enclosed jet stream under seasonal changes. Geophys. Res. Lett. 41,
1425–1431 (2014).

12. R. Morales-Juberı́as, K. M. Sayanagi, A. Simon, L. N. Fletcher, R. Cosentino, Meander-
ing shallow atmospheric jet as a model of Saturn’s north-polar hexagon. Astrophys.
J. Lett. 806, L18 (2015).

13. J. Sommeria, S. D. Meyers, H. L. Swinney, Laboratory model of a planetary eastward
jet. Nature 337, 58–61 (1989).

14. A. C. B. Aguiar, P. L. Read, R. D. Wordsworth, T. Salter, Y. H. Yamazaki, A laboratory
model of Saturn’s north polar hexagon. Icarus 206, 755–763 (2010).

15. G. Williams, Jovian dynamics. Part III. Multiple, migrating, and equatorial jets. J.
Atmos. Sci. 60, 1270–1296 (2003).

16. J. Y. Cho, L. M. Polvani, The morphogenesis of bands and zonal winds in the
atmospheres on the giant outer planets. Science 273, 335–337 (1996).

17. J. Liu, T. Schneider, Mechanisms of jet formation on the giant planets. J. Atmos. Sci.
67, 3652–3672 (2010).

18. F. Busse, A simple model of convection in the Jovian atmosphere. Icarus 29, 255–260
(1976).

19. U. R. Christensen, Zonal flow driven by deep convection in the major planets.
Geophys. Res. Lett. 28, 2553–2556 (2001).

20. J. M. Aurnou, P. L. Olson, Strong zonal winds from thermal convection in a rotating
spherical shell. Geophys. Res. Lett. 28, 2557–2559 (2001).

21. M. Heimpel, J. Aurnou, J. Wicht, Simulation of equatorial and high-latitude jets on
jupiter in a deep convection model. Nature 438, 193–196 (2005).

22. Y. Kaspi, G. R. Flierl, A. P. Showman, The deep wind structure of the giant plan-
ets: Results from an anelastic general circulation model. Icarus 202, 525–542
(2009).

23. E. Galanti et al., Saturn’s deep atmospheric flows revealed by the Cassini grand finale
gravity measurements. Geophys. Res. Lett. 46, 616–624 (2019).

24. J. Aurnou, M. Heimpel, J. Wicht, The effects of vigorous mixing in a convective model
of zonal flow on the ice giants. Icarus 190, 110–126 (2007).

25. T. Gastine, J. Wicht, J. Aurnou, Zonal flow regimes in rotating anelastic spherical
shells: An application to giant planets. Icarus 225, 156–172 (2013).

26. M. Heimpel, J. Aurnou, Turbulent convection in rapidly rotating spherical shells: A
model for equatorial and high latitude jets on Jupiter and Saturn. Icarus 187, 540–557
(2007).

27. T. Gastine, M. Heimpel, J. Wicht, Zonal flow scaling in rapidly-rotating compressible
convection. Phys. Earth Planet. In. 232, 36–50 (2014).

28. S. I. Braginsky, P. H. Roberts, Equations governing convection in earth’s core and the
geodynamo. Geophys. Astrophys. Fluid Dyn. 79, 1–97 (1995).

29. S. Lantz, Y. Fan, Anelastic magnetohydrodynamic equations for modeling solar and
stellar convection zones. ApJS 121, 247–264 (1999).

30. C. A. Jones, K. M. Kuzanyan, Compressible convection in the deep atmospheres of
giant planets. Icarus 204, 227–238 (2009).

31. T. Gastine, J. Wicht, Effects of compressibility on driving zonal flow in gas giants.
Icarus 219, 428–442 (2012).

32. C. Jones et al., Anelastic convection-driven dynamo benchmarks. Icarus 216, 120–135
(2011).

33. N. Schaeffer, Efficient spherical harmonic transforms aimed at pseudospectral
numerical simulations. Geochem., Geophys., Geosyst. 14, 751–758 (2013).

34. G. A. Glatzmaier, Numerical simulations of stellar convective dynamos. I. The model
and method. J. Comp. Phys. 55, 461–484 (1984).

35. M. Heimpel, T. Gastine, J. Wicht, Simulation of deep-seated zonal jets and shallow
vortices in gas giant atmospheres. Nat. Geosci. 9, 19–23 (2016).

36. A. Manfroi, W. Young, Slow evolution of zonal jets on the beta plane. J. Atmos. Sci.
56, 784–800 (1999).

37. R. K. Yadav, T. Gastine, U. R. Christensen, L. Duarte, A. Reiners, Effect of shear and
magnetic field on the heat-transfer efficiency of convection in rotating spherical
shells. Geophys. J. Int. 204, 1120–1133 (2016).

38. P. B. Rhines, Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417–443
(1975).

39. C. Guervilly, D. W. Hughes, C. A. Jones, Large-scale vortices in rapidly rotating
Rayleigh–Bénard convection. J. Fluid Mech. 758, 407–435 (2014).

40. H. Hotta, M. Rempel, T. Yokoyama, High-resolution calculation of the solar global
convection with the reduced speed of sound technique. II. Near surface shear layer
with the rotation. Astrophys. J. 798, 51 (2014).

41. A. R. Vasavada et al., Cassini imaging of Saturn: Southern hemisphere winds and
vortices. J. Geophys. Res. Planets 111, E05004 (2006).

42. P. Marcus, C. Lee, A model for eastward and westward jets in laboratory experiments
and planetary atmospheres. Phys. Fluids 10, 1474–1489 (1998).

13996 | www.pnas.org/cgi/doi/10.1073/pnas.2000317117 Yadav and Bloxham

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2000317117/-/DCSupplemental
https://doi.org/10.6084/m9.figshare.12110982.v1
https://doi.org/10.6084/m9.figshare.12110982.v1
https://github.com/magic-sph/magic/
https://www.pnas.org/cgi/doi/10.1073/pnas.2000317117

