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A B S T R A C T

This technical note presents a dynamic causal modelling (DCM) procedure for evaluating different models of
neurovascular coupling in the human brain – using combined electromagnetic (M/EEG) and functional magnetic
resonance imaging (fMRI) data. This procedure compares the evidence for biologically informed models of
neurovascular coupling using Bayesian model comparison. First, fMRI data are used to localise regionally specific
neuronal responses. The coordinates of these responses are then used as the location priors in a DCM of elec-
trophysiological responses elicited by the same paradigm. The ensuing estimates of model parameters are then
used to generate neuronal drive functions, which model pre- or post-synaptic activity for each experimental
condition. These functions form the input to a model of neurovascular coupling, whose parameters are estimated
from the fMRI data. Crucially, this enables one to evaluate different models of neurovascular coupling, using
Bayesian model comparison – asking, for example, whether instantaneous or delayed, pre- or post-synaptic signals
mediate haemodynamic responses. We provide an illustrative application of the procedure using a single-subject
auditory fMRI and MEG dataset. The code and exemplar data accompanying this technical note are available
through the statistical parametric mapping (SPM) software.
1. Introduction

To interpret the blood oxygenation-level dependent (BOLD) contrast,
and its disruption due to aging (Tarantini et al., 2017), disease (Shabir
et al., 2018), or pharmacological interventions (Otsu et al., 2015), a better
understanding of the biological mechanisms of neurovascular coupling
would be useful. Neuronal activity triggers vasodilation, both directly via
signalling molecules – such as nitric oxide and adenosine (Li and Iadecola,
1994) – and indirectly via astrocytes (Takano et al., 2006). The ensuing
change in blood flow is accompanied by a change in blood oxygenation
(Logothetis et al., 2001; Filosa and Blanco, 2007), detectable as the BOLD
contrast. However, there are many outstanding questions about the origin
of BOLD in the human brain (Arthurs and Boniface, 2002; Hall et al.,
2016). For instance, is it driven by pre- or post-synaptic potentials of
neuronal populations? Does a region’s BOLD response depend on local or
distal neuronal projections? What causes region-specific differences in the
BOLD response? Human neuroimaging can complement animal models in
addressing these fundamental questions. Moreover, neuroimaging is
uniquely placed for investigating differences between people with
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different aetiologies or at different stages of disease progression,
non-invasively. Aberrant neurovascular coupling may play a role in many
neuro-physiological conditions (Tarantini et al., 2017). For instance, in
Alzheimer’s disease, a reduction in induced blood flow – in response to
neuronal demands for energy – has been implicated in cognitive decline
(Shabir et al., 2018; Snyder et al., 2015). Another example is aging, where
there is a progressive reduction in the efficacy of neurovascular coupling
(Lipecz et al., 2019). These motivate the importance of an efficient
approach to disambiguate the neurovascular mechanisms that underwrite
neural and haemodynamic responses.

Invasive recordings in animal models are commonly employed to
distinguish neuronal, vascular and haemodynamic contributions to the
BOLD response (e.g. Logothetis et al., 2001; Grill-Spector et al., 2006;
Shmuel et al., 2006). However, the same imaging techniques cannot be
adopted to study the human brain in vivo, which necessitates the use of
non-invasive functional imaging. BOLD contrast imaging using fMRI pro-
vides high spatial resolution for localising activity and, with suitable
models, enables inferences about the mechanisms of neurovascular
coupling (Stephan et al., 2007). This imaging technique typically has
n Square, London, WC1N 3AR, UK
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greater temporal resolution than other MRI methods used to study neu-
rovascular coupling, such as arterial spin labelling (Ferr�e et al., 2013) or
Vascular-Space-Occupancy (Lu and van Zijl, 2012); however, it is still too
slow to inform detailed models of neuronal activity. By contrast, electro-
magnetic recordings such as MEG provide exquisite temporal resolution –

at the level of electrophysiological dynamics – which in turn support the
identification of detailed neural models (David et al., 2006). The question
then arises: how canwe leverage the sensitivity of fMRI to haemodynamics
and the sensitivity of MEG to neuronal dynamics to best study
neuro-vascular interactions in humans non-invasively? The approach
pursued here is to combine a detailed neuronalmodel fitted to EEG orMEG
data with a model of neurovascular coupling and haemodynamics fitted to
fMRI data. Our objective in this paper is to introduce efficient tools useful
for modelling neurovascular function, rather than providing answers to
long standing questions about the origin of the BOLD signal. Therefore, at
this stage, we do not intend to draw any definitive conclusions about
neurovascular physiology (which will require group studies). Instead, we
present the methodological foundation by which competing hypotheses
about the origin of the BOLD response can formulated and tested. We
envisage this method will be particularly useful for modelling
between-subject differences in neurovascular coupling due to pathology
and disease. To illustrate how to apply the methods, we use an empirical
dataset, in which a single subject performed an auditory (roving oddball)
task, while undergoing MEG and fMRI.

To establish a method for modelling neurovascular coupling, our first
consideration was which neuronal model to use. Neuronal models of
varying complexity have been used in previous studies examining neuro-
vascular coupling. For example, Riera et al. (2005, 2006, 2007) explored
mechanisms of neurovascular coupling using fMRI- EEG data. In their
models, the BOLD response could be induced by pre- and/or post-synaptic
potentials associated with a single population of deep pyramidal cells,
connected with two populations of inhibitory interneurons. Voges et al.
(2012) investigated neurovascular coupling in the context of epilepsy,
using a neural mass model with one inhibitory and one excitatory
sub-population, based onWendling et al. (2000, 2005) and Jansen and Rit
(1995). A recent study by Friston et al. (2017) used a four population
canonical microcircuit (CMC) model (Bastos et al., 2012) to demonstrate
that fMRI and EEG/LFP data features may be uncorrelated, despite having
the same underlying neuronal sources. They coupled the CMC model,
which includes superficial and deep pyramidal cells as well as excitatory
and inhibitory neurons, with the haemodynamic model typically
employed in DCM for fMRI (Stephan et al., 2007). This combined model,
which so far has only been demonstrated with simulated EEG/LFP data,
has the potential to reveal laminar specific contributions to the BOLD
response. For this reason, we used the CMC model here, although it could
easily be replaced with any other appropriate neural mass model.

Our second consideration was the form of the neurovascular coupling
model and which neuronal sources should drive haemodynamics. Pre-
vious studies have explored detailed neurovascular coupling models
using non-invasive measurements (see review by Huneau et al., 2015).
For example, Sotero and Trujillo-Barreto (2007) proposed a model in
which lumped excitatory and inhibitory neuronal inputs drive a detailed
model of metabolic change and haemodynamics. Other models have
been evaluated by Rosa et al. (2011), who embedded the forward model
proposed by Riera et al. (2006) in a (variational) Bayesian framework.
They performed a Bayesian model comparison to evaluate different
neuro-vascular coupling functions based on synaptic activity and/or
post-synaptic firing rates. Here, we took a similar approach and
compared the evidence for different combinations of pre- or
post-synaptic neuronal inputs, as well as exogenous inputs from different
neuronal populations, using Bayesian model comparison. These mixtures
of neuronal activity entered an established neurovascular couplingmodel
(Friston et al., 2000) in which a vasodilatory signal induces flow and is
subject to feedback induced by that flow. This lumped vasoactive signal
is likely to subsume various signalling molecules and cascades. Nitric
oxide (NO) was proposed as a likely basis for this signal, as its half-life is
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consistent with empirically derived parameter estimates from fMRI
measurements (Friston et al., 2000). Nevertheless, there are many other
vasoactive agents that constrict or dilate blood vessels, including epox-
yeicosatrienoic acids (EETs), prostaglandin E2 (PGE2) and potassium
(Kþ). (For a recent review, see Nippert et al., 2018). If distinguishing
these signalling pathways is of interest, more biophysically detailed
models could be implemented using the model comparison framework
presented below (e.g., see Huneau et al., 2015). In the illustrative model
used here, the lumped vasoactive signal drives a haemodynamics model,
and a subsequent model of the fMRI signal (Stephan et al., 2007). We
emphasise, that any of these components could be substituted or
compared based on their contribution to model evidence.

Our third consideration was how to integrate MEG and fMRI data to
efficiently estimate the parameters of the neuronal, neurovascular and
haemodynamic parts of the model. To make inversion tractable,
reasonable independence assumptions can be made about the parameters
(i.e. a mean-field approximation). For example, Rosa et al. (2011) used a
three-step variational Bayesian estimation procedure, where they first
estimated neuronal parameters, then neurovascular coupling parameters,
and finally the parameters governing haemodynamics. Here, we also
used variational Bayesian inference methods, and divided the estimation
into a neuronal part and a neurovascular and haemodynamics part,
linked by neuronal drive functions. These functions are canonical synaptic
responses to each experimental condition from each neuronal popula-
tion, derived from a neural mass model which has been fitted to the MEG
data. These functions then form the input to the neurovascular coupling
model, which in turn drives the haemodynamics. Parameters relating to
the neurovascular and haemodynamic parts of the model are estimated
from the fMRI data. This approach offers convenience and flexibility,
because the neuronal drive functions can be generated from any of the
neural mass models available in the DCM framework without the need
for re-implementation.

In summary, the framework we set out in this paper couples a dy-
namic causal model of laminar specific neuronal responses (Bastos et al.,
2012, 2015) with a model of neurovascular coupling and the BOLD
response (Stephan et al., 2007). They are linked by neuronal drive
functions, which model the pre- or post-synaptic activity of each
neuronal population under each experimental condition. The form of the
neuronal drive or coupling functions is parameterised to enable hy-
pothesis testing using Bayesian model comparison. To illustrate the
proposed approach in this paper, we specified a sample factorial model
space covering a number of foundational questions about the mecha-
nisms of neurovascular coupling. The factors were: presynaptic versus
postsynaptic contributions to the neurovascular signal, whether the in-
puts to neurovascular coupling were region-specific, whether distal re-
gions contributed to local changes in BOLD response, and whether
neurovascular delays associated with the release of vasoactive agents
(e.g. calcium) should be modelled. This model space allowed us to
illustrate how to perform family-wise model comparisons, quantifying
the evidence for each question in turn. Future studies may use a model
space such as this to examine the commonalities or differences among
individuals or groups of subjects in their neurovascular coupling.

This paper has five sections. In section two, we set out the theory
underlying the approach. In section three, to further unpack intricacies of
the methodology, we illustrate multimodal DCM applied to an exemplar
fMRI/MEG dataset and compare models associated with some key hy-
pothesis about neurovascular mechanisms. The Discussion, in section
four, considers the procedures in terms of limitations and future appli-
cations. Finally, in section five, a software note provides instruction on
the code, as implemented in a toolbox for SPM.

