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A B S T R A C T

Medical image reconstruction methods based on deep learning have recently demonstrated powerful perfor-
mance in photoacoustic tomography (PAT) from limited-view and sparse data. However, because most of these
methods must utilize conventional linear reconstruction methods to implement signal-to-image transformations,
their performance is restricted. In this paper, we propose a novel deep learning reconstruction approach that
integrates appropriate data pre-processing and training strategies. The Feature Projection Network (FPnet)
presented herein is designed to learn this signal-to-image transformation through data-driven learning rather
than through direct use of linear reconstruction. To further improve reconstruction results, our method in-
tegrates an image post-processing network (U-net). Experiments show that the proposed method can achieve
high reconstruction quality from limited-view data with sparse measurements. When employing GPU accel-
eration, this method can achieve a reconstruction speed of 15 frames per second.

1. Introduction

Photoacoustic tomography (PAT) is an emerging, fast-developing,
and noninvasive biomedical imaging modality that can reveal the op-
tical absorption properties of tissue and molecular probes [1–4]. In
PAT, a short laser pulse illuminates the region of interest in a semi-
transparent biological or medical object. The illuminated region ab-
sorbs the light energy and converts it into thermal energy, which is
ultimately converted into ultrasound by the thermal expansion effect.
The induced time-dependent acoustic waves are measured outside the
imaging object by transducers. These time-domain signals can be used
to restore the initial pressure distribution of the imaging object.

In order to obtain high-resolution reconstructed photoacoustic
images, a sufficiently high time/spatial sampling rate and full-view
detection geometry are required. Owing to geometrical and cost lim-
itations, it may not be possible for the spatial sampling rate to reach the
Nyquist rate, leading to inaccurate reconstructions [5–8]. On occasion,
the spatial sampling rate must be sacrificed in order to accelerate the
data acquisition process [9]. In addition to subsampling, limited-view

detection, in which the detection surface or curve does not completely
surround the imaging target, is also a common occurrence in PAT [10].
The limited-view problem can lead to loss of information, which limits
the accuracy and stability of reconstructions [5,11]. In several PAT
imaging systems, suboptimal detection views or limited numbers of
transducer locations prevent the system from achieving the desired
resolution. PAT reconstruction based on restricted spatial sampling
signals with limited-view detection is a problem worth studying.

At present, conventional PAT reconstruction algorithms can be
roughly divided into two categories: linear reconstruction methods and
model-based reconstruction methods. Linear reconstruction methods
mainly include filtered backprojection (FBP) [12–15] and time reversal
[16–18], which essentially involve solving a single wave equation and
obtaining reconstructed images through an approximate linear trans-
formation from the signal domain to the image domain. Thus, these
algorithms are computationally efficient and suitable for tasks requiring
high time resolution. However, applying these algorithms to sub-
sampled and limited-view data will result in low-quality images with
many artifacts [11].
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Model-based reconstruction algorithms rely on an optimized itera-
tive strategy to minimize the difference between the measured signal
and the predicted signal estimated by the photoacoustic forward model.
For accurate reconstruction, model-based reconstruction algorithms
require an accurate model matrix and appropriate prior knowledge,
referred to as a regularization term. Typical model matrix construction
methods include interpolated methods [19,20] and curve-driven-based
methods [21]. Both methods are based on angular discretization of the
photoacoustic forward model. The introduction of prior knowledge
enables iterative algorithms to reduce artifacts and significantly im-
prove reconstruction quality [5,22–24]. However, there is currently no
prior knowledge expressed by a regularization term that can fully de-
scribe reconstruction results, which can lead to suboptimal results. In
addition, model-based reconstruction algorithms are time-intensive,
and the weight of the regularization term significantly influences the
reconstruction results. These factors restrict the performance of this
method.

In recent years, deep learning technology has developed rapidly and
has achieved great success in image classification [25], object detection
[26,27], image segmentation [28,29], and other domains. However, the
application of deep learning in PAT reconstruction has only recently
emerged [11,30–33]. At present, PAT reconstruction algorithms based
on deep learning can generally be classified into two categories.

1. Linear reconstruction followed by post-processing. In this strategy,
images inaccurately reconstructed by the linear reconstruction
method are inputted to a post-processing convolutional neural net-
work (CNN) [30,31]. The linear reconstruction process can be im-
plemented using a fully connected (FC) network with fixed para-
meters. In [30], the authors added learnable parameters to a linear
reconstruction network to further improve the quality of the images
input to the CNN. Hengrong Lan et al. [32] added another encoder
for the raw signal to the U-net structure and the reconstructed image
was produced by a decoder using joint features of the signal and
image. This approach can obtain high reconstruction quality from
limited-view data in the line measurement geometry. However, this
network cannot generate the correct reconstructed images in our
settings, possibly because their network excessively downsamples
on the transducer axis, and its concatenation is applied to different
domain features with low spatial correlation. Therefore, it is un-
suitable for sparsely sampled data in the circular measurement
geometry.

2. CNN-based iterative network. This type of network was firstly pro-
posed by Andreas Hauptmann et al. [11] in PAT. The network ac-
curately mimics the proximal gradient operator and integrates the
learning of prior knowledge. Yoeri E. Boink et al. [33] developed a
CNN based on the partially learned algorithm. Their network can
achieve image reconstruction and segmentation simultaneously, and
is very robust to the image disturbance and different system settings.
Unlike the conventional iterative process, this type of network re-
quires a suitable initial value, which is generated by a linear re-
construction algorithm. In this strategy, one-step iteration is
equivalent to one network operation with different parameters.

