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Abstract
Gastrointestinal (GI) cancer is one of the leading causes of cancer-related deaths
worldwide. According to the Global Cancer Statistics, colorectal cancer is the
second leading cause of cancer-related mortality, closely followed by gastric
cancer (GC). Environmental, dietary, and lifestyle factors including cigarette
smoking, alcohol intake, and genetics are the most important risk factors for GI
cancer. Furthermore, infections caused by Helicobacter pylori are a major cause of
GC initiation. Despite improvements in conventional therapies, including
surgery, chemotherapy, and radiotherapy, the length or quality of life of patients
with advanced GI cancer is still poor because of delayed diagnosis, recurrence
and side effect. Resveratrol (3, 4, 5-trihydroxy-trans-stilbene; Res), a natural
polyphenolic compound, reportedly has various pharmacologic functions
including anti-oxidant, anti-inflammatory, anti-cancer, and cardioprotective
functions. Many studies have demonstrated that Res also exerts a
chemopreventive effect on GI cancer. Research investigating the anti-cancer
mechanism of Res for the prevention and treatment of GI cancer has implicated
multiple pathways including oxidative stress, cell proliferation, and apoptosis.
Therefore, this paper provides a review of the function and molecular
mechanisms of Res in the prevention and treatment of GI cancer.
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Core tip: Gastrointestinal (GI) cancer is a serious disease that affects people late in their
lives and represents a global health burden. Despite improvements in conventional
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therapies, including surgery, chemotherapy, and radiotherapy, the length or quality of
life of patients with advanced GI cancer is still poor. Many studies have demonstrated
that resveratrol also exerts a chemopreventive effect on GI cancer. In this review, we
describe the function and molecular mechanisms of resveratrol in the prevention and
treatment of GI cancer.
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INTRODUCTION
Gastrointestinal (GI) cancer is  one of the leading causes of cancer-related deaths
worldwide and represents a global health burden. To date, most research attention
has been directed towards the prevention of gastric cancer (GC) and colorectal cancer
(CRC), the most common forms of GI cancer. According to Global Cancer Statistics[1],
CRC is the second leading cause of cancer-related mortality, closely followed by GC.
GC was responsible  for  more than one million new cancer  cases  in  2018 and an
estimated 783000 deaths, which equates to 1 in every 12 deaths globally. More than 1.8
million  new  CRC  cases  and  881000  deaths  were  estimated  to  occur  in  2018.
Environmental, dietary, and lifestyle factors, as well as family history, are the most
important  risk  factors  for  GI  cancer.  Despite  improvements  in  current  cancer
therapies, including surgery, chemotherapy, and radiotherapy, the length or quality
of life (QoL) of patients with advanced GI cancer is still  poor because of delayed
diagnosis, recurrence, and medication side effect[2-4]. Therefore, the identification of
novel therapeutic strategies to enhance the therapeutic effect and survival rate of
patients with GI cancer is urgently needed.

Recently, traditional medicines, which are derived from natural compounds, have
been  reported  as  promising  therapeutic  agents.  In  particular,  flavonoids  and
polyphenols  have  been  recognized  as  potential  therapeutic  agents  for  cancer.
Resveratrol (3, 4, 5-trihydroxy-trans-stilbene; Res), a natural polyphenolic compound,
is widely found in grapes, cranberries, peanuts, and red wine[5]. Previous reports have
demonstrated that Res has various valuable pharmacological effects including anti-
oxidant,  anti-inflammatory,  anti-carcinogenic,  anti-bacterial,  and cardiovascular
protective effects[6-9]. The anti-tumor effect of Res was first reported in 1997[9]. Since
then, many studies have indicated that Res exerts a wide range of preventive and
therapeutic actions against various types of cancer including lung, colorectal, gastric,
breast, and liver cancers. Moreover, many studies have demonstrated that Res might
also exert chemopreventive effects when combined with other chemotherapeutic
drugs.  To  date,  the  various  anti-cancer  molecular  mechanisms  of  Res  in  the
prevention and treatment of  GI cancer have implicated multiple pathways in its
effects including oxidative stress, cell proliferation, and apoptosis[10].

In this review, we summarize the principal findings supporting the anti-tumor
properties of Res and describe its molecular mechanisms in GI cancer, either as a
preventive or a therapeutic agent.