2. Theory

2.1. Dynamic causal modelling for MEG

A biologically informed generative model of multimodal fMRI and



Fig. 1. Components of a forward model of fMRI and electrophysiological (MEG)
data. The generative neuronal/haemodynamic model is shown in the top panel,
which illustrates the pathway from neural populations (blue panel on the left) to
neurovascular coupling (grey panel in the centre) and haemodynamic response
(orange panel on the right). The neural model (left panel) is a laminar specific
canonical microcircuit (CMC) comprising four populations (numbered 1–4) per
brain region. Each CMC is linked through extrinsic (between regions) forward
and backward connections. Pre- or postsynaptic neuronal signals β are combined
(at the level of the putative astrocytes) which is presented in the middle panel.
The ensuing neurovascular signal z(t) at time t drives the haemodynamic part of
the model (right panel). This accounts for increased blood flow to the venous
compartment (pictured) and is accompanied by changes in blood volume and
the level of deoxyhaemoglobin. The bottom panels illustrate the electrophysi-
ological and fMRI measurements that arise from the neuronal and haemody-
namic parts of the model respectively, mediated by a spatial lead field model for
MEG and a BOLD signal model for fMRI. To make inversion of this model
tractable, we split the neuronal and haemodynamic parts and connected them
via neuronal drive functions – see text and Fig. 5.

Table 1
Parameters of the neuronal model (see also Fig. 1).

Description Parameterisation Prior

κi Postsynaptic rate constant of the ith

neuronal population in each of N
regions

expðθκÞ � κi
κ ¼ ½256;128;16;32�

pðθκÞ ¼
Nð0;0Þ

ai→k Intrinsic connectivity between
populations i and k in each region.

expðθaÞ � a
a ¼ ½2 1 1 1�*512

pðθaÞ ¼
Nð0;0Þ

Bb;f Condition-specific matrices.
Elements are zero unless forward,
backward or intrinsic connections
are allowed to change in different
conditions.

θb;f pðθbÞ ¼

N
�
0;
1
8

�

Af ;b Forward and backward extrinsic
connectivity matrices. If there is any
forward (backward) connection
between from region j to i, the
corresponding element ði; jÞ in Af

(respectively AbÞ is set to one.

expðθAÞ:Af ;b pðθAÞ ¼

N
�
0;
1
8

�

C Scalar matrix to driving input θc pðθCÞ ¼

N
�
0;

1
32

�

Table 2
Parameters of neurovascular and haemodynamic response functions.

Description Parameterisation Prior

η Rate of signal decay per sec 0:64 � expðθηÞ pðθηÞ ¼ N
�
0;

1
256

�
χ Rate of flow-dependent elimination 0:32 � expðθχÞ pðθχÞ ¼ Nð0;0Þ
τ Rate of hemodynamic transit per

sec
2:00 � expðθτÞ pðθτÞ ¼ N

�
0;

1
256

�
α Grubb’s exponent 0:32 � expðθαÞ pðθαÞ ¼ Nð0;0Þ
ε Intravascular: extravascular ratio 1:00 � expðθεÞ pðθεÞ ¼ N

�
0;

1
256

�
ϕ Resting oxygen extraction fraction 0:40 � expðθϕÞ pðθϕÞ ¼ Nð0;0Þ
βi Sensitivity of signal to neural

activity
θβ pðθiÞ ¼ N

�
0;

1
16

�
τnc Decay rate of the astrocytes

collateral
0:7 � expðθτnc Þ pðθncÞ ¼ N

�
0;

1
16

�

Table 3
Biophysical parameters of the BOLD observation model in equation (10).

Description Value

V0 Blood volume fraction 0:08
k1 Intravascular coefficient 6:9 �ϕ
k2 Concentration coefficient ε �ϕ
k3 Extravascular coefficient 1� ε
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MEG data is shown in Fig. 1. This DCM includes the common underlying
neuronal generators of bothMEG and fMRI measurements, mediated by a
spatial lead field and BOLD response model, respectively. We will explain
each part of the model in the following sections, before illustrating its
application to real data. All variables are defined in Tables 1–4.

2.1.1. Generative model of neuronal responses
We used the canonical microcircuit (CMC), which models the cir-

cuitry of a typical cortical column (Bastos et al., 2012, 2015; Douglas and
Martin, 1991). The model has been widely applied in the translational
neuroscience literature, in particular in the context of predictive coding
(Bastos et al., 2012), to explain evoked (Rosch et al., 2019) and spectral
responses (Rosch et al., 2018). It comprises four neuronal populations per
brain region: spiny stellate cells in the granular layer (ss), superficial
pyramidal cells in the supragranular layer (sp), inhibitory interneurons
distributed in all layers of the cortex (ii) and deep pyramidal cells in the
infragranular layers (dp), as shown in Fig. 1. The connectivity
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architecture in the CMC model introduced here consists of a subset of
known anatomical connections (predominantly) in visual hierarchies of
cortex (Ninomiya et al., 2012; Friston et al., 2017). The four populations
within each cortical column have intrinsic (inter-and intra-laminar)
connections that are ubiquitous in most cortical areas (Thomson and
Bannister, 2003; Binzegger et al., 2004; Haeusler and Maass, 2007).
Experimental and extrinsic inputs are received by spiny stellate cells in
the granular layer (hereinafter referred to as extrinsic forward connec-
tions) that project to superficial pyramidal cells and thereafter to deep
pyramidal cells. Each excitatory connection establishes reciprocal con-
nections with inhibitory interneurons. All populations have a recurrent
(self) inhibitory connection proportional to the level of excitation of the
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neuronal population. There are two types of external (extrinsic) input
entering each microcircuit from different levels of the cortical hierarchy.
Inputs can be bottom-up (forward) connections arising from superficial
pyramidal cells of the level below, targeting spiny stellate cells and deep
pyramidal cells. Alternatively, inputs can be top-down (backward) con-
nections arising from deep pyramidal cells of the level above, targeting
inhibitory interneurons and superficial pyramidal cells (Felleman and
Van Essen, 1991; Hilgetag et al., 2000).

Two conversion operators govern the dynamics of each neuronal
population (Jansen and Rit, 1995). The first operator converts the mean
pre-synaptic firing rate m to the mean postsynaptic membrane potential
V as follows (Freeman, 1975):

V ¼ h� m (1)

where � denotes the linear convolution operator and h is the impulse
response function (synaptic kernel) with synaptic rate constant κ:

hðtÞ¼

8><>:
t
κ
e�

t
κ; t � 0

0; t < 0
(2)

The second operator then transforms the postsynaptic membrane
potential into a firing rate, which forms the input to the next connected
neural population:

σðVÞ¼ 1
1þ expð � as ðV � VthÞÞ �

1
1þ expðasVthÞ (3)

In equation (3), as is the slope of the sigmoid function (in DCM, it is
set to one) and Vth is the firing threshold (in DCM it is set to zero, see
Moran et al., 2007). This effectively means neuronal firing is treated as a
deviation from baseline firing; thereby allowing for negative firing rates
(Moran et al, 2007, 2013 and Jirsa and Haken, 1997). This is fairly
common for convolution typemass models of the sort used here e.g., Jirsa
and Haken (1997). In addition, please see Moran et al. (2013) for a
discussion of other kinds of models (e.g., conduction-based models)
where nonnegative firing constraints are explicit. The maximum firing in
equation (3) is set to one because – in this parameterisation – the
maximum firing rate is lumped with the connectivity constants (e.g.,
Jirsa and Haken, 1997). The dynamics of postsynaptic potentials in re-
gion K, population i, VK

i ; with the synaptic rate constant κi obey second
order differential equations as follows:�
1þ 1

κi

d
dt

�2

VK
i ðtÞ ¼ fi

�
V o
ex;V

K
i ; u

�
(4)

where the intrinsic presynaptic excitations are given by VK
i , the term V o

ex
denotes extrinsic drives of a population o in a distal region ex ; and the
function f is defined as follows (Friston et al., 2017):
fi
�
Vσ
ex;V

K
i ; u

�¼
8>>>>>>><>>>>>>>:

Asp→ss
f σ

�
Vex
sp

�
� ass→ssσ

�
Vk
ss

�� asp→ssσ
�
Vk
sp

�
� aii→ssσ

�
Vk
ii

�þ Cuk if i ¼ ss

Adp→sp
b σ

�
Vex
dp

�
� asp→spσ

�
Vk
sp

�
þ ass→spσ

�
Vk
ss

�� aii→spσ
�
Vk
ii

�
if i ¼ sp

Adp→ii
b σ

�
Vex
dp

�
� aii→iiσ

�
Vk
ii

�� adp→iiσ
�
Vk
dp

�
þ ass→iiσ

�
Vk
ss

�þ asp→iiσ
�
Vk
sp

�
if i ¼ ii

Asp→dp
f σ

�
Vex
sp

�
� adp→dpσ

�
Vk
dp

�
� aii→dpσ

�
Vk
ii

�þ asp→dpσ
�
Vk
sp

�
if i ¼ dp

(5)
The laminar specificity of the extrinsic and intrinsic connections in
equation (5) are specified by placing prior constraints on the intrinsic
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(within-region) connectivity parameters a*→* as well as on the elements
of the extrinsic (between-region) forward and backward adjacency

matrices A*→*
f ;b (Asp→ss

f and Asp→dp
f denote forward connections matrices,

whereas backward connection matrices are specified by Adp→sp
b and

Adp→ii
b ). Matrix C parameterises the experimental driving input entering

the system. These modelled neuronal dynamics are the common source of
both the fMRI andMEG signals. As we will explain later, in DCM for MEG,
we estimate condition specific forward and backward matrices Bf ;b,
which are applied (algebraically added) to the Af ;b matrices and a*→*

parameters in order to model the differences between experimental
conditions.

2.1.2. MEG observation model
The observation function for MEG data has the following form

(Daunizeau et al., 2009):

yMEG ¼
X
K

ΥKΔK
0

X
j

ΨjV jðtÞ þ εM (6)

where εMeNð0;CMÞ are I.I.D. measurement errors (with covariance ma-
trix CM), ΥK is a gain matrix for brain region K and ΔK

0 is a Laplacian
operator that is modelled as a mixture of n spatial basis functions as
follows:

ΔK
0 ¼

X
n

ΛK
n Θ

K
n (7)

where ΛK
n are the spatial eigenvalues of the gain matrix and ΘK

n are pa-
rameters to be estimated. The term

P
j
ΨjVjðtÞ (where j is the index of

neuronal population) in equation (6) quantifies the contribution
(modelled by unknown vector Ψj) of neuronal populations denoted by
VjðtÞ to the MEG signal. This completes the forward model of MEG data.

2.2. Haemodynamic model

2.2.1. Generative model of neurovascular coupling
Neuronal dynamics (presynaptic or postsynaptic) excite neuro-

vascular coupling mechanisms, which in turn trigger the vascular system
to provide oxygen for neuronal consumption. While detailed models of
the neurovascular system have been developed (e.g. Carmignoto and
Gomez-Gonzalo, 2010; Figley and Stroman, 2011), the lack of temporal
resolution of fMRI places a limit on the complexity of models that can be
inverted efficiently (Huneau et al., 2015; Pang et al., 2017). The frame-
work set out in this paper provides the necessary tools for comparing the
evidence for models of neurovascular coupling, enabling one to select the
model(s) that optimise the trade-off between accuracy and complexity.
Two groups of models will be compared in this paper to illustrate the
approach.
The first group of models posit that an instantaneous neurovascular
response to neuronal activity (presynaptic firing rates or postsynaptic
potentials) gives rise to the BOLD response. This is mediated by the
release of signalling molecules that regulate and induce blood flow. The



Table 4
Glossary of variables and expressions.