Although all of the aforementioned deep learning reconstruction
algorithms can obtain state-of-the-art results, the reconstructions are
still highly dependent on the linear reconstruction method. When the
signal data is incomplete, the results of the above methods will de-
generate, owing to the inferior reconstruction quality of conventional
linear reconstruction methods. Ominik Waibel et al. firstly attempted to
use CNN to implement the transformation from the signal domain to the
image domain [34]. However, the reconstruction quality of this method
is lower than that of other deep learning methods, and its effectiveness
has not been validated in realistic data reconstructions. In this study, in
an effort to improve reconstruction quality in signal-to-image domain
transformation, a novel deep learning–based reconstruction approach

independent of conventional linear reconstruction algorithms, inspired
by the AUTOMAP network [35], is presented. Unlike AUTOMAP, the
design of our network structure incorporates the physical model. To the
best of our knowledge, this is also the first attempt to use the physical
model as the prior information for the network structure in photo-
acoustic image reconstruction. In our study, the problem has been re-
stricted to sparsely sampled, limited-view PAT reconstruction in cir-
cular measurement geometry. The network used for domain
transformation is referred to as the Feature Projection Network (FPnet).
After a domain transformation is completed, a U-net network further
improves the image, as in [30,31]. Moreover, a data pre-processing
method has been designed with training strategies to further improve
network performance. Our method can be extended to any two- or
three-dimensional measurement geometry. In order to verify the per-
formance of the network, numerical simulations as well as in vivo ex-
periments were conducted.

2. Background

2.1. Photoacoustic tomography

In PAT, the imaging object is illuminated by a short-pulse laser light,
and the ultrasonic wave is generated by the thermoelastic expansion
effect. When the heat confinement condition is met, the photoacoustic
imaging process can be approximated as the following photoacoustic
wave equation [21,20]
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where r and t represent position and time, respectively, δ(t) is the delta
function, c is the speed of sound in the medium, Γ is the dimensionless
Grüneisen parameter, and H(r) is the initial pressure distribution. The
goal of PAT reconstruction is to obtain an accurate initial pressure
distribution H(r).

2.2. Universal backprojection

Universal backprojection (UBP) is a linear reconstruction method
first proposed by Xu and Wang in 2005 [12]. The discretized UBP eu-
qation is analytically derived from the photoacoustic wave equation
(1), which can be written as
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where di and ΔΩi represent the position and solid angle, respectively, of
the ith transducer. b(di, t) is the backprojection term and is related to
the pressure intensity detected by the ith transducer, which can be
written as

=b t p t t p t
t
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(3)

Clearly, Equation (2) can be written as a linear transformation from
the signal domain to the image domain, which is

=H Mb, (4)

where H and b are vectors, and M is the discrete matrix coefficient of
(2).

Linear reconstruction based on the discrete UBP equation has
proven capable of obtaining exact reconstruction results in case of in-
finite measurements without noise. In general, UBP still achieves ac-
ceptable results with sufficient measurements and limited noise.
However, when supplied with limited-view and sparsely sampled sig-
nals, the lack of information has a significant negative impact on the
reconstruction quality.

T. Tong, et al. Photoacoustics 19 (2020) 100190

2



2.3. Model-based reconstruction

Model-based algorithms are dedicated to discretizing the forward
propagation of photoacoustic signals. For discretization needs, Equation
(1) can usually be expressed as an initial value problem. The analytical
solution of this initial value problem can be written in matrix-vector
product form [19,21,20]

=p AH, (5)

where p is the vector-form signal, H is the vector-form initial pressure
distribution, and A is the discretized forward model matrix. However,
solving (5) directly is time-consuming and unrealistic owing to the vast
dimension of model matrix A. Therefore, the iterative method based on
optimization is a better choice. In general, another regularization term
is required to induce the prior knowledge about the structure of re-
constructed images. The optimization problem based on standard Ti-
khonov and TV regularization can be written as (6) and (7)
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where λ is the regularization parameter.
By employing iterative optimization strategies in conjunction with

prior information, iterative methods can often achieve better re-
construction results than linear reconstruction methods. However, no
regularization term can fully describe the actual situation, which limits
the quality of reconstructed images. In the case of limited-view and
sparsely sampled measurements, the optimization problem becomes ill-
posed, further limiting the performance of such methods. Moreover,
because of its iterative processing, this type of method has relatively
high computational complexity.

2.4. U-net based reconstruction

The U-net structure was first proposed for medical image segmen-
tation [29]. In the field of medical image reconstruction, a U-net is
typically used to denoise the reconstruction results from linear re-
construction methods [31,30,25]. In [36], the authors first integrated
the idea of residual learning into U-net. They found that it was easier
for the U-net to learn the image artifact pattern than to directly learn a
denoising process. Implementing the residual learning strategy can
further improve denoising performance. Fig. 1 shows the architecture of
the U-net with the residual learning strategy for PAT reconstruction.