GC

Res as a preventive agent against Helicobacter pylori
Helicobacter pylori (H. pylori) infection in the stomach induces a mucosal inflammatory
response, oxidative stress, and changes to cell proliferation, which lead to GC[11-13].
Almost 90% of new cases of noncardia GC are attributed to this bacterium[14-16]. There
are several mechanisms thought to be involved in the association between H. pylori
and GC[17-20]. First, H. pylori can induce inflammatory mediators such as interleukin-8
(IL-8), IL-6, and tumor necrosis factor-α (TNF-α)[16].  Among these mediators, IL-8
plays  a  crucial  role  in  the  host  inflammatory  response  to  H.  pylori[21-24].  The
upregulation of IL-8 in H. pylori infection may lead to the generation of free radicals,
and the release of proteolytic enzymes from activated neutrophils ultimately affects
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mucosal  integrity[25].  Second,  H.  pylori  can  induce  oxidative  stress  and generate
reactive oxygen species (ROS) in gastric epithelial cells, which can lead to altered
epithelial proliferation and oxidative DNA damage[26]. When cells were pretreated
with  Res,  both  IL-8  secretion  and  H.  pylori-stimulated  ROS  generation  were
suppressed[27].  Third, the gastric mucosal inflammation and damage caused by H.
pylori infection are mediated by the overproduction of nitric oxide (NO), which is
generated by inducible NO synthase (iNOS). Constant overproduction of NO may
lead  to  DNA  and  tissue  damage,  ultimately  increasing  the  risk  of  developing
cancer[28].  Activation  of  the  nuclear  factor  kappa  B  (NF-κB)  signal  transduction
pathway is also an important event linked to tumorigenesis[29]. Res exerts significant
effects against H. pylori-induced oxidative stress and inflammation by suppressing the
expression levels of IL-8 and iNOS, blocking the activation of NF-κB, and activating
the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 pathway[30].

Res in the inhibition of cancer cell proliferation
Cell proliferation plays an important role in the development of cancer. Cells acquire
an increasing number of defects in key genes that enable persistent cell growth when
the cells start to divide. Thus, compounds with anti-proliferative activities may be
cancer chemopreventive[31]. Evidence suggests that Res can inhibit the proliferation of
several transformed cells in culture[32-34]. Protein kinase C (PKC), which is associated
with tumor suppression and cell proliferation[35,36],  and mitogen-activated protein
kinases (extracellular signal-regulated kinase 1 [ERK1] and ERK2), are regulated by
growth factors controlling the proliferation of normal cells. Res inhibits the growth of
gastric  adenocarcinoma  cells  through  a  PKC-mediated  mechanism[34]  and  the
MEK1/2-ERK1/2-c-Jun  signaling  pathway[37].  Res  also  induces  cell  cycle  arrest
through regulation of the phosphatase and tensin homolog/phosphatidylinositol 3-
kinase/Akt (PTEN/PI3K/Akt)  signaling pathway and the Wnt/β-catenin signal
pathway[38]. Res lowers the expression of related proteins in signaling pathways such
as cyclin D1 (an important protein related to the G0/G1 cell cycle)[38,39]. Additionally,
Res exerts its anti-proliferative action by interfering with the action of endogenously
produced reactive oxygen. Res effectively inhibits hydrogen peroxide-stimulated
proliferation and superoxide generation[25].

Inhibition of cancer cell invasion and metastasis
Cancer cell invasion and metastasis are interconnected processes that involve cell
proliferation, cell migration, cell adhesion, and proteolytic degeneration of tissue
barriers[40]. GC exhibits high motility due to its strong invasion and metastasis ability.
The  hedgehog  (Hh)  signaling  pathway  plays  an  important  role  in  vertebrate
development, the homeostatic process, and tumorigenesis. Res suppresses invasion
and  metastasis  via  inhibition  of  the  Hh  signaling  pathway  and  epithelial-
mesenchymal transition (EMT), which is also associated with cancer metastasis and
invasion. Res was found to produce decreased expression of GLI family zinc finger 1,
a key component of the Hh signaling pathway, as well as decreased expression of
Snail  and  N-cadherin  and  increased  expression  of  E-cadherin,  which  are  key
components of the EMT[41]. In addition, Res can inhibit metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1) expression[42].

IL-6 is a multifunctional cytokine that plays a vital role in host defense mechanisms
and the growth of various cancer cells[43]. Yang found that Res inhibited IL-6-induced
cell  invasion and matrix  metalloproteinase activation by blocking Raf/mitogen-
activated protein kinase signaling activation[44].