Variable Description

u Thalamic input, modelled by a Gaussian function.
VK
j The j-th (neuronal) state in region K; e.g., mean depolarisation of a

neuronal population
σðVK

j Þ The neuronal firing rate – a sigmoid squashing function of
depolarisation

z Neurovascular signal; e.g., intracellular astrocyte calcium levels
hs;hin;hv ;
hq

Haemodynamic states: hs - vasodilatory signal (e.g., NO), hin - blood
flow, hv - blood –volume and hq - deoxyhaemoglobin content

Ψj Electromagnetic field vector mapping from (neuronal) states to
measured (electrophysiological) responses
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neurovascular signal can therefore be characterised as the algebraically
scaled and summed responses associated with different neuronal pop-
ulations. The scaling can either be considered to be the same for all re-
gions, or different across regions: we will compare the evidence for each
of these options below. Additionally, we will compare models where
presynaptic inputs to each of the neuronal populations in the CMC were
grouped into inhibitory, excitatory and extrinsic signals, each scaled by
global coefficients (equal across regions) and summed to generate inputs
to the haemodynamic model, as proposed in Friston et al. (2017).
Grouping the neuronal contributions in this way offers a more parsimo-
nious model than parameterising every neuronal population’s contribu-
tion. Here, all scale values associated with the neurovascular parameters
had a (relatively) flat prior, placing minimal constraints on their value.

Alternatively, there might be a delay between the neuronal activity
and haemodynamic response, due to the kinetics of intracellular calcium
levels in the collaterals of astrocytes (Bazargani and Attwell, 2016).
Therefore, a second class of neurovascular models was included with
additional delay factors. A parsimonious model that captures the mean
delay with time constant τnc due to elevation of intracellular calcium
level is governed by a second order linear system with an impulse
response function proposed by Pang et al. (2017):

fncðtÞ ¼

8>><>>:
t
τnc

e�
t

τnc ; t � 0

0; t < 0
(8)

The prior expected value of the delay factor in equation (8) was 0:7s
based on recent observations from animal studies (Masamoto et al.,
2015).

2.2.2. Generative model of the BOLD response
A linear transformation of the neurovascular coupling signal gives the

vasodilatory signal that alters the blood flow and accordingly the blood
volume and oxygenation level. The haemodynamic model explains the
dynamics of the vascular system as follows (Friston et al., 2000, 2003):

_hs ¼ z� ηhs � χðhin � 1Þ
_hin ¼ hs

_hv ¼ 1
τh

�
hin � h

1
α
v

�

_hq ¼ 1
τh

 
hin

1� ð1� E0Þ
1
hin

E0
� h

1
α
v

hq
hv

!
(9)

The first two lines in equation (9) are a damped filter (with the
resonance frequency of the vasomotor signal, i.e. 0:1 Hz) that converts
the neurovascular signal, z, to a vasodilatory signal hs. The parameters η
and χ in the first equation are the decay rates of the vasodilatory signal
and the auto-regulatory feedback term, respectively. Activation of the
vasodilatory signal causes alteration in blood inflow hin to the venous
compartments, which in turn causes an increase in blood volume hv and a
reduction in the level of deoxyhaemoglobin hq. The model for blood
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perfusion dynamics is given by Buxton et al. (1998) Balloon model, in the
third and fourth lines in equation (9). The mean rate constant τh in the
Balloon model is the time taken for blood to pass through the venous
compartment (the transit time). The parameter for the blood vessel
stiffness is α and is known as Grubb’s coefficient, and E0 is the net oxygen
extraction fraction at rest, which characterises the fMRI baseline.

2.2.3. fMRI observation model
Finally, the change in blood volume and deoxyhaemoglobin combine

to generate the BOLD signal:

yBOLD ¼V0

�
k1 �
�
1� hq

�þ k2 �
�
1� hq

hv

�
þ k3 � ð1� hvÞ

	
þ εB (10)

with the addition of noise, this is the BOLD signal measured in the
scanner. It comprises of physiological and field sensitive parameters,
listed in Table 3.

2.3. Multimodal estimation procedure

The parts of the model described so far specify a pathway from
neuronal activity to MEG and fMRI signals. In this section we set out a
novel first level (i.e., within-subject) method for combining these model
components and estimating their parameters. The procedure has three
stages. First, a typical mass-univariate SPM analysis is performed on the
fMRI data, to locate brain regions that evince experimental effects. Sec-
ond, a DCM for MEG is specified, comprising a neuronal part (Section
2.1.1) and an observation part (Section 2.1.2). The coordinates of the
brain regions identified in the fMRI analysis are used as prior constraints
on the observation part, which projects neuronal activity to the scalp
surface. A DCM is then fitted to the MEG data using the standard varia-
tional Laplace scheme (Friston et al., 2003), which provides an estimate
of the parameters and the log model evidence (approximated by the
negative variational free energy). Next, using the posterior expectations
of the neuronal parameters, the DCM is used to generate a posterior
predictive neuronal response to each experimental condition; hereafter,
neuronal drive functions, which form a bridge between theMEGmodel and
the fMRI model.

To clarify this approach, let the simulated electrophysiological
response (e.g., pre or post synaptic signals) of population i in region j for

the conditions c1;…; cn be denoted by f ijc1 ðtÞ;…:; f ijcn ðtÞ; and also assume
that the time associated with lth repetition of condition c* in the fMRI
experiment is denoted by t*l , with total repetitions of the condition jc*j
(i.e., the total number of times that an experimental condition * is shown
to a subject is denoted by |*|). Then the neuronal drives associated with
population i in region j to the neurovascular function are calculated as
follows:

zijðtÞ¼
Xjc1 j
l¼1

f ijc1
�
t� t1l

�þ…þ
Xjcn j
l¼1

f ijcn
�
t� tnl

�
(11)

The zijðtÞ in each region are then combined based on the particular
hypothesis about neurovascular coupling. In this paper, the neuro-
vascular drives to the haemodynamic response in region j (each region
comprises four populations) were calculated using one of the two general
forms:

zjðtÞ ¼
X4
i¼1

βijz
ijðtÞ

zjðtÞ ¼ fnc �
 X4

i¼1

βijz
ijðtÞ
! (12)

The first line in equation (12) states that neuronal activity causes the
BOLD response instantaneously whereas the second equality introduces a
delay and dispersion through the application of a convolution operator
that models intracellular calcium dynamics, as in equation (8). We will
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refer to these two forms as Direct and Delay, respectively. In equation
(12), parameters βijs are scalars (for the ith population in region j) that can
be constrained to be identical or vary across regions.

Finally, the third step is to use these neurovascular signals as input to
the haemodynamic model of responses in each region or source (see the
first line of Equation (9)). The parameters and evidence of the haemo-
dynamic models are estimated from the fMRI data using Variational
Laplace in the usual way (Friston et al., 2007).

3. Illustrative example

3.1. Dataset

To illustrate how to apply the methods outlined above, we acquired a
dataset from a single subject (right-handed, male, age 30) who performed
the same auditory task while undergoing fMRI and MEG on separate
days. This experiment was conducted in accordance with the Ethics
Committee of University College London, UCL Ethics Ref: 1825/003
(MRI) and Ref: 1825/005 (MEG).

The task was a variant of the auditory roving oddball paradigm
(Baldeweg et al., 2004), which has been extensively characterised in
patient and control populations using DCM (e.g. Boly et al., 2011, 2012;
Dima et al., 2012; Garrido et al., 2008; Rosch et al., 2018). Participants
hear a series of ‘standard’ tones of the same pitch (frequency). Occa-
sionally, the tone changes to a new pitch (a ‘deviant’), eliciting neural
responses that gradually reduce over the tones that follow, as the deviant
becomes the new standard. These neural effects cause marked deviations
in the MEG signal (the mismatch negativity, MMN) and we expected
there to be concomitant changes in the fMRI signal. We extended the
roving oddball task with a second experimental factor of agency. In each
block of tones, the auditory stimuli were either produced by the subject
(‘control’ condition) or by the computer (‘respond’ condition) as detailed
in Fig. 2.

There were therefore two independent experimental factors – surprise
(standards vs deviants) and agency (computer-vs human-controlled
tones). To maximise fMRI efficiency, the auditory stimuli were ar-
ranged into blocks of four types – 1) respond with many deviants 2)
respond with few deviants 3) control with many deviants 4) control with
few deviants. The computer screen in the MRI scanner and MEG system
displayed a white fixation cross on a black computer screen, and the
subject was instructed to fixate throughout. We will present analyses
focussing on the novel manipulation of agency in a separate manuscript.
Here, we used data collected under this task purely to illustrate the
estimation of neuronal and neurovascular responses in the auditory hi-
erarchy. The MEG and fMRI datasets were pre-processed using standard
procedures in SPM12 (for details, see the supplementary material).
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3.2. Preliminary fMRI analysis

We used the fMRI data to select regions of interest for the subsequent
analyses. Details are provided in the Supplementary Text. In brief, we
specified a General Linear Model with regressors (covariates) encoding
the onsets of deviants in the control blocks, deviants in the respond
blocks, auditory cues instructing the participant of whether they were in
a respond or control block, as well as regressors encoding head motion
and a constant term. We computed the t-contrast for the main effect of
deviants vs standards, thresholded at p < 0.05 family-wise error cor-
rected for multiple comparisons. This identified five regions conven-
tionally included in mismatch negativity studies (Garrido et al., 2008):
left and right Heschl’s gyri, left and right planum temporale and right
inferior frontal gyrus (IFG). We identified the MNI coordinate of the peak
response in each region and extracted a single representative timeseries
(the first principal component) from each.
3.3. DCM for MEG specification

Pre-processing the MEG data gave rise to four types of event-related
potential (ERP), namely standards in respond blocks (SR), deviants in
respond blocks (DR), standards in control blocks (SC) and deviants in
control blocks (DC). We defined a neuronal (CMC) model comprising a
fully connected network (by defining priors on adjacency matrix A) to
govern dynamics of the four ERP conditions SR, DR, SC and DC in the
time interval ½0�400�ms post-stimuli. Differences between the four ERPs
were characterised by the following between trial effect (BTF) matrix:

BTF¼

2664
SR DR SC DC
0 0 0 1
0 0 1 0
0 1 0 0

3775: (13)

The BTF matrix instructed DCM for MEG to treat the SR condition as
the baseline, and to model each of the remaining conditions by adding
condition-specific forward and backward Bmatrices (Litvak et al., 2011).
The priors for the B matrices in this paper were defined such that all
extrinsic forward, backward and self-inhibition of neuronal populations
were subject to change by the DR, SC and DC conditions. The thalamic
inputs, U, were received by the lowest level in the cortical hierarchy of
our model (left and right Heschl’s Gyrus). The inputs U were specified
and parameterized by a bell-shaped (Gaussian) function which encoded
the delay and dispersion of the neural response to external stimuli.
Consistent with other DCM studies of auditory mismatch negativity
paradigms (e.g., Garrido et al., 2008, David et al., 2006, and Rosch et al.,
2019.), we hypothesised that the effect of stimulation would drive neural
activity about 70 � 16 ms post stimulus (having said that, one could
explore different sets of priors for the input parameters and compare
Fig. 2. Structure of a single block of the
experiment. The subject received an auditory
cue, instructing them to respond to auditory
tones or control the tones (by pressing a
button). After 2s, a series of tones was pre-
sented. Deviant tones (red striped circles)
differed in frequency from the preceding
tone. Whether a tone was a standard or
deviant was independent of whether the tone
was triggered by the computer or the subject.
The block ended with an inter-block interval
of 1s. Image credits: Press button by Hea Poh
Lin and Speaker by ProSymbols from the
Noun Project, CC BY 3.0.