Although the U-net is widely used in image post-processing, it may not
be the best network. Daniël Pelt [37] proposed a mixed scale and
densely connected CNN. They replaced the pooling layer with the di-
lation convolutions and make the network adaptively learn the com-
bination of the dilation size. Their approach is able to achieve accurate
results with fewer parameters than the U-net in medical image de-
noising. This method has given us a good inspiration and we will design
a better image post-processing network with fewer parameters for PAT
in our future work.

3. Proposed Method

3.1. Data pre-processing

In this study, as the first step, a nonlinear transformation was pro-
posed to normalize the signal data. It can be written as follows:

=i ip p p
p p

˜ ( ) 2 ( ) min( )
max( ) min( )

1,
(8)

where p is one signal sample, p(i) is the ith element of the original
signal, and ip̃( ) is the ith element of the corresponding transformed
signal. After this transformation, the single signal sample has a max-
imum value of 1 and a minimum value of -1, because simulated signals
include both negative and positive values. The only difference between
this nonlinear transformation and a conventional linear transformation
is that only single-sample statistics are used, rather than the statistics of
the entire dataset. The reasons for using the nonlinear transformation
are as follows: 1) The distribution of simulated signals is different from
the distribution of realistic signals obtained by the PAT system, and
statistical information that satisfies both simulated and realistic signals
cannot be obtained; 2) The above transformation does not change the
reconstruction results of any conventional reconstruction algorithms
when all reconstructed images are normalized to [0, 1] using the same
transformation.

In Supplementary Material Section S.I, we briefly explain these two
reasons and discuss the feasibility of this nonlinear transformation.

3.2. Feature Projection Network for domain transformation

In this study, we propose the Feature Projection Network (FPnet), a
novel network architecture for signal-to-image domain transformation.
Unlike other PAT reconstruction networks [31,30] that rely on con-
ventional linear reconstruction methods or fully connected (FC) layers
with fixed parameters to perform domain transformation, FPnet

Fig. 1. U-net structure with residual learning strategy for PAT reconstruction. The number written above each layer represents the number of filters, which is also
equivalent to the number of feature maps. The linear reconstruction portion (black arrow) can be implemented outside the U-net using conventional methods or
integrated by a fully connected network with fixed parameters preceding the U-net.
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directly learns domain transformation through a data-driven approach.
It contains several convolutional layers for feature extraction, one max
pooling layer for downsampling, and one FC layer for domain trans-
formation. The proposed FPnet is illustrated in Fig. 2A, inside the
dotted box.

The architecture in this study is motivated by the UBP equation and
the AUTOMAP network for domain transformation [35]. Our basic idea
is to integrate the photoacoustic physical model into our network
structure as prior information. From (2) and (3), it can be seen that the
signal p(di, t) and the first-order partial derivative of the signal versus
time p t

t
d( , )i have a critical impact on the initial pressure reconstruction.

According to this feature, our proposed FPnet also has dual inputs,
named as, the normalized signal and the time derivative of the nor-
malized signal. The central difference was used to approximate the time
derivative in our study. It can be written as

+p t
t

p t t p t t
t

d d d( , ) ( , ) ( , )
2

.i i i
(9)

To the best of our knowledge, the FC layer is a feasible structure that
can learn a transformation from the signal domain to the image domain.
Examples of domain transformation networks can be found in [35] and
[38]. However, the dimension for PAT signals is very large (usually a
vector of over 50000 double-precision elements), resulting in an ex-
cessive number of parameters, if the domain transformation is directly
implemented using one or more FC layers. Therefore, it is unrealistic to
directly use FC layer(s) for domain transformation of these two inputs,
owing to the limitations of the computational capability of the hard-
ware. This is also one of the biggest challenges of applying a deep
learning-based approach for direct signal-to-image domain transfor-
mation in PAT reconstructions.

In order to solve this problem, some noncritical signals are first
removed. The principle of truncation is to retain only the signal in the
valid period. For every ultrasound transducer, there is a valid period
including all sampling moments t that approximately satisfy the fol-
lowing relationship

t L
c

L
c

, ,min max
(10)

where Lmin and Lmax are the minimum and maximum distance between
the transducer and the imaging pixel. This data truncation strategy was
inspired by the process of establishing the model matrix in [20,19,21].
When discretizing the forward model, a basic assumption is that the
initial pressure generated outside the imaging field of view (FOV) does
not contribute to the signal intensity.

After the signal data is truncated, in order to further overcome the
problem of excessive parameters caused by directly using FC layers, the
convolutional layers are used first to extract the features from the
signal. Before convolution, the signal is expanded into a matrix, where

the rows represent the transducers and the columns represent the times.
Then, 1 × 15 convolutional layers with a residual block structure [25]
(Fig. 2B) are used for feature extraction. It should be noted that we only
convolve on the time axis, because in the sparse sampling problem, the
transducers are not close to each other, and the correlation between
signals of adjacent channels is relatively low. The size of the convolu-
tion kernel is not arbitrarily determined; rather, it is based on the dis-
crete process of the photoacoustic forward model, which is explained in
detail in Supplementary Material Section S.II.