Induction of cancer cell apoptosis and senescence
Apoptosis induced by Res appears to be one of the inhibitory mechanisms involved in
GC treatment. Res is a slow inducer of apoptosis; prolonged treatment with high
concentrations of Res may result in apoptotic cell death and loss of cells[25,34].  The
apoptosis may be attributed to the accumulation of peroxynitrite arising from the
production of significant levels of NO[25]. Additionally, Res induces cell apoptosis via
downregulating  the  expression  of  the  apoptosis-inhibiting  protein  survivin[45],
increasing generation of ROS[46], and downregulating senescence pathways such as
cyclin D1, cyclin-dependent kinase 6 (CDK 6), CDK4, p16, and p21[47].

Apoptosis is usually mediated through two major pathways: The intrinsic pathway,
induced by destabilization of mitochondria; and the extrinsic pathway, activated
when extracellular ligands interact with receptors of the TNF family (TNF, FAS, and
TRAIL).  With  mitochondria  as  the  central  gateway  controllers  and  the  B-cell
lymphoma 2 (Bcl-2) family of proteins as executioners, the mitochondrial pathway is
complex[48,49].  The Bcl-2 family plays an important role in the control of apoptosis,
including anti-apoptotic proteins such as Bcl-2 and B-cell lymphoma-extra large (Bcl-
xl),  as  well  as  pro-apoptotic  proteins such as Bcl-2-associated X (Bax) and Bcl-2-
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associated agonist  of cell  death (Bad)[50,51].  Res was found to induce apoptosis by
downregulating the anti-apoptotic gene Bcl-2  and upregulating the pro-apoptotic
gene Bax[52,53].  It is also clear that activation of caspases is a hallmark of apoptosis
promotion in response to death-inducing signals originating from mitochondria[53-55].
After treatment with Res, expression of the proapoptotic proteins cleaved caspase3
and cleaved caspase-8 are upregulated. Res also induces apoptosis by suppressing
NF-κB activation[55]. Additionally, Res produces time- and concentration-dependent
increases in the mitotic inhibitor p21(cip1/WAF-1) and the tumor suppressor p53[56]. The
specific  cell  death  signals  engaged  by  Res  appear  to  be  cell  type-dependent,
particularly with respect to the p53 status of the cell[35,57]. Upregulation of both Fas and
Fas-L proteins has been observed after Res treatment of p53-expressing SNU-1 cells,
whereas  in  p53-deficient  KATO-III  cells,  only  Fas-L  is  increased[57].  Res  and the
sphingosine kinase inhibitor dimethylsphingosine (DMS) may be part of a common
apoptotic signaling pathway. Res increases the cytotoxicity and p53 expression when
combined with DMS[58].

Res reverses the multidrug resistance of cancer cells
Chemotherapy is  considered to be the most effective treatment for patients with
inoperable cancer; it provides palliative treatment of symptoms and improves patient
QoL  and  survival[59].  However,  conventional  chemotherapeutic  drugs  such  as
doxorubicin (DOX) and platinum have been criticized due to their negative effects,
including the development of drug resistance and the occurrence of tumors[60,61]. Xu et
al[62] found that Res could reverse DOX resistance by reversing the EMT process via
modulation of the PTEN/Akt signaling pathway.

Res may reduce the drug resistance of cancer cells by affecting the expression of
several genes and proteins associated with multidrug resistance (MDR), including
ATP binding cassette subfamily B member 1, annexin A1, and thioredoxin genes, as well as
the proteins encoded by these genes[63]. Res can also reduce the expression levels of the
aforementioned genes in the human GC cell line EPG85-257RDB and human GC cell
line  EPG85-257RNOV,  which  are  resistant  to  daunorubicin  and  mitoxantrone,
respectively[63].

CRC

Res as an anti-inflammatory agent in CRC
Many studies have demonstrated that Res has promising preventive and therapeutic
effects on CRC in vitro and in vivo. Cyclooxygenase-2 (COX-2) enzyme expression is
usually  upregulated during inflammation in  most  human adenocarcinomas and
colonic tumors[64-66]. Res decreases COX-2 protein expression in CRC cells[67]. Chronic
colitis is associated with CRC risk, and Res mixed with food ameliorates a dextran
sulfate sodium mouse model of colitis[68]. Sirtuin 1 (SIRT-1) may induce inflammatory
cytokines through the activation of NF-κB. Hofseth et al[69] found that Res can also
reverse the downregulation of SIRT-1 during colitis.