Table 5
Model space design to investigate function of neurovascular coupling.

Model F1: Parameterisation F2: Distal
inputs?

F3: Region-
specific?

F4: Direct vs
Delay

1 Pre Yes Yes Direct
2 Pre No Yes Direct
3 Pre Yes No Direct
4 Pre No No Direct
5 Post N/A Yes Direct
6 Post N/A No Direct
7 Pre (Friston et al.,

2017)
Yes No Direct

8 Pre (Friston et al.,
2017)

No No Direct

9 Pre Yes Yes Delay
10 Pre No Yes Delay
11 Pre Yes No Delay
12 Pre No No Delay
13 Post N/A Yes Delay
14 Post N/A No Delay
15 Pre (Friston et al.,

2017)
Yes No Delay

16 Pre (Friston et al.,
2017)

No No Delay

* Factors F1–F4 correspond to the factors of the experimental design described in
Section 3.4.
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ensuing model evidences associated with them, i.e. using Bayesian model
comparison to find the best prior for any specific auditory paradigm). We
fitted this model to the MEG data using the eight principal modes of the
modelled and observed ERPs as data features (Auksztulewicz and Friston,
2015; Friston et al., 2007). Using the posterior expectations of the
neuronal parameters, we then used the canonical microcircuit model to
simulate neuronal drives (i.e., posterior predictive expectations) for each
of the four experimental conditions.

3.4. Neurovascular model specification and comparison

The neuronal inputs to the haemodynamic model were generated
from the neuronal drive functions, parameterised according to the hy-
pothesis being tested. Let the simulated neuronal response of population i

in region j for the four conditions be denoted by f ijSR;DR;DC;SCðtÞ. Using
equation (11), the neuronal drives associatedwith population i in region j
to the neurovascular function are given as follows:

ZijðtÞ¼
XjDRj
l¼1

f ijDR
�
t� tDRl

�þ XjSRj
l¼1

f ijSR
�
t� tSRl

�þ XjDCj
l¼1

f ijDC
�
t� tDCl

�
þ
XjSCj
l¼1

f ijSC
�
t� tSCl

�
(14)

We defined a sample model space that included a set of 16 candidate
haemodynamic models covering a number of biologically informed hy-
potheses about the nature of neurovascular coupling. These models
varied according to four model attributes or factors:

Q1: How should neurovascular coupling be parameterised? We
considered three options, regarding whether the haemodynamic part
of the model should be driven by:
� collaterals from presynaptic inputs to each population, with sepa-
rate parameters for each population

� collaterals from presynaptic inputs to each population, grouped
into excitatory, inhibitory and extrinsic collaterals (Friston et al.,
2017)

� postsynaptic neuronal drive (f functions in equation (11))
Q2: Should distal neuronal sources exert changes on the regional
BOLD response? In other words, should haemodynamics be driven by
local neuronal populations only, or additionally by exogenous inputs
from other regions?
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Q3: Should neurovascular coupling parameters be region-specific or
equal for all regions (β in equation (12))?
Q4: Should a Direct or Delay model governing the dynamics of
astrocyte responses be used (selection of the first or second equality in
equation (12))? This addresses the delays associated with the release
of vasoactive agents (e.g., intracellular calcium).

These four questions underwrite 16 candidate models, listed in
Table 5. We then estimated the parameters and evidence (free energy) for
each of the models using a standard variational Laplace scheme (Friston
et al., 2007). To address each experimental question, we grouped the
candidate models into families and compared them using family-wise
Bayesian model comparison (Penny et al., 2010). Finally, we used
Bayesian model comparison over the entire model space to find the most
parsimonious explanation for the origin of the BOLD response in our
dataset.

3.5. Results

We first used the fMRI data to locate brain regions responding to the
main effect of deviants versus standards. As hypothesised, this included
five regions typically found in the oddball paradigm, shown in Fig. 3a.

Next, we used the coordinates of these five regions as priors for source
localisation in DCM for MEG. We specified a DCM, as shown in Fig. 3b,
where each brain region or source (large black circle) was a canonical
microcircuit. We fitted this model to the MEG data. Fig. 4 shows the scalp
maps associated with the prediction of the model and the observed data
over the time course of a trial. A close correspondence between the
predicted and real data is apparent.

We then used the posterior neuronal estimates to simulate pre/post-
synaptic potentials associated with the four experimental conditions – i.e.
to generate neuronal drive functions. These are shown in Fig. 5a for the
inhibitory population in the IFG region (the rest of the neuronal drives
were calculated in a similar way). These condition-specific responses
were then aligned with the associated condition-specific stimulus onsets
in the fMRI experimental design (equation (11) and Fig. 5b). Neuronal
drives associated with each source were then summed (and in some
models filtered to replicate delay dynamics of neurovascular coupling) to
generate the neurovascular drive to the haemodynamic model (equation
(14) and Fig. 5c).

As detailed in Section 3.4, we specified and estimated 16 candidate
haemodynamic models, which varied in their mechanisms of neuro-
vascular coupling according to four model factors. We then divided the
models into ‘families’ according to each factor and performed a series of
family comparisons. For this exemplar single subject analysis, the results
of Bayesian model comparison showed that neurovascular coupling was
best explained (with a posterior confidence approaching 100% for each
comparison) as:

(i) driven by collaterals from presynaptic input, separately para-
meterised for each neuronal population, rather than presynaptic
input grouped into excitatory/inhibitory/exogenous connections
or postsynaptic input

(ii) driven by local neuronal projections without afferent input from
distal regions

(iii) separately parametrised on a region-specific basis, rather than
having shared weights for each condition and neuronal pop-
ulations across brain regions

(iv) having a direct form of model governing the dynamics of astrocyte
responses, as opposed to a delayed effect.

The overall winning model in our sample model space, with a log
Bayes factor of 7.67 compared to the next best model, suggested that this
subject’s BOLD response could best be explained by instantaneous local
presynaptic neuronal activity, with region-specific parameterisation of
neurovascular coupling. Fig. 6 shows the estimated neurovascular



Fig. 3. Region of interest selection and DCM
network structure. a) Five neuronal sources
activated during the fMRI experiment, as
identified using a mass univariate analysis.
These were left and right Heschl’s gyrus
(lHG, rHG), left and right planum temporale
(lPT,rPT) and right inferior frontal gyrus
(rIFG). Peak MNI coordinates, used as priors
for MEG source localisation, are shown. b)
Structure of the neuronal part of the DCM.
Each large black circle is a canonical micro-
circuit (CMC), extrinsic connections between
regions are shown as curved black lines, and
connections that were subject to change –

from one condition to another – are indi-
cated with straight red lines.
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coupling parameters from this model, with parameters not contributing
to the model evidence pruned using Bayesian model reduction. For each
parameter, Bayesian model reduction was also used to test the hypothesis
that the parameter was present vs absent (i.e. non-zero vs zero). In this
plot, each group of 4 bars are the estimated contribution of each neuronal
population (SS, SP, II, DP) to the haemodynamic model. In all five regions
there were parameters which deviated confidently from their prior
expectation of zero, confirming that the synaptic activity estimated from
the MEG data captured variance in the fMRI data (explained variance per
region: 53%, 37%, 64%, 37% and 28%). Fig. 7 shows the prediction of
the winning model and the observed fMRI time series of the five regions.

Readers should note that this example is only intended to illustrate
how to apply the proposed method, therefore the results should not be
generalised from the exemplar subject, with this specific experimental
paradigm. To make inferences about typical and atypical neurovascular
coupling, group studies would be necessary, with the appropriate be-
tween subject modelling and model comparison.

4. Discussion

4.1. Methodology

The novel contribution of this work is to establish a relatively
straightforward multi-modal DCM procedure that flexibly connects
laminar-specific neural mass models, which are fitted to electrophysio-
logical data, with neurovascular models, which are fitted to fMRI data,
via simulated neuronal drive functions. Together, these form a complete
generative model of the BOLD signal, which enables hypotheses about
neurovascular coupling to be tested efficiently using Bayesian model
comparison and reduction. The neuronal drive functions act as a bridge
between the fMRI and MEGmodalities, enabling multi-modal analyses to
be conducted with any of the neural mass models implemented within
the DCM framework. We addressed the difficult parameter identification
problem inherent in having a single generative model of both BOLD and
electrophysiological recordings by separately estimating neuronal pa-
rameters using MEG data, and neurovascular/haemodynamic parameters
using fMRI data. This can be seen as a simple form of Bayesian belief
updating, in which the posterior estimates based uponMEG data are used
as precise priors for models of haemodynamic responses, which share a
common set of neuronal parameters. Crucially, we can leverage this form
of Bayesian belief updating using ‘off the shelf’ dynamic causal models
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for both modalities. The only things we need to add are neuronal drive
functions that link the modality-specific DCMs. The proposed approach
may offer new insights into the source of the BOLD response in the
healthy and pathological brain and is available through the SPM
software.

As noted in the introduction, the purpose of this paper is to introduce
an analytic procedure – not to draw any definitive conclusions about the
nature of neurovascular coupling or how haemodynamics are affected by
demographic or diagnostic factors. We therefore elected to present a
single case study. This analysis can be generalised to group studies using
hierarchical or parametric empirical Bayes for dynamic causal modelling
(Friston et al., 2015, 2016). In principle, this provides an opportunity to
infer the nature of haemodynamic coupling that is conserved over sub-
jects. However, this particular application was not our focus, largely
because a detailed mechanistic understanding of haemodynamics would
be better informed by more invasive data (probably from animal studies).
Rather, our goal was to provide efficient estimates of haemodynamic
parameters from non-invasive (human) data, enabling researchers to
investigate factors like age and pathology (e.g., migraine, Alzheimer’s
disease) on haemodynamic parameters – in a way that is not confounded
by uncertainty about changes in neuronal coupling and intrinsic cir-
cuitry. In this light, the current paper can be regarded as a foundational
(technical) description of the methodology that could pave the way to
addressing questions about between-subject effects on haemodynamic
parameters (under a particular model of neurovascular coupling). This
kind of application speaks to the underlying motivation for combining
electromagnetic and haemodynamic data. In short, the principal advan-
tage of multimodal fusion in this paper is the opportunity to estimate and
quantify haemodynamics per se. The extra information afforded by MRI
data about neuronal parameters is limited, given an appropriate model of
electromagnetic responses. The key thing that the MRI data brings to the
table is the ability to quantify neurovascular coupling given (MEG or EEG
based) estimates of neuronal coupling, on a per subject basis. In this
setting, the procedures outlined above are aimed explicitly at disam-
biguating changes in neuronal and haemodynamic coupling, when
quantifying age and disease-related neurophysiology.

One might ask what the advantages are of acquiring fMRI and M/EEG
data in separate sessions – as opposed to simultaneously. Clearly,
simultaneous acquisition has the benefit of modelling the electromag-
netic and haemodynamic responses to the same neuronal generators.
However, from a statistical perspective there are advantages to separate



Fig. 4. DCM for MEG results. This figure shows scalp map projections of observed and predicted responses for two conditions; namely, standard and deviant tones (in
the respond blocks only).
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acquisition protocols. These rest upon the fact that the efficiency of the
design can be optimised for each modality separately. This is particularly
prescient given that the haemodynamic response function imposes
particular constraints on experimental design for fMRI, which would be
inappropriate for an EEG paradigm. For example, one can use many more
EEG trials under a separate acquisition protocol. Assuming a stereotypi-
cal neuronal response for each trial type therefore enables an efficient
estimation of neuronal (and haemodynamic) model parameters, via the
use of trial averages.

