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A B S T R A C T

Conventional reconstruction algorithms (e.g., delay-and-sum) used in photoacoustic imaging (PAI) provide a fast
solution while many artifacts remain, especially for limited-view with ill-posed problem. In this paper, we
propose a new convolutional neural network (CNN) framework Y-Net: a CNN architecture to reconstruct the
initial PA pressure distribution by optimizing both raw data and beamformed images once. The network com-
bines two encoders with one decoder path, which optimally utilizes more information from raw data and
beamformed image. We compared our result with some ablation studies, and the results of the test set show
better performance compared with conventional reconstruction algorithms and other deep learning method (U-
Net). Both in-vitro and in-vivo experiments are used to validated our method, which still performs better than
other existing methods. The proposed Y-Net architecture also has high potential in medical image reconstruction
for other imaging modalities beyond PAI.

1. Introduction

Photoacoustic tomography (PAT) is a kind of hybrid imaging
modalities that combines both optical and ultrasonic imaging ad-
vantages. In PAT, ultrasonic wave is excited by a pulsed laser, which
has embodied both optical absorption contrast and ultrasonic deep
penetration [1–5]. Many practical applications have been investigated
to show its great potential in both preclinical and clinical imaging, such
as small animal whole body imaging and breast cancer diagnostics
[6–15]. Additionally, multispectral PAT has unique advantages in
monitoring the functional information of biological tissues, such as
blood oxygen saturation (sO2) and metabolism. Specifically, photo-
acoustic computed tomography (PACT) enables real-time imaging
performance, which reveals enormous potential for clinical applica-
tions. To obtain the image from the PA signals, image reconstruction
algorithm plays an important role. Conventional non-iterative re-
construction algorithms, e.g., filtered back-projection (FBP), delay-and-
sum (DAS), are prevalent due to their fast speed. However, the im-
perfection of conventional algorithms exists some artifacts, which re-
sults in distorted images, especially in limited view configuration. In
this case, the iterative approaches are well adapted with applicable
regularization.

In recent years, deep learning has been rapidly developed in com-
puter vision area, and has begun to attract intensive research interest in
image reconstruction problems for medical imaging [16–18]. The most
non-iterative schemes are convolutional neural network (CNN) to di-
rectly reconstruct from raw data or post-process the low-quality results
from conventional reconstruction [19–24], which has shown satisfac-
tory results. For example, Reiter. et al. used pre-beamformed PA data to
identify point source by CNN [25]; Anas et al. proposed a new archi-
tecture that takes a low quality PA image as input restrains the noise
from low power LED-based PA imaging system [26,27]; Allman et al.
employed PA raw data to classify the point target from artifacts [28];
Antholzer et al. using a three-layers CNN to post process the re-
constructed PA image [29]. Generally, deep learning based non-itera-
tive methods can be divided into two categories: direct processing and
post-processing. The difference between them is the format of input
data: the former method feeds the raw data and converts into the image
at the output of the network; the latter method feeds a poor quality
image and converts the feature of the image into the final image. In
addition, some learned iterative schemes train a regularization to op-
timize the inverse problem [30–32], instead of solving an optimization
problem, some literatures take a well-known optimization method as
basis, but by learning parts of the methods, they deviate from this
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method. The resulting end-to-end process mimics an optimization
procedure, while they do not optimize a function containing an explicit
learned regularization [33–35]. However, they still have to compute
forward and adjoint model alternatingly. The number of iterations is
restricted by GPUs with limited resources in the training phase.

The direct processing takes raw PA data as input, which only per-
form well in some simple target (e.g. point, line) [22,28]; the latter
method takes an artifacts-distorted PA image as input, and this scheme
converts reconstruction to an image processing problem [21,29].
However, both existing schemes have their disadvantages: direct pro-
cessing method is difficult to map the inverse model for a complicated
target (e.g. vessel) even though raw data contains more physical in-
formation of target. Besides, post-processing method has a poor gen-
eralization performance due to limited information in input and various
artifacts (caused by system setup or reconstruction algorithm). To uti-
lize the merits of both methods to enhanced performance, in this paper,
we propose one possible solution combining these two schemes, a CNN-
based architecture, named Y-Net, to solve the initial PA pressure re-
construction problem for PACT. It simultaneously has two inputs
(measured raw PA signals and rough solution by conventional algo-
rithm) and one output. This approach fills the gap between existing
direct-processing and post-processing methods, which can be called
hybrid processing method: both the measured raw data and a beam-
formed (BF) image are used as inputs. These two inputs contain dif-
ferent types of information respectively: rich details and overall tex-
tures. It has some difference from multi-model network: (1). We cannot
divide it into two independent sub-networks and keep them working on
this task. (2). Y-Net did not have two respective decoders (two in-
dependent U-Net models respectively fed by both reconstructed image
and raw data as input), but has only a shared decoder. Moreover, it has
less parameters so that Y-Net exhibits a faster running time compared
with two-models network. In this work, the measured PA signals are
acquired by linear array probe, which suffers limited-view problem.