Lipopolysaccharide (LPS), a principal component of the outer membrane of Gram-
negative bacteria, plays a critical role in triggering an early inflammatory response.
Res reduces the LPS-induced inflammatory response by interfering with LPS-induced
NF-κB activation[70]. Nrf2 is recognized as a drug target for the prevention of CRC[71].
Res supplementation suppresses tumorigenesis in colitis-associated tumorigenesis
mice. Downregulation of Nrf2 and its target genes have been observed in adenomas
from adjacent normal tissue[72].

Res inhibits oxidative stress in CRC
CRC  is  a  pathological  consequence  of  persistent  oxidative  stress,  resulting  in
mutations  and  DNA  damage  in  cancer-associated  genes  in  which  the  cellular
overproduction of ROS is implicated[73,74]. Sengottuvelan et al[74] demonstrated that 1,2-
dimethylhydrazine  (DMH)-induced  DNA  damage  and  oxidative  stress  were
effectively suppressed by chronic Res supplementation. Particularly, entire-period Res
supplementation increases enzymatic (glutathione reductase, superoxide dismutase,
glutathione peroxidase, catalase and glutathione S-transferase) and non-enzymatic
(reduced glutathione, vitamin C, vitamin E and β-carotene) anti-oxidant status with a
corresponding  decrease  in  the  extent  of  lipid  peroxidation  markers  such  as
thiobarbituric acid reactive substances, diene conjugates, and lipid hydroperoxides.

Res inhibits cell proliferation in CRC
Res also exerts anti-proliferative activity in CRC similar to GC. There are several
mechanisms involved in the anti-proliferative effects of Res. First, Res may inhibit the
expression of ornithine decarboxylase, a key enzyme of polyamine biosynthesis that is
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enhanced  in  cancer  growth[75].  Second,  Res  inhibits  cell  proliferation  through
modulating cyclin and CDK activities such as telomerase activity[76,77]. Relatively high
concentrations (higher than 2.5 μg/mL) of Res have been found to downregulate
telomerase activity[78]. Third, obesity is associated with elevated insulin-like growth
factor-1 (IGF-1), which is related to various types of cancer including CRC[79].  Res
inhibits IGF-1R protein levels,  and the downstream Akt/Wnt signaling pathway,
which plays a critical role in cell proliferation, is attenuated[80]. Finally, Liu et al[81]

found that the anti-proliferative effects of Res may be mediated by regulation of the
PTEN/PI3K/Akt and Wnt/β-catenin signaling separately. The exogenous expression
of PTEN suppresses PI3K/Akt signaling and promotes the anti-proliferative effects of
Res.  The  protein  and  mRNA  expression  of  β-catenin  is  also  decreased  in  a
concentration-dependent manner[81].

Res induces cell apoptosis in CRC
Similar to GC, Res induces cell apoptosis in CRC through both intrinsic and extrinsic
pathways[82]. In the intrinsic or mitochondrial pathway, Res can induce Bax-mediated
and Bax-independent mitochondrial apoptosis.  Res induces the co-localization of
cellular Bax protein with mitochondria,  collapse of the mitochondrial membrane
potential, activation of caspases 3 and 9, and finally, apoptosis[83]. Res can also induce
an early increase in mitochondrial ROS production upstream of caspase activation[84].

In  the  extrinsic  pathway,  Res  induces  redistribution  of  the  Fas  receptor  in
membrane rafts to trigger apoptosis[85]. Res also induces clustering and redistribution
of Fas, which is associated with formation of a death-inducing signaling complex in
cholesterol  and  sphingolipid-rich  fractions  of  SW480  cells,  together  with  Fas-
associating protein with death domain and procaspase-8[85]. Apoptosis can also be
initiated by lysosomes and the endoplasmic reticulum[86].

In  addition,  the  mechanism  by  which  Res  induces  apoptosis  involves  ROS-
triggered  autophagy.  Inhibition  of  Res-induced  autophagy  causes  significant
attenuation in apoptosis accompanied by the decreased cleavage of casapse-8 and
caspase-3[87].  Res-induced apoptosis  can be partially mediated through the PKC-
ERK1/2 signaling pathway[88-90].  Res significantly upregulates phosphorylation of
PKCα and ERK1/2. Pre-treatment with PKCα and ERK1/2 inhibitors (Gő6976 and
PD98059, respectively) promotes apoptosis[90].