4.1.1. Relation to other methods
The approach set out here can complement well-established empirical

methods for measuring cerebrovascular reactivity; namely, CO2 chal-
lenges (Maggio et al., 2014; Salient et al., 2014). These procedures enable
blood flow to be modulated and quantified in vivo; however, they do not
enable one to estimate the underlying neuronal responses to various
stimuli. Furthermore, these methods may not be appropriate in all situ-
ations. For example, where the study of certain clinical populations
precludes the use of gas challenges. Therefore, a non-invasive method
that relies only on BOLD contrast, such as that described here, could be
more practical. Additionally, using electromagnetic responses that are
generated directly from neuronal (depolarisation) sources allows one to
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compare neurovascular models that map from neuronal responses to
haemodynamic and metabolic responses in a more efficient manner.

The multimodal dynamic casual modelling approach presented in this
paper (for investigating neurovascular mechanisms) can be compared
against other modelling and simulation techniques. Pang et al. (2017)
considered different models of neurovascular coupling, each of which
drove a canonical haemodynamic response function (HRF). They fitted
these models (where each formulated a different neurovascular mecha-
nism with a common HRF) to BOLD time series and used goodness of fit
criteria for model selection. Schirner et al. (2018) used structural imag-
ing for inferring effective connectivity and simulated data from a he-
modynamic model that was driven by EEG source activity (under the
hypothesis that excitatory activity, as reflected by EEG, perfused blood
flow) to replicate BOLD responses similar to real fMRI data.

From a technical standpoint, using variational Bayesian techniques
(inferring parameters by optimising free energy) is superior to maximum
likelihood or goodness of fit (Bishop, 2006). This follows because fitting
models based only on their accuracy fails to account for model
complexity and precludes generalisability. In addition, model estimation
using dynamic casual modelling allows for estimation of the posterior
probability of parameters and model evidence, which is necessary for
model selection based on Bayesian model comparison (Jafarian et al.,



Fig. 5. Simulated neuronal drive associated with one neuronal population. DCM for MEG was first used to infer the neuronal parameters of CMC models. a) The
ensuing neuronal parameters were used to generate condition specific neuronal responses (e.g., pre-synaptic signals). b) To generate the input for the haemodynamic
model, the neuronal drive functions were convolved (or shifted in time) with the onset of each trial of the fMRI experiment. c) All condition specific neural responses
were then summed to generate the neuronal drives to neurovascular coupling units. This was repeated for each neuronal population and brain region.
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2019). This allows for testing and comparison of several hypothesis about
different mechanisms of neurovascular coupling. The use of multimodal
data provides complementary constraints on parameter estimation that
afford a greater efficiency – in terms of parameter estimation and model
comparison – then using a single (i.e., fMRI) modality (Wei et al., 2020).
In short, our proposed multimodal approach could complement existing
fMRI DCM studies elucidating, for instance, neural and haemodynamic
contributions to aging (Tsvetanov et al., 2016).
4.2. Potential applications

To illustrate the type of hypotheses that can be addressed using this
approach, we used Bayesian model comparison to address four experi-
mental questions in a single subject MEG/fMRI dataset. Our model space
could be applied directly to data from a group of subjects, or it could
easily be modified in order to accommodate different hypotheses about
neurovascular coupling (please see the software note for more informa-
tion). In practice, we expect that a model space such as this would be used
to identify a parsimonious model that was apt for a group subjects, before
being used to quantify subject specific differences in model parameters,
for example due to aging or disease.

To illustrate this kind of model comparison, we asked whether pre-
synaptic or postsynaptic neuronal activity mediated haemodynamic re-
sponses. This sort of question speaks to the findings of Attwell and
Iadecola (2002) and Logothetis (2003, 2008), who concluded that mean
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neuronal firing rates (presynaptic signals) are largely responsible for the
BOLD response in humans.

The second question was whether extrinsic collateral afferents from
distal regions contribute to haemodynamics, or whether neurovascular
coupling should be considered a purely local phenomenon. Bayesian
model comparison suggested that local neuronal activity provided the
best explanation for the BOLD response, as is assumed, for example, in
mass-univariate (SPM) analysis or Dynamic Causal Modelling (DCM) for
fMRI.

The third question in this illustrative model space was whether the
contribution of neuronal populations to the neurovascular units was
identical across brain regions or region-specific. Model comparisons of
this sort could establish whether neuronal contributions to neurovascular
mechanisms are region-specific (Devonshire et al., 2012), or indeed
distinct across cortical layers (Goense et al., 2012 & 2016).

The fourth question we asked was whether the BOLD signal was best
explained as being driven by a Direct (scaling only) or Delay (scaling and
delay) model of neurovascular coupling. This question was motivated by
studies in animal models, suggesting a delay between neuronal activity
and the BOLD response due to elevation of intracellular calcium in
astrocyte collaterals (Rosenegger and Gordon, 2015). We used a lumped
linear second-order model, which can be inferred efficiently using fMRI
data. The ensuing model comparison addressed questions about whether
instantaneous electrophysiological fluctuations induce BOLD responses
directly, as reported in Logothetis (2003).



Fig. 6. Estimated neurovascular parameters. The plots show posterior estimates
of the neurovascular coupling parameters β that best accounted for the multi-
modal data and BMR analysis of estimated parameters that elucidate key pa-
rameters governing dynamics of data. The grey bars are the expected values and
the pink error bars are 90% credible intervals. Each group of 4 bars corresponds
to parameters quantifying the contribution to the neurovascular coupling by:
spiny stellate (SS), superior pyramidal (SP), inhibitory interneurons (II) and
deep pyramidal (DP) cells. The titles indicate the brain regions: left Heschl’s
gyrus (lHG), right Heschl’s gyrus (rHG), left planum temporale (lPT), right
planum temporale (rPT), right inferior frontal gyrus (rIFG). 11

Fig. 7. Model prediction and observed data. Predicted BOLD time series asso-
ciated with the instantaneous region-specific model of neurovascular coupling
mechanisms, driven by regional presynaptic signals, as well as observed fMRI
time series are shown. The vertical axis labels are associated with the five brain
regions: left Heschl’s gyrus (lHG), right Heschl’s gyrus (rHG), left planum
temporale (lPT), right planum temporale (rPT), right inferior frontal gyrus
(rIFG). Numbers in the legend denote explained variance (%).
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The proposed framework may be particularly useful for studying
processes that effect both neuronal and haemodynamic responses. For
instance, it could be used to model effects of aging (D’Esposito et al.,
2003) in cognitive paradigms, where aging would be expected to not only
affect neuronal responses, but also the stiffness of blood vessels, quan-
tified by Grubb’s exponent in the haemodynamic model (see Equation
(8)) and/or delays in the model neurovascular coupling. To facilitate this,
multimodal DCM could be combined with the parametric empirical
Bayes (PEB) (Friston et al., 2016), to test for differences in neurovascular
and haemodynamic parameters between young and old age groups. The
approach in this paper may also be useful for characterising experimental
manipulations for which neurovascular function alone is altered. For
instance, the action of a particular intervention such as diazoxide is
predominantly on neurovascular coupling, with little effect on neuronal
dynamics (Pasley, 2008). In summary, the current modelling initiatives,
together with PEB for random (between subject) effects analysis, are well
placed to characterise and elucidate neurovascular physiology.

Finally, an interesting application could address the genesis of the
negative BOLD signal. To do so, one would start by designing a paradigm
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(e.g. Klingner et al., 2011; Huber et al., 2014) to elicit both positive and
negative BOLD responses. Using multimodal DCM and Bayesian model
comparison, one could test hypotheses about neurovascular mechanisms
that might induce negative BOLD (Valdes-Hernandez et al., 2018).
Interesting questions might include (i) do BOLD responses result from
positive/negative neuronal drive signals as introduced in this paper? (ii)
Does neuronal inhibition significantly contribute to the negative BOLD
(Shmuel et al., 2006; Bernal-Casas et al., 2017)?

4.3. Limitations and further development

A common issue in non-simultaneous multimodal paradigms is the
possibility of different underlying generators of neuronal responses for
each modality (Wibral et al., 2010). For the example analysis in this
paper, the use of MEG data to inform the characterisation of fMRI data
rests explicitly on having a common neural model that can generate both
modalities, which shares the same neuronal parameters and architecture
(see Hall et al., 2014a,b). In other words, we assume that the neuronal
responses in the two recordings – under the same paradigm – are
generated in the same way. However, if quantifying neuronal plasticity
over time were of interest, one could collect MEG and fMRI data for
several days and perform multi-modal DCM at each time point. Then, the
parameters of the MEG-informed haemodynamic model (associated with
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each day) could be entered into a second level analysis to test for com-
monalities and differences over time. For example, one could test for
differences between scanning in the morning and evening, or for a
parametric effect of the number of days between recordings. Given that
we have illustrated the procedure using a single dataset, we could not
illustrate tests for session to session variability. However, between ses-
sion (or subject) variability in model parameters is generally assessed
using hierarchical models, known technically as Parametric Empirical
Bayes (Litvak et al., 2015). This is an established technology for between
session and between subject effects in the parameters of dynamic causal
models and – in principle – would be straightforward to apply in the
current setting. In other words, having established the model of neuro-
vascular coupling with the greatest evidence at the between session (or
subject) level, one can then quantify the between session (or subject)
variability in model parameters.

The approach described here affords the opportunity to investigate
how (weighted) laminar-specific neuronal activity contributes to a single
measurement (per region) BOLD signal. Therefore, a key limitation of the
model is the assumption of a single haemodynamic compartment. This
could be improved by using laminar fMRI data. In fact, neural vasculature
has a well-studied spatial arrangement in the cortical depth, which was
modelled in the DCM framework by Heinzle et al. (2016). This modelling
approach could be incorporated in the approach described here, to better
account for differences across laminae due to vasculature. Furthermore,
as high spatial resolution fMRI data becomes more readily available –

with the rollout of 7 T scanning – the question arises of how to make use
of these data to inform estimates of neurovascular coupling parameters.
There is considerable interest in associating the BOLD response with
specific layers of the cortical column, and the laminar specificity of for-
ward and backward connections (e.g. Scheeringa and Fries, 2017; Law-
rence et al., 2017; Duyn, 2012; Scheeringa et al., 2016). Typically,
laminar fMRI involves dividing the cortical depth into several layers and
extracting time series from each layer. Incorporating these laminar spe-
cific measurements into the framework presented here could, in princi-
ple, be achieved by incorporating a mapping between neuronal activities
corresponding to cortical layers and the laminar haemodynamic model.