The overview of this paper is arranged as follows. Firstly, we review
the physical model of PAT and inverse problem. Then, we generalize
the deep learning method to reconstruct the PA image. In Method
section, we show a detailed description of the architecture and im-
plementation of our proposed method. In the experiment section, we
illustrate the generation of training data and the experimental setup. In
Results section, we show the simulation, in-vitro and in-vivo results
compared with conventional reconstruction algorithms and other deep-
learning based methods, such as U-Net. Finally, we discuss some details
and conclude this work followed by future work. The preliminary re-
sults were presented in EMBC 2019 [36].

2. Background

2.1. Photoacoustic imaging

PA wave is excited by a short pulse laser, and we can derive the
forward solution based on Green’s function. From the PA generation

equation, the propagating PA signal in both time and spatial domain p
(r, t) triggered by the initial pressure p0(r) satisfies [4]:
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where vs is the speed of sound. We can write the forward solution of PA
pressure detected by transducer at position r0 [37]:
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where dΩ is the solid angle of the transducer with respect to the point at
r0. For the PAT inverse problem, the main idea is to reconstruct the
initial pressure p0(r) from the raw PA signals received by transducer pd
(r0, t).

The conventional back-projection calculates the inverse equation,
which can be expressed as [38]:
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where θ0 is the angle between the vector pointing to the reconstruction
point r and transducer surface.

Let f= p0(r) and the measured data by sensor equal to b, and we use
a linear operator A represent the forward model, then we have:

=Af b. (4)

To solve the inverse problem, the main idea is recovering f from the
known b.

2.2. PA image reconstruction

PA image can be reconstructed from the intact raw data by solving
Eq. (1). Many pre-clinical applications require real-time imaging per-
formance, which put computation efficiency as a basic requirement for
the algorithm design. By proper approximation of these wave equa-
tions, many beamforming algorithms such as time-domain delay-and-
sum and time reversal (TR) [39–42], have been widely applied in real
application due to their fast speed and easy implementation.

DAS is considered as one of the most commonly used beamforming
algorithms in PA imaging, which has a fast reconstruction compared
with other algorithms. However, it can only reconstruct a poor image
with high levels of sidelobe. Fig. 1(c) indicates the difference between
the images reconstructed by conventional reconstruction and ground-
truth, and all PA signals are measured by a linear array transducer at
the top of the region of interest. It also shows that the DAS re-
constructed image loses some information depicting backbones due to
severe artifacts and limited-view transducer. Fig. 1(c) is the differential
image of Fig. 1(a) and (b) highlighting the major different vessels, most
of which cannot receive the PA signal at the vertical orientation of the
linear ultrasound array.

Model-based approach can reconstruct the imperfect data well

Fig. 1. Comparison of information loss in the traditional DAS reconstruction method. (a) The ground-truth; (b) The delay-and-sum reconstructed result of (a); (c) The
difference between (a) and (b).
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compared with above non-iterative algorithms, which devotes to re-
build PA image f from signal b by optimizing the objective function:

− +Af b λ farg min 1
2

|| || ( ),
f

2
2

�

(5)

where −Af b|| ||1
2 2

2 indicates the data consistency, and the R(f) is the
regularizing term, λ is a regularization parameter. It can be solved in
many methods iteratively [31,43–48], which are time-consuming due
to forward operation calculation in every iteration.

2.3. Deep learning for reconstruction

Deep-learning-based approach has been developed to resolve the
image reconstruction problem. Non-iterative deep-learning-based ap-
proaches can be divided into direct and post-processing schemes. The
former scheme maps the sensor data b to initial pressure f using a CNN
framework, which can be generally expressed as:
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Θ
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This problem is approximately solved over a training dataset
=b f{( , )}i i i

N
1. However, this method does not contain physical models,

and is only driven by data, leading to lower generalization and ro-
bustness. On the other hand, the latter scheme considers the approx-
imate solution of physical model and the parameters of network subject
to learning are:
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Θ
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where f * is the approximate solution generated by conventional non-
iterative algorithm, such as DAS. This scheme has rough texture in-
formation of the object and shows better performance compared with
the previous scheme. However, the detailed information of object may
be lost as the input DAS-generated images are imperfect and suffers
severe artifacts.

Both abovementioned non-iterative schemes have their own draw-
back respectively, and current research work mostly focused on
boosting the neural network. In this paper, we fill the gap between
existing two approaches, and propose a new representational frame-
work, which fuses and complements each other of the two schemes.

3. Methods

Most CNN architecture only establishes a single input-output stream
for imaging reconstruction (e.g. signals only or image only). Based on
above analysis, the scheme with signals’ input only or with images’
input only suffers their own drawbacks, respectively. Therefore, we
assume that it may be a good solution to combine the raw PA signals
and beamformed images as input data. It deserves noting that the raw
PA signals and beamformed image have different size and features,
which inspired us to build the neural network with two inputs.

Our proposed scheme can be termed as hybrid processing, and a
pair of inputs are fed into the network to learn the parameters subject
to:
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Θ
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This scheme incorporates more texture information compared with
the direct-processing scheme, and more physical information compared
with the post-processing scheme. Since these schemes do not rely on
complex models (only simple system model in DAS), the proposed
method has the ability to satisfy real-time imaging requirements.