Res inhibits cell invasion and metastasis in CRC
Similar  to  GC,  Res  leads  to  the  downregulation  of  MALAT1,  consequently  the
invasion and metastasis of CRC can be inhibited. MALAT1 is also correlated with the
Wnt/β-catenin  signaling  pathway,  which  regulates  tumor  cell  invasion  and
metastasis[91].  Treatment with Res can also decrease the nuclear localization of β-
catenin, resulting in attenuation of Wnt/β-catenin signaling. Morin et al[92] and Jeong
et al[93] reported that transcription factor 4 (TCF4) is a molecular target of Res in the
prevention of CRC. Res treatment downregulated the expression of TCF4 through
ERK-  and  p38-dependent  pathways[93].  In  addition,  decreased  expression  of
tristetraprolin  (TTP)  is  observed  in  patients  with  CRC[94].  Res  suppresses  the
proliferation  and  invasion/metastasis  by  activating  TTP[94].  It  can  reverse  the
proliferation and invasion induced by TNF-β, which is linked to suppression of the
TNF-β-stimulated NF-κB signaling pathway[95-99]. In addition, Res suppresses TNF-β-
promoted NF-κB-mediated gene biomarkers associated with proliferation, apoptosis,
and invasion[95],  induces morphological changes associated with the expression of
EMT parameters (elevated vimentin and slug, reduced E-cadherin), and increases
migration/invasion[100].

Vascular  endothelial  growth factor  (VEGF)  is  an  important  angiogenic  factor
secreted by tumor cells,  which stimulates  tumor neo-angiogenesis  and vascular
permeability[101]. Res may decrease the level of VEGF in many cancer cells such as
human  leukemia  (U937)  cells,  ovarian  carcinoma  cells,  and  breast  cancer  cells
(MDAMB-231)[102-104]. Fouad et al[105] reported that Res can inhibit angiogenesis. VEGF
protein secretion was significantly reduced in both Caco2 and HCT116 cells.

Res reverses MDR in CRC
MDR is a common phenomenon in the clinic that requires immediate resolution.
Several findings have indicated that Res chemosensitizes the anti-tumor effects of
fluorouracil  (5-FU)  by  inhibiting  the  EMT  phenotype  via  the  upregulation  of
intercellular junctions and downregulation of the NF-κB pathway[99]. Genotoxicity and
apoptosis are increased when 5-FU-resistant cells are treated with Res and 1,3-Bis (2-
chloroethyl)-1-nitrosourea[106].  In addition, this combined treatment decreases the
levels of  DNA polymerase beta,  flap endonuclease 1,  and DNA damage-binding
protein 2, which are overexpressed in 5-FU-resistant cell lines[106]. Res also synergizes
the invasion inhibitory effects of 5-FU. Res significantly attenuates drug resistance via
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suppression of EMT factors (decreased vimentin and slug, increased E-cadherin),
diminished NF-κB activation and its translocation to the nucleus, and abolished NF-
κB-regulated gene end products (matrix metalloproteinase 9, caspase-3)[107]. Further,
Res can chemosensitize TNF-β-induced increased capacity for survival and invasion
of HCT116R cells in response to 5-FU[108].

Moreover, Res can downregulate the expression of MDR1 to ameliorate cisplatin
resistance[106,109].  Wang et  al[110]  also  found that  Res  inhibits  MDR1 expression  in
oxaliplatin (L-OHP)-resistant CRC cells HCT116 cells through inhibition of the NF-κB
signaling pathway and activation of cAMP-response element binding protein in an 5'
AMP-activated protein kinase-dependent manner. Table 1 summarizes the effect and
targets/mechanisms of Res in GC and CRC.

FUTURE OUTLOOK
Despite  all  of  the documented potential  anti-cancer  effects  of  Res in cell  culture
models and animal models, we cannot assume that the potential properties of Res can
be translated to humans because of the low bioavailability of Res. Due to the rapid
metabolism  and  glucuronidation  and  sulfation  in  the  intestine  and  liver,  the
bioavailability  of  Res  in  humans is  considerably  less  than 1%[111,112]  despite  high
absorption  of  almost  70%[113,114].  The  poor  bioavailability  of  Res  is  an  important
problem in terms of extrapolating its potential clinical application. Several methods
have been developed to improve its bioavailability, such as utilizing it in combination
with  an  additional  phytochemical  curcumin or  using  nanotechnological  formu-
lations[115,116].