It is worth reiterating that the current approach is flexible in the sense
that one can select different models (or different priors) that best
accommodate the scientific question at hand (see the review by Huneau
et al., 2015 for different examples). The selection of neuronal and hae-
modynamic models (and their priors) – for the exemplar analysis in this
paper – was motivated by the fact they are well established in the liter-
ature, and are readily available within the SPM software. Nevertheless, as
physiological understanding and imaging fidelity improve, there are new
opportunities for development of the models themselves. In the example
presented here, we used the classic model of Buxton et al. (1998) to
generate predicted haemodynamic responses. However, alternative
haemodynamic models could be implemented and compared based on
their evidence, to address particular questions of interest. For instance,
there is significant interest in elucidating themechanisms that give rise to
the BOLD post-stimulus undershoot (PSU) (Van Zijl et al., 2012) as well
as differences in the PSU between experimental conditions and people.
Characterising this phenomenon calls for models that distinguish the
neural, neurovascular and haemodynamic contributions to the observed
fMRI signal – the statistical efficiency of which can be improved by the
use multi-modal data, such fMRI and EEG/MEG (Wei et al., 2020). A
recent example of a promising dynamic haemodynamic model, which
could be implemented in the DCM framework, explains differences in the
PSU (and other transient data features) between cortical laminae, by
explicitly encoding haemodynamic flow through ascending veins (Hav-
licek and Uluda�g, 2020). The evidence for a model such as this could be
compared against the model used here and the optimal one selected for a
1 The results in Fig. 6 were reported in a provisional form – as part of a
tutorial/review in Jafarian et al., (2019).
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particular application. Note, however, that if the experimental interest is
primarily about condition-specific neural/neurovascular effects, the
choice of haemodynamic model may have a limited influence on the
results (e.g. as found by Havlicek et al., 2015). This is because there is, to
a large degree, conditional independence between neural and haemo-
dynamic parameters (Stephan et al., 2007), a situation further improved
by the use of multi-modal data (Wei et al., 2020). This suggests that
different contributions to the data could be quantified efficiently.
Another example would be for modelling metabolic activity; i.e. the
usage of glucose induced by excitatory and inhibitory activity. For this,
one may consider using inhibitory and excitatory neuronal drive func-
tions, introduced here, as the inputs to the model by Sotero and
Trujillo-Barreto (2007, 2009).

Finally, the priors for the model parameters (for both CMC and hae-
modynamic models) can also be updated based on empirical studies. As
an example, SPM assumes a prior for the resting blood volume V0 of 8%.
Since the introduction of this model, studies have generally found a lower
value (e.g. 5%) (Leenders et al., 1990). Changes in prior assumptions can
be implemented easily by changing the appropriate Matlab function
encoding the observation model (e.g., spm_gx_hdm.m). Priors for the
parameters of CMC model can also be updated. For example, the
particular parameter setting of the sigmoid function in the CMC model
(e.g., one may consider updating firing thresholds to 6 mV or treating it
as free parameter) to better accommodate biological plausibility (the
associated function is spm_dcm_cmc_tfm.m). In summary, we hope the
statistical tools presented here will prove useful, for both the ongoing
development of neurovascular models and the application of these
models for testing hypotheses using multi-modal data.

5. Software note

Tools for conducting the analysis procedure presented in this paper
are included in SPM12 software. The key function for multimodal DCM
inversion is spm_dcm_nvc.m. Input to this function is a cell array that
includes: (i) SPM analysis of fMRI data, (ii) extracted fMRI time series,
(iii) DCM for M/EEG, (iv) options for how neuronal responses excite
neurovascular coupling and how neuronal vascular coupling should be
modelled, and (v) a matrix that defines whether any neuronal activity
should be excluded from the study (e.g. excluding pre/post synaptic
inhibitory activity from the neuronal drive functions). The model options
defining the interface between neuronal and neurovascular coupling
should be defined as a Matlab cell array. The first entry of the cell in-
dicates that the BOLD signal can be induced by pre- (‘pre’), post- (‘post’)
synaptic signals or decomposed presynaptic signals (‘de’) (Friston et al.,
2017). The second entry defines whether for different brain regions, the
neurovascular coupling model has the same (‘s’) or different (‘d’) pa-
rameters. The third entry is to select whether extrinsic neuronal activity
(‘exc’) or intrinsic neuronal activity (‘int’) induces regional BOLD signals
(when using the option ‘post’, this option should be set to ‘na’). For
instance, the model option M ¼ {‘pre’, ‘s’, ‘int’} states that the presyn-
aptic neuronal drive (excluding extrinsic neuronal drives) induces a
model of neurovascular coupling that has the same parameters across all
regions.

To exclude any neuronal drive from the fMRI study, 4 	 1 vectors
with an entry of one (present) or zero (exclude) can be defined (the first
entry is associated with superficial pyramidal cells, the second entry with
inhibitory interneurons, the third entry with excitatory interneurons and
the fourth entry is associated with deep pyramidal cells). For instance, if
we wanted to exclude an inhibition signal from the fMRI inversion, we
could define vector O ¼ [1 0 1 1]. The option for excluding some of the
neuronal drives allows one to specify models that emulate signalling
mechanisms such as glutamate release (typically from excitatory pop-
ulations) that may dilate capillaries directly by relaxing pericytes (Hall
et al., 2014a,b). In effect, one can evaluate the evidence for models in
which excitatory signals to neurovascular coupling (potentially mediated
by glutamate) have distinct effects on the BOLD response compared to
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inhibitory populations.
Functions that are called by the estimation function (spm_dcm_nvc.m)

include: (i) spm_dcm_nvc_fmri_priors.m, which can be used to define
priors for neurovascular parameters as well as the haemodynamic
response function; (ii) spm_dcm_nvc_specify.m, which takes the SPM. mat
file for fMRI analysis and creates experimental input time series for fMRI
inversion (this routine also defines necessary parameters for DCM
inversion); (iii) spm_dcm_nvc_nd.m, which uses estimated neuronal pa-
rameters from DCM for ERP and generates a neuronal drive function over
different experimental fMRI inputs; and (iv) spm_nvc_gen.m which gen-
erates a BOLD signal prediction from the scaled summed of neuronal
drives. Inputs to spm_dcm_nvc_nd.m are a DCM for M/EEG and experi-
mental inputs for fMRI. This function uses (i) spm_fx_cmc_tfm_gen.m to
create (decomposed) presynaptic signals (with or without external
neuronal drive), (ii) spm_dcm_nvc_rep.m, which replicates the neuronal
signals over fMRI trials and (iii) spm_gen_par.m, which generates
condition-specific neuronal parameters from DCM for M/EEG.

CRediT authorship contribution statement

Amirhossein Jafarian: Conceptualization, Methodology, Software,
Validation, Formal analysis, Writing - original draft, Data curation,
Visualization. Vladimir Litvak: Writing - review & editing, Supervision.
Hayriye Cagnan:Writing - review & editing, Supervision, Investigation,
Conceptualization. Karl J. Friston: Conceptualization, Methodology,
Writing - review & editing, Supervision, Funding acquisition. Peter
Zeidman: Conceptualization, Methodology, Writing - review & editing,
Supervision, Project administration, Investigation.

Acknowledgments

The Wellcome Centre for Human Neuroimaging is supported by core
funding from Wellcome [203147/Z/16/Z]. We are grateful to Marta
Garrido for helpful conversations about the design of the oddball task, to
Martin Havlí�cek for helpful advice about haemodynamics, and to
Alphonso Reid and Clive Negus for their support with data collection.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2020.116734.

References

Arthurs, O.J., Boniface, S., 2002. How well do we understand the neural origins of the
fMRI BOLD signal? Trends Neurosci. 25, 27–31.

Attwell, D., Iadecola, C., 2002. The neural basis of functional brain imaging signals.
Trends Neurosci. 25, 621–625.

Auksztulewicz, R., Friston, K., 2015. Attentional enhancement of auditory mismatch
responses: a DCM/MEG study. Cerebr. Cortex 25, 4273–4283.

Baldeweg, T., Klugman, A., Gruzelier, J., Hirsch, S.R., 2004. Mismatch negativity
potentials and cognitive impairment in schizophrenia. Schizophr. Res. 69 (2–3),
203–217.

Bastos, A.M., Litvak, V., Moran, R., Bosman, C.A., Fries, P., Friston, K.J., 2015. A DCM
study of spectral asymmetries in feedforward and feedback connections between
visual areas V1 and V4 in the monkey. Neuroimage 108, 460–475.

Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., Friston, K.J., 2012.
Canonical microcircuits for predictive coding. Neuron 76, 695–711.

Bazargani, N., Attwell, D., 2016. Astrocyte calcium signaling: the third wave. Nat.
Neurosci. 19 (2), 182–189, 19.

Bernal-Casas, D., Lee, H.J., Weitz, A.J., Lee, J.H., 2017. Studying brain circuit function
with dynamic causal modeling for optogenetic fMRI. Neuron 93 (3), 522–532.

Binzegger, T., Douglas, R.J., Martin, K.A., 2004. A quantitative map of the circuit of cat
primary visual cortex. J. Neurosci. 24 (39), 8441–8453.

Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer, New York.
Boly, M., Garrido, M.I., Gosseries, O., Bruno, M.A., Boveroux, P., Schnakers, C.,

Massimini, M., Litvak, V., Laureys, S., Friston, K., 2011. Preserved feedforward but
impaired top-down processes in the vegetative state. Science 332 (6031), 858–862.

Boly, M., Moran, R., Murphy, M., Boveroux, P., Bruno, M.A., Noirhomme, Q., Ledoux, D.,
Bonhomme, V., Brichant, J.F., Tononi, G., Laureys, S., Friston, K., 2012. Connectivity
changes underlying spectral EEG changes during propofol-induced loss of
consciousness. J. Neurosci. 32 (20), 7082–7090.
248
Buxton, R.B., Wong, E.C., Frank, L.R., 1998. Dynamics of blood flow and oxygenation
changes during brain activation: the balloon model. Magn. Reson. Med. 39 (6),
855–864.

Carmignoto, G., Gomez-Gonzalo, M., 2010. The contribution of astrocyte signalling to
neurovascular coupling. Brain Res. Rev. 63, 138–148.

D’Esposito, M., Deouell, L.Y., Gazzaley, A., 2003. Alterations in the BOLD fMRI signal
with ageing and disease: a challenge for neuroimaging. Nat. Rev. Neurosci. 4,
863–872.

Daunizeau, J., Kiebel, S.J., Friston, K.J., 2009. Dynamic causal modelling of distributed
electromagnetic responses. Neuroimage 15 (2), 590–601, 47.

David, O., Kiebel, S., Harrison, L., Mattout, J., Kilner, J., Friston, K., 2006. Dynamic causal
modeling of evoked responses in EEG and MEG. Neuroimage 30, 1255–1272.

Devonshire, I.M., Papadakis, N.G., Port, M., Berwick, J., Kennerley, A.J., Mayhew, J.E.,
Overton, P.G., 2012. Neurovascular coupling is brain region-dependent. Neuroimage
59 (3), 1997–2006, 2012 Feb 1.

Dima, D., Frangou, S., Burge, L., Braeutigam, S., James, A.C., 2012. Abnormal intrinsic
and extrinsic connectivity within the magnetic mismatch negativity brain network in
schizophrenia: a preliminary study. Schizophr. Res. 135 (1–3), 23–27.

Douglas, R.J., Martin, K.A., 1991. A functional microcircuit for cat visual cortex.
J. Physiol. 440, 735–769.

Duyn, J.H., 2012. The future of ultra-high field MRI and fMRI for study of the human
brain. Neuroimage 62 (2), 1241–1248.

Felleman, D., Van Essen, D.C., 1991. Distributed hierarchical processing in the primate
cerebral cortex. Cerebr. Cortex 1, 1–47.