The proposed Y-Net integrates both features with two inputs by two
different encoders. The global architecture of Y-Net is shown in Fig. 2,
which inputs the raw PA signals to an encoder, and processes the raw
data to obtain an imperfect beamformed image as the input of another
encoder. Being different from U-Net [49], the proposed Y-Net enables

two inputs for different types of training data that is optimized for
hybrid image reconstruction. The Y-Net consists of two contracting
paths and a symmetric expanding path. Encoder I and Encoder II en-
code the physical features and texture features respectively, and the
final decoder concatenates the features of both encoder’s outputs and
generates the final result.

3.1. Encoder for measured data

The Encoder for measured data (Encoder I) takes the raw PA signals
as input. It is similar to the contracting path of U-Net. An extra 20×3
convolution is put on the middle of the bottom layer, which translates
the 160×8 features map to 8×8. Every layer also shared their in-
formation with the Decoder mirrored layers by resizing and skipping
connection. The raw data contains a complicated feature, and Encoder I
filtrates the feature as a supplement for the information loss of re-
constructed image during the beamforming process.

The Encoder I maps a given PA signal ∈b Nb� to a features space
∈z Nk� . Assuming it only has one convolution every layer of the en-

coder, we can denote the i-th channel of k-th layer for Encoder I:
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where s is the output channels size, κ is the convolutional kernel,
and σ (⋅) is the batch normalization (BN) and rectified linear unit
(ReLU) operation, P is pooling operation, * denotes the convolution
operation. Furthermore, we also rewrite the matrix representation of
the k-th layer for double convolution operation:
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3 2 1

T 1
1

T
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all the operations are matrix operations. For the first layer, the input is
measured data, without the pooling operation. We can rewrite the
parameterization of Encoder I:
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where wE1 is parameter matrices: ∈ × ⋯×WE
N N

1 5 1� � . The kernel κ3
5

with 20×3 size map the feature from 160×8 to 8×8. We do not
explicitly tune the bias term since it can be incorporated into φ.
Meanwhile, the signals have a longer size in time-dimension, and a
larger receptive field is desirable to focus more information in this di-
mension. Although z1 is latent features of PA image, most dimensions
are asymmetric before last convolution operation. These parameters
should be estimated during the training phase.

3.2. Encoder for reconstructed image

The Encoder for reconstructed image (Encoder II) takes the image
reconstructed from raw PA data by a conventional algorithm (DAS in
this paper). The structure of every layer is the same as Encoder I except
the bottom layer. Every layer unit is composed of two 3×3 convolu-
tions, BN and ReLU, and a maximizing pooling to downsample the
features. The image is passed through a series of layers that gradually
downsample, and every layer acquires different information respec-
tively. Meanwhile, every layer shared their information with the de-
coder mirrored layers by skip connection. It is desirable to concatenate
many low-level information such that the location of texture will be
passed to the decoder.

Similarly, the Encoder II maps a reconstructed PA image ∈f * *N�

to a features space ∈z Mk� . The matrix representation of the k-th layer
for Encoder II is similar to Encoder I:

= ∗ ∗−φ σ σ σ φ κ κ( ( (P ( )) ) ).k k k k k
3 2 1

T 1
1

T
2

T (12)

For the first layer, the input is reconstructed image without the
pooling operation. We can also rewrite the parameterization of Encoder
II as:
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where WE2 is parameter matrices: ∈ × ⋯×wE
M M

2 5 1� � . The re-
constructed image will be encoded as latent features through the E2.

3.3. Decoder of Y-Net

The outputs of the two encoders are taken to the decoder after
concatenation, which is symmetric with Encoder II. Every layer unit is
composed of two 3×3 convolutions, and an up-convolution to up-
sample the features. On the other hand, every layer receives low-level
information from two encoders’ mirrored layers and concatenate with
the feature from previous layer of the decoder. The final layer will
generate a 128× 128 image.

The decoder takes two feature maps from different encoder as in-
puts, process it and produce an output ∈f N� . For the decoder, every
layer is fed by two skipped connections from two encoders except the
feature from the prior layer. The corresponding operation at the k-th
layer encoder is described by:

= = ∗ ∗−χ φ σ σ σ φ κ κ( ( (P ( )) ) ),k k k k k k
3 2 1

T 1
1

T
2

T (14)

where χk denotes the skipped feature. Particularly, the skipped feature
of Encoder I needs to resize to the same dimension with other feature.
Similarly, the Decoder maps these features to a final PA image ∈f N� .
We also rewrite the matrix representation of the k-th layer with skipped
connection:
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where U(⋅) is up-convolution operation, R(⋅) is the resizing operation
(we compare convolution operation in Ref. [22] with resizing in Table
S2 of supplementary materials). It is noteworthy that every channel of
Decoder layer has triple channels including two encoder features and
prior feature. For the final layer, the output is the final image, without
the up-sampling operation. Meanwhile, we can rewrite the para-
meterization of Decoder as:

= ⋯ =f φ φ z z D w z z( , ) ( , , ),D
5 1

1 2 1 2 (16)

where WD is parameter matrices: ∈ × ⋯×wD
N N5 1� � . Two inputs (z1

and z2) are different dimensional features, which are mapped to the
final image by D(⋅).