Similar to other networks, two sets of three residual blocks are
utilized to expand the receptive field and extract deeper features, and
one max pooling layer is used to downsample and retain the main
features. The same operation is performed on the dual inputs. The two
sets of feature maps are summed into one set of feature maps, and
subsequently these feature maps are further processed by three residual
blocks. Finally, only one FC layer is used to project the signal features
into the image domain. The domain transformation learned by FPnet is

= +p t p t
t

H d d( ( , )) ( , ) ,f i
i

2 0 1
(11)

where 0, 1, and 2 are the feature-extraction networks for p(di, t),
p t

t
d( , )i , and the summed feature map, respectively, and is the FC layer

for domain transformation. The above learning process can be con-
sidered as learning a more accurate UBP equation (2). The difference is
that we first use the convolutional layers to extract the features of the
signal, and then use one FC layer to learn a domain transformation
matrix for transforming signal features to images. The advantage of
using the convolutional layers to extract signal features is that such a
strategy effectively utilizes the strong correlations between signals at
adjacent moments and can effectively reduce the number of FC layers
while significantly reducing the number of parameters.

3.3. Instance normalization

The normalization layer used in residual blocks (Fig. 2B) of the
proposed FPnet is based on instance normalization (IN) instead of batch
normalization (BN). IN was first proposed by Dmitry Ulyanov et al. for
image stylization [39]. It applies normalization to each channel of a
feature map, which does not involve the statistics of mini-batch data.
Owing to the nonlinear normalization, BN cannot obtain correct sta-
tistical information from the training dataset, which leads to unreliable
test results. The IN normalization is similar to the nonlinear transfor-
mation proposed in Section 3.1. From another perspective, the non-
linear normalization method is also a different form of IN. Therefore,
using IN instead of BN can improve network performance and accel-
erate the convergence of the network. In Supplementary Material Sec-
tion S.VIII, we further verified the effectiveness of IN through

Fig. 2. Schematic of the proposed network. (A) Architecture of FPnet with the U-net as a post-processing network. FPnet (inside the dotted box) is used to implement
the signal-to-image domain transformation. The U-net is used to further fix the reconstructed image obtained from FPnet. The numbers above each layer indicate the
size of the feature map as (height × weight × channel). (B) Residual block used in FPnet.
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experiments.

3.4. Post-processing network

Although FPnet can produce reconstructed images far more accu-
rately than the convolutional linear reconstruction method, pixels of
images outputted by one FC layer are not sufficiently stable. Thus, a
post-processing network can be utilized to further improve re-
construction quality. To ensure a fair comparison in experiments, we
also use the U-net architecture in Fig. 1 for post-processing. Therefore,
the complete network (Fig. 2) for our method includes a FPnet for
domain transformation and a U-net for post-processing.

3.5. Guided learning strategy

To effectively train the network, a novel training strategy referred to
as the Guided Learning Strategy (GLS) is presented to simultaneously
train FPnet and U-net. The core of the proposed GLS is the design of the
loss function, which is

= +
= +H H H H

Loss Loss Loss
MSEloss( , ) MSEloss( , ),

f u

f ugt gt (12)

where Lossf is the mean square error loss (MSEloss) between the output
of FPnet Hf and the ground truth Hgt, Lossu is the MSEloss between the
output of the U-net Hu and the ground truth Hgt, and α is a scale factor.
Because this network was designed to learn a more accurate domain
transformation instead of relying on image post-processing, α> 1 is
necessary. The design of this weighted multipart loss function was in-
spired by Faster RCNN [27]. In this study, α is set to 10 based on the
convergence speed and reconstruction quality of FPnet. In Supple-
mentary Material Section S.III, the experiments for selecting α are dis-
cussed in detail.

According to our loss function, the gradient update process of FPnet
and the U-net can be written as

= +

=

µ

µ

Loss Loss

Loss
,

f f
f

f

u

f

u u
u

u (13)

where ωf denotes the parameters of FPnet and ωu denotes the para-
meters of U-net; μ is the learning rate. The U-net parameters will only
be affected by the gradient backpropagation from Lossu, such that the
U-net can learn how to improve the image quality outputted by FPnet.
The update of the FPnet parameters can be considered as a two-step
process. First, the parameter update is performed by the gradient
backpropagation from Lossf, resulting in a more accurate domain
transformation. Then, in order to fine-tune the parameters, they are
updated by the gradient backpropagation from Lossu. As a result, the
image reconstructed by FPnet can better adapt to the denoising per-
formance of the U-net network. Because we set α> 1, the first step
plays an important role.

Because of the large number of FC layer parameters, our method
must consider the problem of overfitting, which will persist when
simply using the loss function to guide network training. Therefore, L1
regularization is used here to constrain the parameter value of the FC
layer. This was inspired by the discretized UBP equation (2), in which
the initial pressure intensity of a reconstructed point only contains the
contributions from the signal magnitudes of few moments at each
transducer. This is consistent with the feature selection function of L1
regularization. Therefore, it can assumed that only a small portion of
the signal features extracted by the convolution network in FPnet will
be particularly important for a reconstructed pixel. The final loss
function of GLS including L1 regularization term is written as

= + +H H H HLoss MSEloss( , ) MSEloss( , ) | | ,f u fgt gt 1 (14)

where γ is the L1 weight decay value.
In short, we designed a loss function that guides the network which

prefers to learn a more accurate feature projection rather than rely
heavily on post-processing. Moreover, the overfitting was suppressed by
using a regularization strategy to limit the value and sparsity of FC layer
parameters.