Ferr�e, J.C., Bannier, E., Raoult, H., Mineur, G., Carsin-Nicol, B., Gauvrit, J.Y., 2013.
Arterial spin labeling (ASL) perfusion: techniques and clinical use. Diagn. Intervent.
Imag. 94 (12), 1211–1223.

Figley, C.R., Stroman, P.W., 2011. The role(s) of astrocytes and astrocyte activity in
neurometabolism, neurovascular coupling, and the production of functional
neuroimaging signals. Eur. J. Neurosci. 33, 577–588.

Filosa, J.A., Blanco, V.M., 2007. Neurovascular coupling in the mammalian brain. Exp.
Physiol. 92 (4), 641–646.

Freeman, W.J., 1975. Mass Action in the Nervous System, vol. 2004. Academic Press,
New York.

Friston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal modelling. Neuroimage 19,
1273–1302.

Friston, K.J., Litvak, V., Oswal, A., Razi, A., Stephan, K.E., van Wijk, B.C., Ziegler, G.,
Zeidman, P., 2016. Bayesian model reduction and empirical Bayes for group (DCM)
studies. Neuroimage 128, 413–431.

Friston, K.J., Mattout, J., Trujillo-Barreto, N., Ashburner, J., Penny, W., 2007. Variational
free energy and the Laplace approximation. Neuroimage 34, 220–234.

Friston, K.J., Mechelli, A., Turner, R., Price, C.J., 2000. Nonlinear responses in fMRI: the
Balloon model, Volterra kernels, and other hemodynamics. Neuroimage 12, 466–477.

Friston, K.J., Preller, K.H., Mathys, C., Cagnan, H., Heinzle, J., Razi, A., Zeidman, P.,
2017. Dynamic causal modelling revisited. Neuroimage 199, 730–744.

Friston, K., Zeidman, P., Litvak, V., 2015. Empirical Bayes for dcm: a group inversion
scheme. Front. Syst. Neurosci. 9, 164.

Garrido, M.I., Friston, K.J., Kiebel, S.J., Stephan, K.E., Baldeweg, T., Kilner, J.M., 2008.
The functional anatomy of the MMN: a DCM study of the roving paradigm.
Neuroimage 15 (2), 936–944, 42.

Goense, J., Bohraus, Y., Logothetis, N.K., 2016. fMRI at high spatial resolution:
implications for BOLD-models. Front. Comput. Neurosci. 10, 66.

Goense, J., Merkle, H., Logothetis Nikos, K., 2012. High-resolution fMRI reveals laminar
differences in neurovascular coupling between positive and negative BOLD
responses. Neuron 76, 629–639.

Grill-Spector, K., Henson, R., Martin, A., 2006. Repetition and the brain: neural models of
stimulus-specific effects. Trends Cognit. Sci. 10 (1), 14–23.

Haeusler, S., Maass, W., 2007. A statistical analysis of information-processing properties
of lamina-specific cortical microcircuit models. Cerebr. Cortex 17, 149–162.

Hall, C.N., Howarth, C., Kurth-Nelson, Z., Mishra, A., 2016. Interpreting BOLD: towards a
dialogue between cognitive and cellular neuroscience. Philos. Trans. R. Soc. B 371
(1705).

Hall, C.N., Reynell, C., Gesslein, B., Hamilton, N.B., Mishra, A., Sutherland, B.A.,
O’Farrell, F.M., Buchan, A.M., Lauritzen, M., Attwell, D., 2014a. Capillary pericytes
regulate cerebral blood flow in health and disease. Nature 508 (7494), 55.

Hall, E.L., Robson, S.E., Morris, P.G., Brookes, M.J., 2014b. The relationship between
MEG and fMRI. Neuroimage 102, 80–91.

Havlicek, M., Roebroeck, A., Friston, K., Gardumi, A., Ivanov, D., Uludag, K., 2015.
Physiologically informed dynamic causal modeling of fMRI data. Neuroimage 122,
355–372.

Havlicek, M., Uluda�g, K., 2020. A dynamical model of the laminar BOLD response.
Neuroimage 204, 116209.

Heinzle, J., Koopmans, P.J., den Ouden, H.E., Raman, S., Stephan, K.E., 2016.
A hemodynamic model for layered BOLD signals. Neuroimage 125, 556–570.

Hilgetag, C.C., O’Neill, M.A., Young, M.P., 2000. Hierarchical organization of macaque
and cat cortical sensory systems explored with a novel network processor. Phil. Trans.
Biol. Sci. 355, 71–89.

Huber, L., Goense, J., Kennerley, A.J., Ivanov, D., Krieger, S.N., Lepsien, J., Trampel, R.,
Turner, R., M€oller, H.E., 2014. Investigation of the neurovascular coupling in positive
and negative BOLD responses in human brain at 7 T. Neuroimage 97, 349–362.

Huneau, C., Benali, H., Chabriat, H., 2015. Investigating human neurovascular coupling
using functional neuroimaging: a critical review of dynamic models. Front. Neurosci.
18 (9), 467.

Jafarian, A., Zeidman, P., Litvak, V., Friston, K., 2019. Structure learning in coupled
dynamical systems and dynamic causal modelling. Philos. Trans. R. Soc. A 377
(2160), 20190048.

https://doi.org/10.1016/j.neuroimage.2020.116734
https://doi.org/10.1016/j.neuroimage.2020.116734
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref1
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref1
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref1
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref2
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref2
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref2
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref3
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref3
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref3
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref4
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref4
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref4
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref4
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref4
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref5
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref5
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref5
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref5
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref6
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref6
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref6
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref7
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref7
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref7
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref8
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref8
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref8
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref9
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref9
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref9
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref10
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref11
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref11
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref11
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref11
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref12
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref12
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref12
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref12
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref12
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref14
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref14
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref14
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref14
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref15
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref15
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref15
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref16
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref16
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref16
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref16
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref17
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref17
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref17
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref18
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref18
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref18
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref19
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref19
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref19
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref19
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref20
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref20
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref20
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref20
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref20
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref21
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref21
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref21
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref22
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref22
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref22
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref23
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref23
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref23
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref24
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref24
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref24
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref24
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref24
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref25
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref25
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref25
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref25
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref26
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref26
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref26
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref27
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref27
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref28
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref28
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref28
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref29
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref29
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref29
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref29
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref30
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref30
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref30
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref31
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref31
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref31
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref32
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref32
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref32
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref33
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref33
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref34
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref34
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref34
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref34
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref35
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref35
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref36
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref36
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref36
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref36
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref37
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref37
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref37
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref38
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref38
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref38
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref39
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref39
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref39
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref40
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref40
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref40
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref41
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref41
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref41
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref42
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref42
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref42
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref42
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref43
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref43
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref43
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref44
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref44
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref44
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref45
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref45
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref45
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref45
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref46
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref46
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref46
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref46
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref46
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref47
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref47
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref47
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref48
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref48
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref48


A. Jafarian et al. NeuroImage 216 (2020) 116734
Jansen, B.H., Rit, V.G., 1995. Electroencephalogram and visual evoked potential
generation in a mathematical model of coupled cortical columns. Biol. Cybern. 1 (4),
357–366, 73.

Jirsa, V.K., Haken, H., 1997. A derivation of a macroscopic field theory of the brain from
the quasi-microscopic neural dynamics. Phys. Nonlinear Phenom. 99 (4), 503–526.

Klingner, C.M., Ebenau, K., Hasler, C., Brodoehl, S., G€orlich, Y., Witte, O.W., 2011.
Influences of negative BOLD responses on positive BOLD responses. Neuroimage 55
(4), 1709–1715.

Lawrence, S.J., Formisano, E., Muckli, L., de Lange, F.P., 2017. Laminar fMRI:
applications for cognitive neuroscience. Neuroimage 197, 785–791.

Leenders, K.L., Perani, D., Lammertsma, A.A., Heather, J.D., Buckingham, P., Jones, T.,
Healy, M.J.R., Gibbs, J.M., Wise, R.J.S., Hatazawa, J., Herold, S., 1990. Cerebral
blood flow, blood volume and oxygen utilization: normal values and effect of age.
Brain 113 (1), 27–47.

Li, J., Iadecola, C., 1994. Nitric oxide and adenosine mediate vasodilation during
functional activation in cerebellar cortex. Neuropharmacology 33 (11), 1453–1461.

Lipecz, A., Csipo, T., Tarantini, S., Hand, R.A., Ngo, B.T.N., Conley, S., Nemeth, G.,
Tsorbatzoglou, A., Courtney, D.L., Yabluchanska, V., Csiszar, A., 2019. Age-related
Impairment of Neurovascular Coupling Responses: a Dynamic Vessel Analysis (DVA)-
based Approach to Measure Decreased Flicker Light Stimulus-Induced Retinal
Arteriolar Dilation in Healthy Older Adults. GeroScience, pp. 1–9.

Litvak, V., Garrido, M., Zeidman, P., Friston, K., 2015. Empirical Bayes for group (DCM)
studies: a reproducibility study. Front. Hum. Neurosci. 9, 670.

Litvak, V., Mattout, J., Kiebel, S., Phillips, C., Henson, R., Kilner, J., Barnes, G.,
Oostenveld, R., Daunizeau, J., Flandin, G., Penny, W., 2011. EEG and MEG Data
Analysis in SPM8. Computational Intelligence and Neuroscience.

Logothetis, N.K., 2003. The underpinnings of the BOLD functional magnetic resonance
imaging signal. J. Neurosci. 23 (10), 3963–3971.

Logothetis, N.K., 2008. What we can do and what we cannot do with fMRI. Nature 453,
869–878.

Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A., 2001.
Neurophysiological investigation of the basis of the fMRI signal. Nature 412,
150–157.

Lu, H., van Zijl, P.C., 2012. A review of the development of Vascular-Space-Occupancy
(VASO) fMRI. Neuroimage 62 (2), 736–742.

Maggio, P., Salinet, A.S., Robinson, T.G., Panerai, R.B., 2014. Influence of CO2 on
neurovascular coupling: interaction with dynamic cerebral autoregulation and
cerebrovascular reactivity. Physiol. Rep. 2 (3), e00280.

Masamoto, K., Unekawa, M., Watanabe, T., Toriumi, H., Takuwa, H., Kawaguchi, H.,
Kanno, I., Matsui, K., Tanaka, K.F., Tomita, Y., Suzuki, N., 2015. Unveiling astrocytic
control of cerebral blood flow with optogenetics. Sci. Rep. 5, 11455.

Moran, R.J., Kiebel, S.J., Stephan, K.E., Reilly, R.B., Daunizeau, J., Friston, K.J., 2007.
A neural mass model of spectral responses in electrophysiology. Neuroimage 37 (3),
706–720.

Moran, R.J., Pinotsis, D.A., Friston, K.J., 2013. Neural masses and fields in dynamic causal
modeling. Front. Comput. Neurosci. 7, 57.

Ninomiya, T., Sawamura, H., Inoue, K., Takada, M., 2012. Segregated pathways carrying
frontally derived top-down signals to visual areas MT and V4 in macaques.
J. Neurosci. 32, 6851–6858.