3.4. Implementation

As shown in Fig. 2, every module of convolutions contains BN and
ReLU (f (x)= max (0, x)). Encoders and decoder have five layers re-
spectively, and the output size of every layer has been annotated in the
block in Fig. 2.

We use the mean squared error (MSE) loss function to evaluate the
reconstructed error. Adam optimization algorithm [50] is used to op-
timize the network iteratively. The MSE loss is defined as:

= −L f f gt( ) 1
2

|| || ,rec F
2

(17)

where f is the reconstruction image, gt is the ground-truth, and ||·||F
denotes the Frobenius norm. In our method, Encoder II encodes a re-
constructed image to semantic features from image, which can be
deeply supervised by image, so we should further penalize Encoder II
by an auxiliary loss:

= ∗ −L z z κ R gt( ) 1
2

|| ( ) || ,aux F2 2
T 2

(18)

where R(⋅) is resizing operation1, the channels of z2 convert to one
channel by convolution with a 3× 3 kernel κ. It can improve the
learning ability of the intermediate layer, regulating hidden layer to
learn discriminative features. Furthermore, fast convergence and reg-
ularization are also achieved [51,52]. We verify the auxiliary loss using
an ablation study in supplementary materials. Besides, we use a large
kernel with 20 size to extend the receptive field of Encoder I. Finally,
we train the network by minimizing the total loss:

= +L L λL ,total rec aux (19)

where λ is hyper-parameter, and we chose λ=0.5 in the training
phase.

Pytorch [53] is used to implement the proposed Y-Net. The hard-
ware platform we used is a high-speed graphics computing workstation
consisting of two Intel Xeon E5−2690 (2.6 GHz) CPUs and four NVIDIA
GTX 1080Ti graphics cards. The batch size is set as 64, and the running
time is 0.453 s per batch. The iteration is set as 1000 epochs, and the
initial learning rate is 0.005. The source code is available at https://

Fig. 2. The architecture of Y-Net. Two encoders extract different input feature, which concatenates into the decoder. Both encoders have skip connections with the
decoder. DAS: delay-and-sum; (H×W×C) in blocks specify the output dimension of each component; ConvH×W indicates the convolution operations with H×W
kernel size; 2× means two same layers. All operations accompanied by a Batch-Normalization(BN) and a ReLU.

1 torch.nn.functional.upsample(), mode='bilinear'
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github.com/chenyilan/Y-Net.

4. Experiments

4.1. Numerical vessels data generation

The deep-learning-based approach is a data-driven method that
requires a number of data for training to get the desired results.
Unfortunately, PAT does not have access to a large amount of clinical
data to train the network as a kind of newly developed imaging tech-
nology. Especially for reconstruction problems, we often need raw data,
which is usually only available in research lab. Therefore, following the
standard data preparation approach in deep-learning PA imaging
community [20,21,33,35], we seek to train neural networks using si-
mulation data and test the trained models in experiments both in-vitro
and in-vivo.

The MATLAB toolbox k-Wave [54] is used to generate the training
data. The simulation setup is shown in Fig. 3, where a linear array
transducer was placed at the top of the region of interest (ROI). The
sample is placed in the 38.4× 38.4mm size of ROI, where the linear
array probe with 128 elements can receive the PA signals from the
sample. The center frequency of the transducer is set as 7MHz with 80
% fractional bandwidth. We record the raw data from the sensor,
generate beamformed images and ground-truth for training and testing.
All images have 128×128 pixels, and acoustic speed is set as 1500m/
s. The time length of every channel is set as 2560 with 33.3MHz
sampling rate. We finally allot a 2560×128 input size for PA sensor
data, which has 60 dB SNR with added Gaussian noise. The generation
speed of data is 70.79 s per image.

The hemoglobin is the main strong contrast in biological soft tissue,
therefore, we assume the target is vessel. The public fundus oculi vessel
DRIVE [55] is used to deploy with initial pressure distribution. Con-
sidering the DRIVE data is small, the data need to be segmented and
pre-processed to expand the data volume: 1). the complete blood vessel
of fundus oculi is factitiously segmented into four equal parts; 2).
randomly rotational transform (90°, 180°, 270°) and superpose two
segmented blood vessels. After a series of operations, the excessive
dataset will be loaded into k-Wave simulation toolbox as the initial
pressure distribution. The dataset consists of 4700 training sets and 400
test sets.

4.2. Verification of simulation data

We trained all models on the numerical training data, and verify on
the test set. In this phase, we compare our method with ablation study
and some existing models as following:

• Two variant Y-Net are used as ablation study. Y-Net-EIID removes
the connection between raw data (Encoder I) and Decoder, and Y-
Net-EID removes the connection between the beamformed image
(Encoder II) with the Decoder.

• The post-processing method: U-Net [49], the input is the result of
DAS image.

We compare our method with the non-iterative learned method in
our paper. All learned methods use the same data set and test on other
data.