4. Experiments and Discussions

Numerical simulations and in vivo experiments were conducted in
order to verify the performance of the proposed reconstruction method.
Both qualitative and quantitative analyses were employed to illustrate
the superiority of our method.

Most of the experimental settings were based on those of the MSOT
inVision 128, a commercial small animal PAT imaging system
(iTheraMedical GmbH, Neuherberg, Germany, Fig. 3A). In this system,
the circular transducer contains 128 detection elements and covers an
angle of 270∘ around the imaging object at a sampling frequency of 40
MHz (Fig. 3B and C). Obviously, this imaging system will encounter the
limited-view problem. To further simulate the subsampling situation,
the number of transducers was uniformly downsampled four times
(Fig. 3D). The 32-channel signal was used as a subsampled signal, and
the original 128-channel signal was used as a fully sampled signal.

The training and validation of our network were implemented via
PyTorch in Python, using two Titan Xp GPUs with 12 GB memory. All
test results were obtained using a PC with six 3.7 GHz processors and 32
GB of memory.

4.1. Dataset and network training

In numerical simulations, four datasets containing different struc-
tural features were used to verify the performance of our method and
the baseline methods. In Fig. 4, some example images are shown for
visual display. The Vessel dataset was obtained by randomly cropping
the images from the DRIVE dataset which contains retinal blood vessel
images [40]. In order to increase the complexity of images in the Vessel
dataset, background intensity and random perturbations of both back-
ground and vessels were added to each image. The Brain dataset is a
publicly available MRI brain dataset which can be downloaded from the
website of The Cancer Imaging Archive (TCIA)2 [41]. Both the Ab-
domen and LiverCancer datasets consist of abdomen MRI images and
were provided by the First Affiliated Hospital, Jinan University. The
Abdomen dataset was used for training and testing, and all images were
from healthy people. In contrast, all the images in the LiverCancer
dataset contained tumors from liver cancer patients. The LiverCancer
dataset was not used for training and was only a test dataset for the
network trained on the Abdomen dataset. This dataset was used to test
the performance of our method for reconstructing the pathologies
which are not represented in the training data. The signal data was
obtained by p=AH, where A is the model matrix in [20]. In the
training process, Gaussian noise with random intensity was added to
the simulated signal, resulting in a wide range of signal-to-noise ratios
(SNR) from 10 dB to 40 dB. Therefore, the final simulated signal can be
indicated as pn = p+ g, where g is the Gaussian noise. All images were
converted to a size of 128 × 128 with a grid spacing of 200 μm. All
other experimental settings were in accordance with the MSOT inVision
128 system. Table 1 presents a brief explanation of each dataset and
gives the number of training, validation, and test samples.

To relieve overfitting and accelerate network convergence, we first
performed 20 epochs of pre-training using 15000 natural images (and
their corresponding simulated PAT signals) from the PASCAL VOC2012
dataset [42] (see the experiments about the improvement of using

2 https://wiki.cancerimagingarchive.net/display/Public/Brain-Tumor-
Progression
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pertraining in Supplementary Material Section S.VIII). Then, each da-
taset was used to train another 50 epochs. We trained our network
using PyTorch's implementation of the Adam optimizer [43] with a
batch size of 24. Learning rates of 10−4 were employed for pre-training
and 10−5 for further training. The FC layer was initialized by Xavier
uniform initializer with a gain value of 0.1 and the L1 weight decay
value was set to 10−6.

In in vivo experiments, we established two datasets named MSOT-

Brain and MSOT-Abdomen, which contain realistic signals and corre-
sponding reconstructed images extracted from the MSOT inVision 128
system with some additional pre-processing. Owing to the limited
number of in vivo data, all these datasets do not include validation
samples. The images in the training set and the test set are from dif-
ferent scans and mice. The data extraction process and pre-processing
method are described in detail in Supplementary Material Section S.IV.
These data enable the network to extract features from realistic signals.

Fig. 3. Experimental equipment and detector. (A) MSOT inVision 128 imaging system. Most experimental settings in this study were consistent with those used in
this system. (B) Photograph of circular transducer in this system. (C) Schematic of the transducer. (D) Schematic of the downsampling scenario in our experiments. In
this study, the number of transducers was uniformly downsampled four times. The 32-channel signal was used as a subsampled signal, and the original 128-channel
signal was used as a fully sampled signal.

Fig. 4. Example of images in each dataset used in numerical simulations. See Table 1 for detailed information.
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It should be noted that these reconstructed images used as ground truth
images were obtained by the model-based reconstruction algorithm
included in the system software. Although this system can achieve re-
liable reconstructions, these images are not the real ground truth. For
practical applications, it is sufficient to learn the reconstructed results
of a commercially available system under the fully sampled condition.
The detailed information about these two datasets is presented in
Table 1. For in vivo experiments, the size of FOV was 25 mm × 25 mm,
and the reconstructed images were converted to the same size as the
images in simulated datasets. The training rules of the in vivo experi-
ments were the same as those in the numerical simulations.

The data pre-processing for all numerical simulations and in vivo
experiments was based on the nonlinear transformation method pro-
posed in Section 3.1. Every sample in all datasets was consistent with
(p, Hgt), where p is the simulated signal with Gaussian noise in nu-
merical simulations or the realistic signal in in vivo experiments, and Hgt

is the ground truth of the initial pressure distribution.
In the following content, FPnet+Unet are used to represent the

method proposed in this paper, and FPnet is used to represent re-
constructions produced solely by FPnet, without using U-net.