Nippert, A.R., Biesecker, K.R., Newman, E.A., 2018. Mechanisms mediating functional
hyperemia in the brain. Neuroscientist 24 (1), 73–83.

Otsu, Y., Couchman, K., Lyons, D.G., Collot, M., Agarwal, A., Mallet, J.M., Pfrieger, F.W.,
Bergles, D.E., Charpak, S., 2015. Calcium dynamics in astrocyte processes during
neurovascular coupling. Nat. Neurosci. 18 (2), 210.

Pang, J.C., Robinson, P.A., Aquino, K.M., Vasan, N., 2017. Effects of astrocytic dynamics
on spatiotemporal hemodynamics: modeling and enhanced data analysis.
Neuroimage 15 (147), 994–1005.

Pasley, B.N., 2008. Neurovascular Coupling in Brain Imaging and Brain Stimulation. PhD
dissertation. University of California, Berkeley.

Penny, W.D., Stephan, K.E., Daunizeau, J., Rosa, M.J., Friston, K.J., Schofield, T.M.,
Leff, A.P., 2010. Comparing families of dynamic causal models. PLoS Comput. Biol. 6
(3).

Riera, J., Aubert, E., Iwata, K., Kawashima, R., Wan, X., Ozaki, T., 2005. Fusing EEG and
fMRI based on a bottom-up model: inferring activation and effective connectivity in
neural masses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360 (1457), 1025–1041.

Riera, J.J., Jimenez, J.C., Wan, X., Kawashima, R., Ozaki, T., 2007. Nonlinear local
electrovascular coupling. II: from data to neuronal masses. Hum. Brain Mapp. 28 (4),
335–354.

Riera, J.J., Wan, X., Jimenez, J.C., Kawashima, R., 2006. Nonlinear local electrovascular
coupling. I: a theoretical model Human brain mapping, 27 (11), 896–914.
249
Rosa, M.J., Kilner, J.M., Penny, W.D., 2011. Bayesian comparison of neurovascular
coupling models using EEG-fMRI. PLoS Comput. Biol. 7 (6), e1002070.

Rosch, R.E., Auksztulewicz, R., Leung, P.D., Friston, K.J., Baldeweg, T., 2019. Selective
prefrontal disinhibition in a roving auditory oddball paradigm under N-Methyl-D-
Aspartate receptor blockade. Biol. Psychiatr.: Cogn. Neurosci. Neuroimag. 4 (2),
140–150.

Rosch, R.E., Hunter, P.R., Baldeweg, T., Friston, K.J., Meyer, M.P., 2018. Calcium imaging
and dynamic causal modelling reveal brain-wide changes in effective connectivity
and synaptic dynamics during epileptic seizures. PLoS Comput. Biol. 14 (8),
e1006375.

Rosenegger, D.G., Gordon, G.R., 2015. A slow or modulatory role of astrocytes in
neurovascular coupling. Microcirculation 22 (3), 197–203.

Salient, A.S., Robinson, T.G., Panerai, R.B., 2014. Effects of cerebral ischemia on human
neurovascular coupling, CO2 reactivity, and dynamic cerebral autoregulation.
J. Appl. Physiol. 118 (2), 170–177.

Scheeringa, R., Fries, P., 2017. Cortical layers, rhythms and BOLD signals. Neuroimage
197, 689–698.

Scheeringa, R., Koopmans, P.J., van Mourik, T., Jensen, O., Norris, D.G., 2016. The
relationship between oscillatory EEG activity and the laminar-specific BOLD signal.
Proc. Natl. Acad. Sci. Unit. States Am. 113 (24), 6761–6766.

Schirner, M., McIntosh, A.R., Jirsa, V., Deco, G., Ritter, P., 2018. Inferring multi-scale
neural mechanisms with brain network modelling. Elife 7, e28927.

Shabir, O., Berwick, J., Francis, S.E., 2018. Neurovascular dysfunction in vascular
dementia, Alzheimer’s and atherosclerosis. BMC Neurosci. 19 (1), 62.

Shmuel, A., Augath, M., Oeltermann, A., Logothetis, N.K., 2006. Negative functional MRI
response correlates with decreases in neuronal activity in monkey visual area V1.
Nat. Neurosci. 9, 569–577.

Snyder, H.M., Corriveau, R.A., Craft, S., Faber, J.E., Greenberg, S.M., Knopman, D.,
Lamb, B.T., Montine, T.J., Nedergaard, M., Schaffer, C.B., Schneider, J.A., 2015.
Vascular contributions to cognitive impairment and dementia including Alzheimer’s
disease. Alzheimer’s Dementia 11 (6), 710–717.

Sotero, R.C., Trujillo-Barreto, N.J., 2007. Modelling the role of excitatory and inhibitory
neuronal activity in the generation of the BOLD signal. Neuroimage 35 (1), 149–165.

Sotero, R.C., Trujillo-Barreto, N.J., Jim�enez, J.C., Carbonell, F., Rodríguez-Rojas, R.,
2009. Identification and comparison of stochastic metabolic/hemodynamic models
(sMHM) for the generation of the BOLD signal. J. Comput. Neurosci. 26 (2), 251–269.

Stephan, K.E., Weiskopf, N., Drysdale, P.M., Robinson, P.A., Friston, K.J., 2007.
Comparing hemodynamic models with DCM. Neuroimage 38, 387–401.

Tarantini, S., Tran, C.H.T., Gordon, G.R., Ungvari, Z., Csiszar, A., 2017. Impaired
neurovascular coupling in aging and Alzheimer’s disease: contribution of astrocyte
dysfunction and endothelial impairment to cognitive decline. Exp. Gerontol. 94,
52–58.

Takano, T., Tian, G.F., Peng, W., Lou, N., Libionka, W., Han, X., Nedergaard, M., 2006.
Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9 (2), 260.

Thomson, A.M., Bannister, A.P., 2003. Interlaminar connections in the neocortex. Cerebr.
Cortex 13, 5–14.

Tsvetanov, K.A., Henson, R.N., Tyler, L.K., Razi, A., Geerligs, L., Ham, T.E., Rowe, J.B.,
2016. Extrinsic and intrinsic brain network connectivity maintains cognition across
the lifespan despite accelerated decay of regional brain activation. J. Neurosci. 36
(11), 3115–3126.

Valdes-Hernandez, P.A., Bernal, B., Moshkforoush, A., Dunoyer, C., Khoo, H.M., Bosch-
Bayard, J., von Ellenrieder, N., Gotman, J., Riera, J.J., 2018. Identification of
Negative BOLD Responses Using Windkessel Models, p. 392290 bioRxiv.

Van Zijl, P.C., Hua, J., Lu, H., 2012. The BOLD post-stimulus undershoot, one of the most
debated issues in fMRI. Neuroimage 62, 1092–1102.

Voges, N., Blanchard, S., Wendling, F., David, O., Benali, H., Papadopoulo, T., Clerc, M.,
B�enar, C., 2012. Modeling of the neurovascular coupling in epileptic discharges.
Brain Topogr. 25 (2), 136–156. Apr 1.

Wei, H., Jafarian, A., Zeidman, P., Litvak, V., Razi, A., Hu, D., Friston, K.J., 2020. Bayesian
Fusion and Multimodal DCM for EEG and fMRI. NeuroImage, p. 116595.

Wendling, F., Bellanger, J.J., Bartolomei, F., Chauvel, P., 2000. Relevance of nonlinear
lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol.
Cybern. 83 (4), 367–378.

Wendling, F., Hernandez, A., Bellanger, J.J., Chauvel, P., Bartolomei, F., 2005. Interictal
to ictal transition in human temporal lobe epilepsy: insights from a computational
model of intracerebral EEG. J. Clin. Neurophysiol. 22 (5), 343.

Wibral, M., Bledowski, C., Turi, G., 2010. Integration of separately recorded EEG/MEG
and fMRI data. In: Ullsperger, M., Debener, S. (Eds.), Simultaneous EEG and fMRI:
Recording, Analysis, and Application, pp. 209–234.

http://refhub.elsevier.com/S1053-8119(20)30221-4/sref49
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref49
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref49
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref49
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref50
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref50
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref50
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref51
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref51
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref51
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref51
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref51
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref52
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref52
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref52
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref53
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref53
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref53
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref53
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref53
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref54
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref54
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref54
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref55
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref55
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref55
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref55
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref55
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref55
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref56
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref56
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref57
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref57
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref57
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref58
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref58
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref58
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref59
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref59
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref59
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref60
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref60
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref60
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref60
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref61
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref61
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref61
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref62
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref62
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref62
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref63
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref63
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref63
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref64
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref64
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref64
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref64
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref65
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref65
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref66
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref66
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref66
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref66
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref67
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref67
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref67
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref68
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref68
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref68
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref69
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref69
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref69
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref69
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref70
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref70
http://refhub.elsevier.com/S1053-8119(20)30221-4/optOnH9qD2rIT
http://refhub.elsevier.com/S1053-8119(20)30221-4/optOnH9qD2rIT
http://refhub.elsevier.com/S1053-8119(20)30221-4/optOnH9qD2rIT
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref71
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref71
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref71
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref71
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref72
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref72
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref72
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref72
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref73
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref73
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref73
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref74
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref74
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref75
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref75
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref75
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref75
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref75
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref76
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref76
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref76
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref76
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref77
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref77
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref77
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref78
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref78
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref78
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref78
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref79
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref79
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref79
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref80
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref80
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref80
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref80
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref81
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref81
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref82
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref82
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref83
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref83
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref83
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref83
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref84
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref84
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref84
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref84
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref84
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref85
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref85
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref85
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref86
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref86
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref86
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref86
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref86
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref87
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref87
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref87
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref88
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref88
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref88
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref88
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref88
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref89
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref89
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref90
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref90
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref90
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref92
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref92
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref92
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref92
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref92
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref94
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref94
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref94
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref95
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref95
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref95
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref96
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref96
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref96
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref96
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref96
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref97
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref97
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref98
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref98
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref98
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref98
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref99
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref99
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref99
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref100
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref100
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref100
http://refhub.elsevier.com/S1053-8119(20)30221-4/sref100

	Comparing dynamic causal models of neurovascular coupling with fMRI and EEG/MEG
	1. Introduction
	2. Theory
	2.1. Dynamic causal modelling for MEG
	2.1.1. Generative model of neuronal responses
	2.1.2. MEG observation model

	2.2. Haemodynamic model
	2.2.1. Generative model of neurovascular coupling
	2.2.2. Generative model of the BOLD response
	2.2.3. fMRI observation model

	2.3. Multimodal estimation procedure

	3. Illustrative example
	3.1. Dataset
	3.2. Preliminary fMRI analysis
	3.3. DCM for MEG specification
	3.4. Neurovascular model specification and comparison
	3.5. Results

	4. Discussion
	4.1. Methodology
	4.1.1. Relation to other methods

	4.2. Potential applications
	4.3. Limitations and further development

	5. Software note
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A. Supplementary data
	References