4.3. Application to in-vitro data

In order to further verify the feasibility of our proposed method, an
in vitro phantom was prepared by a chicken breast tissue inserted with
two pencil leads. The PACT system is depicted in Fig. 4: a pulsed laser
(532 nm, 450mJ, 10 Hz) illuminates the sample through an optical
fiber, and a data acquisition card (DAQ-128, PhotoSound) received and
amplified the PA signals from the 128 channels’ ultrasound probe
(7MHz, Doppler Inc.). In our experiment, the laser energy density is set
as 9.87mJ/cm2, which is under the ANSI standards safety limit (20mJ/
cm2 for 532 nm wavelength). The data sampling rate is 40MHz (It is
different from simulation, and we compare these two sampling rates in
the supplementary materials), and data length is 2560 points. The
system is synchronously controlled by a computer, including laser firing
and data acquisition. Two leads are inserted in the chicken breast tissue
as “V” shape in the black box of Fig. 4, and the ROI is the same as the
simulation setup.

4.4. Application to human in-vivo data

Last but not least, the in-vivo PA imaging experiments of a human
palm have also been performed to validate our approach. The system
setup is the same as the in-vitro experiment. Both in-vitro and in-vivo
data have different characteristics that are not perfectly represented by
the training on synthetic data. The practical data suffers some noise and
other environmental factors that makes the results inferior to numerical
simulation experiment. The Y-Net can still perform well compared with
other algorithms since the Encoder II can provide a texture to guide the
reconstruction.

5. Results

5.1. Evaluation of synthetic data

We compared two different conventional algorithms and three

Fig. 3. The illustration of the simulation setup.

Fig. 4. The schematic of PACT system setup; red circle indicates the pencil lead.
DAQ: data acquisition card; PC: personal computer; black box indicates the
region of interest and the schematic illustrates the position relationship be-
tween the phantoms and the ultrasonic transducer.
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different models with our proposed approach. TR and DAS are selected
as conventional algorithms for evaluating performance. To visually
compare the performance of different methods, four examples of ima-
ging results from the test set are shown in Fig. 5. From left to right, the
method is DAS, TR, Y-Net-EIID, Y-Net-EID, post-processing U-Net and
the proposed complete Y-Net. In Fig. 5, the images of TR are much
dimmer than other images even though they have the same range. The
reason causing the dimmer image may be that the results of TR re-
construction has sparse high value, and most of pixels are low value
even though it is a valid object.

The conventional algorithms are easily fooled by artifacts, and we
can still see the appearance of the object roughly. For the DAS results,
the arrows showed that some artifacts may disturb the estimation of
vessel direction due to limited-view. The deep-leaning-based approach
almost restores the rough outline of the sample, and its performance
differs for reconstructing the details of small vessels. On the other hand,
from the local details of Fig.5 (white circles), we can see that all models
with the concatenation between Encoder II and Decoder (Y-Net-EIID, Y-
Net, U-Net) are susceptible to strong artifacts of input and introduced
some errors in the details, and some artifacts could be retained in a few
cases. The high-dimensions feature can be processed by encoder-de-
coder network and the texture features can be retained by skipped
connections, so U-Net perform better for many segmentation tasks. Y-
Net-EID can avoid the abovementioned errors, but it is difficult to
identify the small independent source (No concatenation between En-
coder II and Decoder may cause missing texture of beamformed
image.). The proposed complete Y-Net provides a clearer texture in
detail than the U-Net, which indicates that Y-Net is more anti-dis-
turbing to artifacts in BF by integrating the information in raw data. So
the performance of Y-Net may be further improved by utilizing more
advanced BF algorithm.

Furthermore, we can analyze the resolution using the point-target,
which will help on evaluating these methods from another perspective.
Nine points phantom with 1.5mm diameter has been placed in two
rows as the Fig. 6 (a) showed. We compare our method with DAS, TR
and U-Net in Fig. 6 (b)-(e). In conventional algorithms, many artifacts
adjoin the target points in Fig. 6 (b) and (c). In practice, most non-
iterative algorithms are unable to eliminate artifacts especially in

limited-view configuration. Our method eliminates most artifacts
compared with U-Net, but deep-learning-based method can introduce a
slight distortion due to the gap between training data and point-like
data. Since Ref. [28] focused on the target on point-like source and
removed their artifacts for all training and test data. It is a reasonable
excuse that numerous differences between training data and point-like
data caused a worse result compared with Ref. [28]. Taking a look at a
horizontal cross section of the white dotted line, the profile along the
white dotted line also indicates the superiority of our method compared
with others in Fig.6 (f). In Fig. 6, all of images have 128×64 pixels’
size, but conventional results look smoother. The reason is that the
conventional algorithm is physical-based methods. The results have
gradual change since these methods back propagate and superimpose
the PA signal on time domain. The ground-truth has a steep edge, so the
results of deep learning may look like discontinuity. We can also
compare the different profiles from Fig. 6 (f).