4.2. Baseline algorithms

This study utilized standard Tikhonov reconstruction, TV re-
construction and Filtered Backprojection (FBP) with U-net post-pro-
cessing as baseline algorithms. Hereafter, we used Tikhonov, TV and
FBP+Unet to represent these three methods. All algorithms are briefly
discussed in Section 2. For standard Tikhonov reconstruction, LSQR
algorithm were used for iterative updates [44]. The number of itera-
tions used for LSQR is 100. For TV reconstruction, we used the split
Bregman method employed in [45] to solve (7) with 50 Bergman
iterations. The regularization parameter of these two model-based

Table 1
Description of each dataset used in numerical simulations and in vivo experiments.

Dataset Explanation Training samples Validation samples Test samples
Brain Brain MRI images of T1-weighted post-contrast, FLAIR and T2-weighted imaging. 2211 267 276
Abdomen Abdomen MRI images of T1-weighted post-contrast imaging from healthy people. 8273 368 336
Vessel Vessel images that is randomly cropped from the DRIVE dataset. 4000 200 200
LiverCancer Abdomen MRI images of T1-weighted post-contrast imaging from liver cancer patients. - - 601
MSOT-Brain Brain PAT images of nude mice extracted from the MSOT InVision 128 system. 698 - 64
MSOT-Abdomen Abdomen PAT images of nude mice extracted from the MSOT InVision 128 system. 575 - 124

Fig. 5. Performance comparisons for three test images from the Brain, Abdomen and Vessel datasets, respectively (from top to bottom). Gray-scale images de-
monstrated the ground truth and corresponding reconstructed results produced by each method. Pseudo-color images are the subtraction between the reconstructed
results and ground truth.
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methods were set to a relative optimal value according to the experi-
ments (see Supplementary Material Section S.V). To ensure a fair
comparison, the training parameters and datasets used for FBP+Unet
were the same as that used for FPnet+Unet, except that the learning
rate was constant at 10−4 and the batch size was 64.

In addition, in order to verify the reconstruction performance of the
proposed FPnet and the functionality of the U-net in FPnet+Unet, we
also added FBP and FPnet to the baseline algorithms. The im-
plementation of the FBP algorithm was based on [12].

4.3. Performance metrics

To quantitatively illustrate the quality of the reconstructed images,
we used normalized root mean-squared error (NRMSE), peak-signal-to-
noise ratio (PSNR), and structure similarity (SSIM) [46] as metrics. The
calculation of these quantitative indicators was implemented using the
scikit-image package in Python. During the quantitative analysis of the
reconstructed images, we also considered the reconstruction time (see
Supplementary Material Section S.VII).

4.4. Numerical simulations

In numerical simulations, reconstruction performance and robust-
ness of our method were tested. On the other hand, in order to further
verify the theoretical feasibility of our method in biomedical applica-
tions, we also tested the accuracy of reconstructions for the pathological
features which are not included in the training set.

4.4.1. Reconstruction performance
For both FBP+Unet and FPnet+Unet, we trained and tested three

models based on the Brain, Abdomen and Vessel datasets, respectively.
Without loss of generality, all baseline algorithms and our method were
tested on the samples with 20 dB SNR. In Fig. 5, it can be found that the
results of deep learning–based methods (FBP+Unet and FPnet+Unet)
are generally better than others. Moreover, FPnet+Unet obtained the
best reconstructions for the initial pressure intensity on all datasets. At
the same time, FPnet+Unet restored detailed structure (e.g. vessels)
with higher quality than FBP+Unet. The blood vessel indicated by the
red arrow in Fig. 5, all methods except for FBP+Unet was successfully
reconstructed. Although FBP successfully reconstructed this blood
vessel, the U-net failed to reconstruct it owing to the interference of
artifacts in the FBP images. Based on more accurate and reliable do-
main transformation of FPnet, FPnet+Unet obtained higher quality
results. In addition, it should be noted that the artifacts generated in
FPnet were similar to the subsampled artifacts in FBP and Tikhonov
methods (especially in the Vessel dataset), which proved that we in-
corporated the prior knowledge of UBP physical model into the network
structure. The quantitative measurements are shown in Table 2. These
results further revealed that our method achieved the best performance

in all quantitative indicators.

4.4.2. Robustness against noise
The robustness was tested against different noise levels for FPnet

+Unet. For the Brain, Abdomen and Vessel test sets, we generated
noisy signals from 5 dB to 45 dB SNR with a 5 dB step. It should be
noted that the 5 dB and 45 dB SNRs were not included in the training
samples, which can further illustrate the robustness against stronger or
weaker noise without training. In this experiment, three models were
also trained and tested on the corresponding test samples. It can be seen
from Fig. 6A-C that both FPnet and FPnet+Unet were generally robust
against noise. Even the SNR of the signal outside the training set, FPnet
+Unet can still achieve acceptable results. It should be noted that when
the noise is strong (less than 20 dB SNR), the network performance will
slightly reduce owing to the more unstable intensity of the re-
constructed images generated by FPnet. However, in Fig. 6D, the slight
decrease in quantitative indicators has almost negligible effect on the
visual impression of reconstructions. Also, a better reconstruction for a
signal with certain intensity noise can be obtained by narrowing the
noise range of the training set. In total, it can be found that both FPnet
and FPnet+Unet were well applied to noise situations.