Xu et al[117]  reported that combined treatment with curcumin and Res in DMH-
treated GC rats led to regulation of both p53 phosphorylation and acetylation, which
activated stable tumor suppressor p53 against GC. Gavrilas et al[118] also investigated
cell proliferation inhibitory effect of the combined treatment of curcumin and Res, and
found synergistic effects in both DLD-1 and Caco-2 cells. The expression of several
apoptosis  regulatory  genes  including  PMAIP1,  BID,  ZMAT3,  and  FAS  was
significantly  increased,  representing  novel  targets  of  combined  treatment  with
curcumin and Res[117,118].

Lipid-core nanocapsules (LNCs) also reportedly stabilize the incorporated drugs,
control their release pattern, and increase the activity of the drugs in the body[119].
Feng et al[120] prepared Res-loaded LNCs (RSV-LNCs) and found that they exerted a
remarkable reduction in cell apoptosis of approximately 36%. This suggests that RSV-
LNCs have  superior  anti-cancer  effects  and promising  potential  to  increase  the
therapeutic efficacy of Res[120].

CONCLUSION
GI cancer,  particularly CG and CRC, is  a highly prevalent cancer and one of the
leading causes of cancer-related deaths worldwide. Multiple molecular mechanisms,
including  inflammation,  oxidative  stress,  cell  proliferation,  and  apoptosis,  are
associated with its incidence and progression[121,122]. Res is a polyphenol compound
with a variety of properties including anti-inflammatory, cell proliferation inhibition,
and apoptosis properties[123,124].  Multiple studies have demonstrated the potential
effects of Res for the treatment of GC and CRC. This phytochemical has multiple
advantages,  is  comparatively  safe,  and  is  able  to  target  multiple  cell  signaling
pathways. However, the bioavailability of Res is very low in humans and a high dose
may  not  reach  a  sufficient  concentration  of  treatment  due  to  the  metabolic
characteristics[125]. Res may be of benefit for digestive tract cancer treatment as it is
efficiently  absorbed  in  the  GI  tract  and  exerts  local  effects  before  its
metabolization[126,127]. Although various methods have been developed to improve the
bioavailability of Res, more studies are needed to verify the efficacy of Res in GI
cancer.
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Table 1  Effect and targets/mechanisms of resveratrol in gastric cancer and colorectal cancer

Effect Cell or animal model Proposed
targets/mechanisms Ref.

Gastric cancer Anti-H. pylori MKN-45 cells Inhibition of IL-8 secretion,
inhibition of ROS generation

[27]

Mice Downregulation of IL-8 and
iNOS, inhibition of NF-κB
activity, activation of the
Nrf2/HO-1 pathway

[30]

Anti-proliferation KATO-III cells Inhibition of PKC activity
[34]

ACS cells The MEK1/2-ERK1/2- c-Jun
signaling pathway

[37]

SNU-1 cells The PTEN/ PI3K/Akt
signaling pathway

[25]

MGC803 cells The PI3K/Akt signaling
pathway

[38]

MGC-803 cells Downregulation of β-catenin,
c-myc, and cyclin D1,
inhibition of the Wnt/β-
catenin pathway

[39]

Inhibition of invasion and
metastasis

SGC7901 cells Inhibition of the Hh signaling
pathway and EMT

[41]

SGC7901 cells Inhibition of the Raf/MAPK
signaling pathway

[44]

BGC823 cells Inhibition of MALAT1
[42]

Induction of apoptosis and
senescence

SGC7901 cells Downregulation of survivin
[45]

SGC-7901 cells Increase of ROS
[46]

AGS, BGC-823 and SGC-7901
cells

Downregulation of the
senescence pathways such as
cyclin D1, CDK 6 and CDK4,
p16 and p21

[47]

Nude mice Downregulation of anti-
apoptotic gene bcl-2, up-
regulation of the pro-
apoptotic gene bax

[52]

SGC 7901 cells Upregulation of bax, cleaved
caspase 3 and cleaved
caspase 8, downregulation of
bcl-2, inhibition of NF-κB
activity

[53]

SGC-7901 cells Activation of caspase-3 and
pro-caspase 9 was
downregulated, the
expression ratio of bax/bcl-2
was increased