We computed the axial resolution for the results of Fig. 6 based on
the rules in [56], and list the axial resolution values measured from
different reconstructions in Table 1. The theoretical resolution is cal-
culated 0.88c/Δf, which is based on the transducer’s central frequency
and bandwidth parameters. Since the lateral resolution is related to the
distance between the scanning center and imaging point, and the
transducer’s aperture, we compare the full width at half maximum
(FWHM) value at lateral direction of middle point in Fig. 6 (f). From
Table 2, we see that TR has best lateral resolution at middle position,
and the Y-Net has second best resolution compared with other methods.
It is worth noting that the pixel size can affect the practical resolution if
the size is not sufficiently small. If the pixel size is larger than the
theoretical resolution, the imaging result may not distinguish the target
size that is smaller than one pixel. Therefore, the pixel size of Fig. 6
(128× 64) also impacted the resolution in practice.

Three indexes for quantitative evaluation are used as the metric to
evaluate the performance of different methods:

(1). Structural Similarity Index (SSIM) [57], a higher value indicates
a better quality for estimated image, which is simply defined as:

=
+ +

+ + + +
f gt

μ μ C σ C

μ μ C σ σ C
SSIM( , )

(2 )(2 )

( )( )
,f gt

f gt f gt

1 cov 2
2 2

1
2 2

2 (20)

Fig. 5. The example of performance comparison using different methods to reconstruct initial pressure. The four examples correspond to four rows; every column
corresponds to different method, from left to right: ground-truth, DAS, TR, Y-Net-EIID, Y-Net-EID, post-processing U-Net and Y-Net. DAS: delay-and-sum; TR: time
reversal. The white circles indicate the local details.
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where μf, μgt and σf, σgt are the local means, and standard deviations of f
and gt respectively, and σcov is cross-covariance for f, gt. The default
values of some parameters are: C1 equals to 0.01, C2 equals to 0.03,
dynamic range is 1, and the standard deviation of Gaussian function is
1.5 with 11×11 window size.

(2). The Peak Signal-to-Noise Ratio (PSNR) is a conventional metric
of the image quality in decibels (dB):

=f gt
I
MSE

PSNR( , ) 10 log ( ),10
max
2

(21)

where Imax is the max value of f, gt (in this work, Imax= 1), MSE can be
calculated by Eq. (17).

(3). The Signal-to-Noise Ratio (SNR) is defined as:

⎜ ⎟= ⎛
⎝ −

⎞
⎠

SNR f gt
mean gt

mean gt f
( , ) 10 log

( )
[( ) ]

,10

2

2 (22)

where mean(·) is the mean operation. We also compare two variant Y-
Net with our approach: Y-Net-EIID and Y-Net-EID. Meanwhile, the post-
processing method based U-Net that only input an image after beam-
forming is also demonstrated for evaluation.

We can compute the quantitative evaluation of the test sets is shown
in Table 3. The data volume of test set is 400, which are generated by

MATLAB and described in Experiments section. Firstly, the deep
learning based methods show more advantageous than conventional
algorithms. Within the deep learning based approaches, the proposed
network's performance is superior in comparison with the other net-
works. We can also compute the quantitative evaluation of Fig. 6 to
compare the performance, which is shown in Table 4. The DAS shows a
much worse quantitative result from Table 4 (e.g. SSIM: 0.1131 vs.
0.9079) due to the severs artifacts in Fig. 6 (b). The Y-Net performs
better quantitative result compared with U-Net in Table 4 (e.g. SSIM:
0.7847 vs. 0.9079), even though look very similar in Fig. 6.

5.2. Evaluation of experimental data

The in-vitro results are shown in Fig. 7, which also compared DAS,
TR, and two variant Y-Net and U-Net with Y-Net. Considering that real
experimental data has no ground-truth, we add total variation (TV)
with 20 iterations as a baseline in Fig.7 (c). DAS and TR methods show
poor quality due to the laser power limit and severe artifacts (Fig. 7(a)-
(b)) compared with iterative method (Fig. 7 (c)), even though we still
can distinguish the phantoms in the tissue. TV result shows an im-
proved SNR and contrast in Fig. 7 (c), which clearly shows the structure
of phantom after 20 iterations. Deep learning based methods also show
higher SNR in Fig. 7(e)-(g). It shows that the Y-Net-EID (Fig. 7 (e))
reconstructed an incorrect image, which completely lost the shape of
phantom. The skipped connection between Encoder II and Decoder is
the main reason, which provides a texture feature of the sample. The
phantom’s texture is different from vessel, and it causes the network to
think of all signals as vessel-shape if lacking effective texture in Encoder
II. U-Net removes most artifacts and retains some artifacts in extension
direction, which embodies the associative ability. Y-Net shows a better
result that can clearly distinguish the object (Fig. 7(g)). Fig.7 (g) retains
some noises compared with Fig.7 (c), but provides a higher contrast
than TV. We circled the phantom in Fig.7 and further compare the
purity of background for these methods. The backgrounds of DAS and
TR have more physical artifacts, which can be recognized. The back-
grounds of deep learning methods are more confusing, which are er-
roneously identified as target except for the Y-Net.

Fig. 6. The reconstruction results of point-like phantom: (a) ground-truth; (b) delay-and-sum; (c) time reversal; (d) U-Net; (e) proposed Y-Net; (f) The profile along
the white dotted line of (a), (b), (c), (d), (e).