4.4.3. Robustness against pathologies
In biomedical application, it is a very common phenomenon to

detect pathological features not found in the training set. Therefore, it is
necessary to test the ability to reconstruct the pathological features not
contained in the training set. In this experiment, the model trained on
the Abdomen dataset was used and tests were conducted on samples
with 20 dB SNR in the LiverCancer dataset. All the features of liver
tumors were not learned by both FBP+Unet and FPnet+Unet. An ex-
ample of reconstructions using deep learning–based methods is shown
in Fig. 7. It can be seen that the accuracy of the initial pressure re-
construction was significantly higher than that from FBP+Unet. In
addition, FPnet+Unet obtained more reliable reconstruction for
pathologies which were not represented in the training data. This is
mainly reflected in the more accurate reconstructions of the initial
pressure of liver tumor and its peritumoral vessels. This more accurate
result is mainly due to the fact that our network structure combined the
physical model and learned a more reliable domain transformation
under data-driven conditions. In the quantitative measurements
(Table 3), although the SSIM of both methods were similar, the PSNR
and NRMSE of FPnet+Unet were significantly higher than FBP+Unet,
which further demonstrated that FPnet+Unet can obtain higher re-
construction quality on the pathological features without training. For
FPnet itself, it was still possible to reconstruct the pathological features
not included in the training set with high quality. This is the root cause
of FPnet+Unet surpassing FBP+Unet. In general, FPnet+Unet was still
robust to pathological features not represented in the training set, and
its reconstruction results were reliable.

Table 2
Mean PSNR, SSIM and NRMSE of noisy test samples for Brain, Abdomen and Vessel datasets.

Dataset FBP Tikhonov TV FPnet FBP+Unet FPnet+Unet

Brain PSNR 9.9428 17.8090 20.8906 25.7187 26.5650 27.6908
SSIM 0.2862 0.4807 0.6139 0.7385 0.7972 0.8620
NRMSE 1.2468 0.5245 0.3756 0.2034 0.1846 0.1630

Abdomen PSNR 7.5409 18.1119 19.5252 29.1673 30.7155 31.3335
SSIM 0.1379 0.2504 0.3024 0.8349 0.8430 0.8852
NRMSE 2.3025 0.6965 0.5944 0.1947 0.1606 0.1498

Vessel PSNR 8.0661 16.6168 22.9560 16.4563 21.6138 25.1170
SSIM 0.1356 0.4223 0.8300 0.3975 0.8690 0.9059
NRMSE 1.2164 0.4630 0.2297 0.4597 0.2566 0.1714
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Fig. 6. Robustness against different SNRs. (A-C) Mean PSNR, SSIM, NRMSE of the test images generated by FPnet and FPnet+Unet in the Brain, Abdomen and Vessel
dataset versus SNRs. The black and red color indicate FPnet and FPnet+Unet, respectively. (D) Visual display of one set of reconstruction result with different SNRs
in the Brain dataset. Gray-scale images demonstrated the ground truth and corresponding reconstructed results produced by FPnet (first row) and FPnet+Unet (third
row). Pseudo-color images are the subtraction between the reconstructed results and ground truth.

Fig. 7. The reconstruction result of a test sample in the LiverCancer dataset. Both FBP+Unet and FPnet+Unet were trained on the Abdomen dataset. Gray-scale
images demonstrated the ground truth and corresponding reconstructed results produced by FBP+Unet and FPnet+Unet. Pseudo-color images are the subtraction
between reconstructed results and the ground truth. For each result, the image inside the large yellow rectangle is an enlargement of the area inside the small yellow
rectangle, intended to show the reconstruction details of the liver tumor more clearly.
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4.5. In vivo experiments

In practice, a signal also contains Gaussian white noise, echo noise,
and noise caused by the motion of the imaging object. Therefore, to
further verify the robustness and practicality of different reconstruction
methods, the data of in vivo photoacoustic mice imaging were adopted
for comparison.

In order to accommodate the size of FOV in the commercial imaging
system, the pixel spacing settings of FBP, Tikhonov, and TV were ad-
justed slightly. Here, the default reconstructed images given by the
MSOT inVision 128 system were used as the ground truth for the fully
sampled, limited-view data. A comparison of different reconstructions
from six methods is shown in Fig. 8. In these realistic PAT imaging
cases, because of the limited-view signal with sparse sampling, re-
constructions produced by FBP and Tikhonov were obviously polluted
by strong artifacts. TV over-suppressed these artifacts and caused ex-
cessively smooth images. FPnet produced distinctly better results with
less artifacts, which was because the network captured key features
from the realistic ultrasound signal, and thus produced projections
more accurately than the FBP did. Both FBP+Unet and FPnet+Unet
achieved more accurate reconstructions than FPnet alone. However,
FPnet+Unet was more effective in suppressing the background noise,
leading to better overall image quality compared to FBP+Unet. In
addition, it is found that FPnet+Unet outperformed FBP+Unet in the
reconstruction of small blood vessels in the brain. It should also be
noted that for the superficial inferior epigastric vessel (the vessel in-
dicated by the red arrow in the ground truth image) of nude mice, only
FPnet and FPnet+Unet were successfully reconstructed, and other
methods failed to reconstruct owing to the subsampled measurements,
which further demonstrated the reliability of our method for limited-
view and sparsely sampled data. Moreover, just like numerical simu-
lations, the subsampling artifact pattern generated by FPnet was similar
to conventional methods, which confirmed the use of the physical
model as prior information.