[54]

SNU-1 cells and KATO-III
cells

Upregulation of both Fas and
Fas-Lin SNU-1 cells,
upregulation of Fas-L in
KATO-III cells

[56]

SNU-1, KATO- and RF-1 cells SNU-1 cells: Upregulation of
p53, downregulation of
surviving; AGS cells:
Upregulation of p53,
stimulation of caspase 3 and
cytochrome C oxidase
activities; KATO-III cells (not
expressing p53): Stimulation
of caspase 3 and cytochrome
C oxidase activities

[57]

SNU-1 cells Upregulation of p53
expression

[58]

MDR SGC7901/DOX PTEN/Akt signaling
pathway

[62]
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RDB and RNOV In RDB cells, Res reduced the
expression level of all
analyzed genes, so were
results at the protein level
obtained for P-gp and TXN.
In turn, in the RNOV cell line,
Res reduced TXN expression
at mRNA and protein levels

[63]

Colorectal cancer Anti-inflammatory HCA-7 cancer cells Downregulation of COX-2 III
[67]

Dextran Sulfate Sodium
(DSS) mouse model of colitis

Decrease of CD3+ T cells,
downregulation of p53

[68]

Caco-2 and SW480 cells Inhibition of iNOS, decrease
of NO production, inhibition
of NF-κB activity

[70]

Mice Downregulation of Nrf2
[72]

Inhibit oxidative stress Wistar male rats Increase of the enzymic and
non-enzymic antioxidant
status

[74]

Anti-proliferation CaCo-2 cells Inhibition of ODC expression
[75]

SW480 cells Modulation of cyclin and
CDK activities

[76]

HT-29 and WiDr cells Downregulation of
telomerase activity

[78]

HT-29 cells Inhibition of IGF-1R and the
downstream Akt/Wnt
signaling pathway

[80]

HCT116 cells Downregulation the
PTEN/PI3K/Akt and
Wnt/β-catenin signaling

[81]

Induce apoptosis HCT116 cells Induction of bax, activation of
caspases 3 and 9

[83]

HT-29 cells Production of O2
-•, increase

of mitochondrial ROS
production

[84]

SW480 cells Redistribution of Fas
[85]

HT-29 cells Lysosomal cathepsin D
demonstrated upstream of
cytosolic caspase activation

[86]

HT-29 cells ROS-triggered autophagy,
decrease of cleavage of
casapse-8 and caspase-3

[87]

HT- 29 cells The PKC- ERK1/2 signaling
pathway

[90]

Inhibit invasion and
metastasis

LoVo and HCT116 cells Downregulation of MALAT1,
decrease of β-catenin
attenuation of Wnt/β-catenin
signaling

[91]

HCT116 cells ERK and p38-dependent
pathways, downregulation of
TCF4

[93]

HCT116 and SNU81 colon
cancer cells

Increase of TTP expression
[94]

HCT116 cells Suppression of NF-κB
signaling pathway

[98]

HCT116, RKO and SW480
cells

Decrease of TNF-β/TNF-βR-
induced EMT, suppression of
NF-βB and FAK

[99]

Inhibition of angiogenesis Caco2 cell and HCT116 cells Reduction of VEGF level
[105]

Reversion of MDR 5-FU-sensitive HCT-116 cells Decrease of the levels of POL-
β, POLH, FEN1and DDB2

[106]

5-FU chemoresistance-
derived clones HCT116R cells

Upregulation of intercellular
junctions and
downregulation of NF-κB
pathway

[107]

HCT116R cells Suppression of tumor-
promoting factors (NF-κB,
MMP-9, CXCR4) activity and
EMT factors

[108]
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CIS-resistant HCT 116 cells Increase in the early
apoptosis fraction and
enhance the subsequent
apoptotic effects of CIS

[109]

HCT116/LOHP Downregulation of mRNA
and P-gp/MDR1 and MDR1
promoter activity

[110]

IL: Interleukin; ROS: Reactive oxygen species; NO: Nitric oxide; iNOS: Inducible nitric oxide synthase; Nrf2: Nuclear factor erythroid 2-related factor 2;
EMT: Epithelial-mesenchymal transition; Hh: Hedgehog; MALAT1: Metastasis-associated lung adenocarcinoma transcript 1; CIS: Cisplatin; NO: Nitric
oxide; MDR1: Multi-drug resistance protein 1.
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