Table 1
The axial resolution values in Fig. 6.

Algorithms Theory DAS TR U-Net Y-Net

Resolution(μm) 148.8 907.2 756.0 453.6 332.6

Table 2
The FWHM value at lateral direction of middle point in Fig. 6.

Algorithms DAS TR U-Net Y-Net

FWHM(μm) 2418.88 1814.16 2176.99 2146.76

Table 3
Quantitative evaluation of different methods for test sets (mean ± std).

Algorithms SSIM PSNR SNR

DAS 0.2032 ± 0.0226 17.3626 ± 0.6775 1.7493 ± 0.8105
TR 0.5587 ± 0.0644 17.8482 ± 1.2947 2.2350 ± 0.8607
Y-Net-EIID 0.8988 ± 0.0200 25.2708 ± 1.5412 9.6577 ± 1.2035
Y-Net-EID 0.8622 ± 0.0295 23.9152 ± 1.9491 8.105 ± 1.7466
U-Net 0.9002 ± 0.0192 25.0032 ± 1.7616 9.3233 ± 1.5559
proposed Y-Net 0.9119±0.0162 25.5434±1.3913 9.9291±1.1436

Table 4
Quantitative evaluation of different methods in Fig. 6.

Algorithms SSIM PSNR SNR

DAS 0.1131 14.8083 −0.6559
TR 0.4659 20.8807 5.4165
U-Net 0.7847 19.8829 4.5587
proposed Y-Net 0.9079 21.6401 6.1758
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The in-vivo imaging results comparison is shown in Fig. 8, where the
ROI is limited by spot size. TV with 70 iterations is also used as a
baseline in Fig. 8(c). DAS and TR methods reconstructed images show
many artifacts in tissue (Fig.8 (a)-(b)) compared with Fig. 8(c), but the
major vessel can be recognized. Deep learning based methods have
unsatisfactory results on the shape of the blood vessels due to an ex-
cessive association, especially in Fig.8 (e). We also can annotate the
vessel and artifacts in Fig.8. The artifacts of DAS and TR show distinct
characteristics due to underlying physics, which is easy to recognize.
Deep learning methods can easy remove these physical artifacts but
may create some imaginary artifacts, which may be caused by some
random noise similar with vascular. Moreover, we can still obtain a
denoised image using Y-Net in Fig.8 (g). These models can eliminate
most noise and artifacts and still perform better than conventional
methods even though they may cause some imaginary artifacts. The
bottom right corner may be a vessel in deeper tissue or an intense ar-
tifact (cannot be removed after 70 iterations) from Fig. 8 (c). U-Net

removes normal artifacts and connects two vessels based on the extend
tendency of the vessel, which is caused by excessive association
(Fig. 8(f)). However, Y-Net still showed good performance, with no
excessive associations on the main blood vessel (Fig.8 (g)) and only few
imaginary artifacts.

The computation time for deep learning methods has been listed in
Table 5, which sufficiently satisfies the requirement of real-time ima-
ging for most applications. In Table 5, all the computation time of deep

Fig. 7. The in-vitro result of chicken breast phantom: (a) delay-and-sum; (b) time reversal; (c) TV with 20 iterations; (d) Y-Net-EIID; (e) Y-Net-EID; (f) U-Net; (g) Y-
Net.

Fig. 8. The in-vivo result of human palm: (a) delay-and-sum; (b) time reversal; (c) TV with 70 iterations; (d) Y-Net-EIID; (e) Y-Net-EID; (f) U-Net; (g) Y-Net.

Table 5
The computation times for deep learning methods.

Algorithms Time (Second)

Y-Net-EIID 0.0309
Y-Net-EID 0.0299
U-Net 0.0189
proposed Y-Net 0.0326
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learning based methods is less than 0.04 s (equivalently more than
25 Hz). For the setup in this paper, the frame rate of imaging can
achieve 12 Hz (total cost 0.08 s from raw data to final image), but
limited to 10 Hz due to the repetition frequency of pulsed laser, which
still satisfies the real-time imaging requirement very well.

6. Discussions

The artifacts are essential to limited-view photoacoustic tomo-
graphy. An effective strategy to reduce artifacts is a challenge in image
reconstruction. For raw PA data, it is often limited by the bandwidth of
transducer, which caused a loss of partial spectrum information; the
linear array transducer further loses some information since it cannot
capture the PA signals from all the directions, especially in vertical
direction for a vessel-like sample. The model-based methods in-
corporate the physical model into the reconstruction process with a
regularization, such as total variation (TV), and it also shows powerful
performance. For imperfect conventional reconstruction algorithm
(DAS), it has a fast running time through simple delaying channel data
and adding them together. However, some information cannot be em-
bodied as Fig. 1 shows. Many literatures, such as [39–42] extracted
more useful information from raw data by further improving that
procedure. Besides, the non-iterative methods with Deep Learning are
promising for applications where low latency is more important than a
better quality reconstruction, such as real-time imaging for cancer
screening and guided surgery.