A quantitative analysis of test samples from the realistic test sets is
shown in Table 4. Our method still outperformed all the other methods

in these three indicators, which was consistent with numerical simu-
lations. However, for the MSOT-Brain dataset, it was noted that the
difference between FPnet+Unet and FBP+Unet became smaller in
comparison with simulation experiments (Table 4). This was because in
vivo brain images had a larger background portion, and therefore, it was
easier for our network to overfit these smooth background pixels and
produced an excessively smooth reconstruction, resulting in degenera-
tion. Another reason was that, the training set was not large enough to
optimize all parameters of our network, which also affected its overall
performance. Despite this, our method still accurately reconstructed
most of the small details in the PAT images (Fig. 8).

5. Conclusions

In this study, a novel deep learning strategy was developed for PAT
reconstructions from limited-view and sparsely sampled data. Unlike
other deep learning algorithms developed for PAT, our method learned
a feature projection process instead of using conventional linear re-
construction methods for domain transformation. When combined with
a post-processing network, our method can obtain better results than
baseline algorithms.

The effectiveness of this method is primarily due to the following
four points. First, the proposed FPnet is able to extract the deep features
of the raw signal on the time axis and learn adaptive feature projection
parameters on the basis of the training data. Conventional linear re-
construction methods often ignore the correlation between adjacent
time signals, resulting in information loss. In the conventional back-
projection process, the projection term is highly correlated with the
signal at a fixed moment, and as a result, the parameters of the back-
projection matrix are also fixed. This inevitably leads to significant
inaccuracy, because the actual situation (e.g. the speed of sound) often
does not precisely match the ideal assumption. However, this drawback
was effectively overcome by the proposed FPnet. Second, the design of
FPnet integrated the physical model of the UBP. Although it did not
replicate any conventional linear reconstruction algorithms, the fun-
damental physical model was adopted as the prior knowledge to the
network, which improved the reconstruction performance. We believe
that implementing a deep learning network without considering the
physical principle of photoacoustic imaging is unlikely to achieve ac-
curate reconstruction results. In order to bring our model closer to the
backprojection model and reduce overfitting, we added the L1 reg-
ularization to the FC layer of FPnet. Through the parameter analysis
experiments (see Supplementary Material Section S.VI), we found that
FPnet successfully learned a projection process in a manner very similar
to UBP. Third, a suitable data pre-processing and training strategy was
presented for FPnet+Unet to further improve the reconstruction

Table 3
Mean PSNR, SSIM and NRMSE of noisy test samples for LiverCancer dataset.
Models were trained on the Abdomen dataset.

Algorithm FPnet FBP+Unet FPnet+Unet

PSNR 27.0826 27.1701 28.7152
SSIM 0.8480 0.8940 0.8953
NRMSE 0.1910 0.1883 0.1550

Fig. 8. Performance comparisons for two test images from the MSOT-Brain and MSOT-Abdomen datasets, respectively (from top to bottom). The red arrow points to
a superficial inferior epigastric vessel.
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performance. For data pre-processing, we proposed a nonlinear trans-
formation, which enables the network to cope with different distribu-
tions of signals. The GLS was proposed to train FPnet and U-net si-
multaneously. By increasing the weight of the loss function of output
from FPnet, the network focused on the learning of domain transfor-
mation. Moreover, by analyzing gradient backpropagation, FPnet ad-
justed its own parameters according to the image post-processing net-
work, so that it adapted to the denoising performance of the post-
processing network. Finally, the convolutional layer and pooling layer
were used to extract and downsample features, respectively, which
remarkably reduced the number of learnable parameters. This fa-
cilitated the efficient implementation of deep learning network.

Certain limitations and potential biases may exist in our study. First,
our reconstruction speed was slower than that of FBP+Unet, because
the convolutional layer was used to extract features. However, our
approach was faster than the iterative reconstruction method and can
achieve real-time reconstruction if GPU acceleration can be applied.
Second, although the UBP physical model was used as prior information
for the FPnet structure, this does not mean that FPnet can learn a
universal and real physical model. This is mainly due to the fact that the
real physical model is highly complicated and theoretically requires a
vast number of samples for training. However, in our approach, it is
feasible to learn a better UBP-like projection for a specific imaging re-
gion or object. Experiments have shown that the reconstruction results
of a specific region learned from a small dataset were reliable. Third,
the size of the reconstructed images is limited by the very large number
of parameters in the FC layer and weaken the practicability of our
method. However, this weakness can be overcome by using GPUs with
larger memory. Finally, the use of nonlinear normalization may lead to
the loss of quantitative information in the reconstruction results, hin-
dering the application of our method in quantitative imaging.

In future research, we will study the learning of more general
physical models, construct larger and higher quality in vivo datasets,
design better post-processing networks for FPnet and further optimize
our method to make it reliable for photoacoustic quantitative imaging.
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