Whilst DAS produced more artifacts than TR, and time-efficient
approaches commonly suffer from severe artifacts. In this work, we only
need a rough PA image as one of the network inputs. So the speed of the
algorithm is a more important index, thus DAS is a good choice in our
work compared with TR. And then, the DAS algorithm is widely used to
fast reconstruct the image in US/PA imaging, and many existing US/PA
systems have built-in DAS algorithm. So using DAS to generate the
rough PA image can possess good compatibility with most imaging
systems. In this work, we proposed a deep learning method to re-
construct PA image from raw PA signals, which can eliminate the ar-
tifacts caused by not only limited-view issue. In training stage, we ap-
plied 7MHz with 80 % bandwidth to generate the raw data, which is
close to the parameter values of the system in lab. The proposed method
can easily remove these artifacts caused by both limited-view and
limited-bandwidth issues. Specifically, the bandwidth can be adapted if
we train the model using the same bandwidth. One flaw of using linear
probe is limited-view caused artifacts as the Fig. 6(a)-(b) showed, and
we used simple points as the target and they look like complete, but we
can still find many artifacts around the target. However, for many
complex cases such as Fig. 5, the results of vessel have some misleading
artifacts caused by limited-view issue that produce severs image dis-
tortion. Therefore, our method may also process the much more severe
limited-view induced artifacts issue (e.g. reflective artifacts). Some re-
sidual artifacts in Fig. 5 come from the input of Encoder II, which may
be caused by the skipped connection of Encoder II. Deep learning based
methods removed most artifacts but retain a part of strong artifacts. For
most cases, this skipped connection can improve the performance (Y-
Net > Y-Net-EIID > Y-Net-EID) and maintain texture features to
avoid the pooling operation caused information loss. The ablation study
also showed the superiority of skipped connection (Y-Net-EID vs. Y-Net)
for most cases. For residual artifacts, we will further improve Y-Net in
the future work.

In the experiments, we used the linear array probe based photo-
acoustic imaging setup to verify our method as the Fig. 3 showed,
which is one of the mainstream system setups. The linear array has the
flexibility for clinical application. Furthermore, this system setup is
easy to coordinate the ultrasonic system in clinic.

The deep learning models are trained on the synthetic data since we
lack many practical data for emerging photoacoustic imaging tech-
nique, which induces a gap between synthetic data and practical data.

The real fabricated transducer cannot be simulated exactly alike in the
simulation environment, which may cause some differences between
practical signals and simulated signals. Moreover, the inestimable in-
terferences from surroundings may distort the received data of trans-
ducer. It caused the poorer results for the in-vitro and in-vivo experi-
ments than synthetic data. It might improve the results by altering the
input of Encoder II, which can be revised as a better texture re-
constructed result instead of DAS, such as [33,37–39]. Likewise, the
results of post-processing method (U-Net) can be also improved. For the
post-processing methods, the input is the preferable image, which
however may lose some information as the DAS results of Fig. 5. The
network repairs the information from training data, and it may cause
some imaginary artifacts if only using one input as the Fig.8 (f) showed.
Considering ground-truth cannot be obtained in in-vitro and in-vivo
experiments, we further add an iterative result (TV with 20 iterations)
in Fig. 7 and 8 to help us analyze different texture. From ablation study,
we see that Encoder II concatenated with Decoder can provide a main
texture of output, and we will obtain an improved texture if the Encoder
II is fed with a preferable input image. The Encoder I will supplement
the missing information in beforehand reconstruction, and reduce the
imaginary artifacts.

It is noteworthy that we premised all vessels are evenly illuminated
and the medium is homogeneous in synthetic data. We cannot exclude
the inhomogeneity effect of light illumination quality in the experi-
ment, which may cause the artifacts in the results. It may be affected for
all reconstruction, on the basis of which we compare the performance
between these different methods, which is still reasonable. In the future
work, we will further try to resolve the effect of laser illumination in-
homogeneity.

In the comparative experiment, we chose U-Net as post-processing
reconstruction scheme, which has been proven to work well on medical
image reconstruction. In the experiment, the reconstruction results are
deviated due to the gap between simulation data and measurement
data, but our method still shows better performance compared to other
methods.

7. Conclusions

In this paper, a new CNN architecture, named Y-Net, is proposed,
which consists of two intersecting encoder paths. The Y-Net takes two
types of inputs that represent the texture structure of the conventional
algorithms and the high-dimensional features contained in the original
raw signals respectively. Training on large dataset, Y-Net learns to
distinguish the target and artifacts from raw data and polluted image.
Moreover, a priori knowledge introduced from large amounts of data
can compensate for information loss of vertical direction in the raw PA
data. We use the k-Wave PA simulation tool to generate a large amount
of training data to train the network, and evaluate our approach on the
test set. In the experiment, we demonstrate the feasibility and robust-
ness of our proposed method by comparing with other models and
conventional methods. We also validated our method in in-vitro and in-
vivo experiments, showing superior performance compared with ex-
isting methods. Y-Net is still affected by the artifacts of beamforming,
which may be improved by using a better beamforming algorithm. In
the future work, we will improve the residual artifacts and further
generalize Y-Net to three dimensions for real-time 3D PA imaging.
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